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Abstract. The generalized Polynomial Chaos (gPC) method is one of the most widely

used numerical methods for solving stochastic differential equations. Recently, attempts

have been made to extend the the gPC to solve hyperbolic stochastic partial differential

equations (SPDE). The convergence rate of the gPC depends on the regularity of the

solution. It is shown that the characteristics technique can be used to derive general

conditions for regularity of linear hyperbolic PDE, in a detailed case study of a linear

wave equation with a random variable coefficient and random initial and boundary

data.
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1. Introduction

Stochastic differential equations are of great importance, not only in a wide variety of

scientific areas including non-equilibrium statistical physics and quantitative biology but

also elsewhere such as in mathematical finance and economics. Since it is usually difficult

to solve stochastic partial differential equations (SPDE) analytically, their numerical solu-

tion has generated considerable research interest in recent decades. A good introduction

and review can be found in Ref. [2].

Among a number of proposed numerical methods, the generalized Polynomial Chaos

(gPC) method is one of the most widely used. The basic idea of the gPC is to project the

random part of the system into a finite dimensional polynomial space and then solve the

projected finite dimensional deterministic system. Due to its spectral-method-like nature,

one of the important properties of the gPC is that the rate of the convergence depends

very much on the regularity of the solution. An excellent review of the gPC method can be

found in Ref. [6]
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The gPC method has proven to be very efficient for various types of problems, but only

recently have attempts been made to use it for hyperbolic SPDE [1,3,5]. While parabolic

and elliptic equations generally have good regularity properties, hyperbolic problems have

non-degenerate characteristics that can depend on the randomness, making the study of

their regularity more difficult. This paper develops the characteristics technique to deal

with the regularity of the solution to a particular linear SPDE, as a first step to tackle the

regularity of hyperbolic SPDE in general.

The strategy of the characteristics technique is outlined in Section 2. In Section 3, the

technique is used to derive a general condition for the BV regularity of the solution to the

linear wave equation with a random variable coefficient and random initial and boundary

data. Conclusions are made in Section 4.

2. Outline of the Characteristic Approach

An energy-estimate-type technique can be applied to linear hyperbolic SPDE to show

BV regularity [5] . However, this technique requires some strong conditions. In the case

of a wave equation with a constant random wave speed, the derivative of the wave speed

cy(y)must be bounded. Since the method of characteristics generally gives sharp estimates

for linear hyperbolic equations, we intend to use it to improve the aforementioned result

and obtain a more general theorem.

The idea of the characteristics approach is straightforward. Thus we find an implicit

representation of the solution in terms of the given data using the characteristics and then

bound its TV norm. For a general hyperbolic PDE with a random parameter but no shock,

the characteristics can be written as

L(x , t, y) = s

and initial data can be parametrized by a random curve

Γ : γ(s) = ( f (s), g(s),h(s, y)) = (x , t,u(y)) ,

where y is a random variable. The first equation contains the information about the in-

fluence of the randomness on the directions of the characteristic curves, and the second

equation contains the randomness of the initial data. Then the solution can be written as

u(x , t, y) = h(L(x , t, y), y) ,

and we see immediately that
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where the physical interpretation of each term is self-evident.

Although the idea of the technique is simple, as shown below it is nontrivial and needs

careful analysis, even when it is applied to a relatively simple problem. The major ob-

stacle is the interaction between the boundary and the characteristics, which makes the

parametrization of the solution in terms of initial data difficult.
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3. Regularity of Wave Equation with a Variable Random Wave Speed

We consider the regularity of the following SPDE problem:















ut(x , t, y)− c(x , y)ux (x , t, y) = 0 , ∀(x , t, y) ∈ (−1,1)× (0, T]× [−1,1] ,

u(−1, t, y) = uL(t, y) , for c(x , y) < 0 and t ∈ (0, T] ,

u(1, t, y) = uR(t, y) , for c(x , y) > 0 and t ∈ (0, T] ,

u(x , 0, y) = u0(x , y) , ∀(x , y) ∈ [−1,1]× [−1,1] ,

(3.1)

where y ∈ [−1,1] is a random variable with a distribution given by its probability density

function ρ(y). It is assumed that the wave speed c(x , y) does not change sign when x

varies — i.e. for almost all fixed y∈[−1,1], either c(x , y) > 0 or c(x , y) < 0,∀x ∈ (−1,1).

It will be shown that this problem is well-posed.

We seek a condition such that the solution u(x , t, y) is in W 1,1 ∈ BV with respect to y

— i.e.
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so (3.1) may be solved efficiently using the gPC method with collection projection [5, 6].

The case where c(x , y) = c(y) is independent of x is studied in Ref. [5], where necessary

conditions for the solution to be in Hn and BV are given. Since the general problem to be

considered eventually will be nonlinear, the more natural BV space and BV regularity are

considered here, but the techniques discussed can easily be extended to Hn regularity.

In the rest of this Section, the well-posedness of the problem is considered and proof of

the existence and uniqueness of the solution is given, followed by proof of the associated

BV condiion. The proof is somewhat technical, so the ultimate main result is stated first.

3.1. Main result

Theorem 3.1. If

1.

cM (y)
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and
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then the solution u(x , t, y) to the SPDE (3.1) is in W 1,1 ∈ BV:
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L1 <∞ .

The first condition means that c(x , y) is bounded, the second condition that the influence

of the change of the characteristics in x can be bounded, and the third give conditions on

the regularity of the initial data.

The proof of this main result is given in Subsection 3.3. However, when c(x , y) = c(y)

there is an interesting result.

Corollary 3.1. The solution u(x , t, y) to the SPDE (3.1) given c(x , y) = c(y) is in BV, if the

following conditions are satisfied:
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Proof. The proof is immediate, with cM (y) = c(y) and d(y) = 2
�

�c′(y)/c2(y)
�

�.

This corollary is stronger than than the corresponding result derived in Ref. [5], since the

condition that c′(y) be bounded is removed.
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Corollary 3.2. If cy(x , y) and c(x , y) are bounded almost everywhere, when c(x , y) = c(y)

the solution u(x , t, y) to the SPDE (3.1) is in BV if the following conditions are satisfied:
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Proof. Since cM ≤ C is bounded almost everywhere, the constant factor may be

dropped; and since cy ≤ C is also bounded almost everywhere,
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The ρ(y) d y integral is restricted to either c > 0 or c < 0 so that only one of the two terms

enters the final integral. Then on dropping the constant factors, we obtain the result.

This result can also be derived using energy arguments [5], if cx is also bounded almost

everywhere.

In brief, the characteristics approach provides a sharper estimate and leads to a more

general theorem.

3.2. Well-posedness of the problem and the solution representation

The existence and uniqueness of the solution to our SPDE (3.1) follows from a solution

representation in terms of the initial data and the characteristics.

3.2.1. Parametrization of the initial data

We parametrize the initial data using a curve Γ— viz.

Γ : γ(s, y) = ( f (s), g(s),h(s, y)) ,
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where

f (s) =







−1 , s < −1 ,

s , s ∈ [−1,1] ,

1 , s > 1 ;

g(s) =







−(s+ 1) , s < −1 ,

0 , s ∈ [−1,1] ,

s− 1 , s > 1 ;

h(s) =







uL(−s− 1, y) , s < −1 and c(−1, y) < 0 ,

u0(s, y) , s ∈ [−1,1] ,

uR(s− 1, y) , s > 1 and c(1, y) > 0 .

(3.2)

This curve Γ is the boundary of the strip of interest (x , t) ∈ (−1,1)× (0,∞).

3.2.2. Characteristics

It is convenient to index the characteristics of the SPDE using (x0(s), t0(s)) instead of s

alone, as will become clear later. The characteristics satisfy

d t

d x
= −

1

c(x , y)
, x(t0) = x0 , (3.3)

and therefore are given by

K(x , t, s, y) = J(x , t, x0(s), t0(s), y) = (t − t0) +

∫ x

x0

dξ

c(ξ, y)
= 0 ,

where (x0(s), t0(s)) is on Γ.

Lemma 3.1. The characteristics given by K(x , t, s, y) = 0 cannot cross each other, so there is

no shock. Further, each characteristic crosses the initial curve Γ only once, and the point of

intersection (x0(s), t0(s)) is unique.

Proof. From the elementary theory of ODE, two integral curves from (3.3) with two

different starting points cannot cross unless the two points are on the same integral curve.

Thus the characteristics are well behaved, unlike curve 1 in Fig. 1. Indeed, from the

expression for K(x , t, s, y) = 0 we have

t(x ; t0, x0, y) = t0 −

∫ x

x0

dξ

c(ξ, y)
,

which is clearly a single-valued function in x .
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Figure 1: Illustration of possible bad harateristis.
Let us now prove the second part of the lemma. Since c(x , y) is positive or negative

∀x ∈ (−1,1) for a fixed y, the function t = t(x ; t0, x0, y) for the characteristics is mono-

tonic. When c(x , y) < 0, we only have the boundary at x = −1 and t(x ; t0, x0, y) is

increasing. Now any characteristic curve starting from the x -axis cannot cross x = −1, be-

cause it is single-valued and cannot cross itself (monotonicity). Similarly, any characteristic

curve stemming from x = −1 cannot cross the x -axis nor itself because t = t(x ; t0, x0, y)

is single-valued. The case for c(x , y) > 0 is similar. Thus the characteristics cross the initial

curve Γ only once, at the starting point.

Remark 3.1. It is notable that the wave speed c(x , y) cannot change sign as x varies, for

otherwise there may be physical and mathematical deficiencies. For example, if c(x , y) =

y/x there is a sign change through∞, so there are ambiguous characteristics like “Possible

characteristics 2” in Fig. 1 where the wave propagate from the left to the right or in the

opposite direction. As another example, if c(x , y) changes sign through 0 like c = x − x0,

then the solution has two independent parts separated by the straight line x = x0. In

general, x0 = x0(y) also depends on the random variable y, so it is much harder to bound
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T V
.

3.2.3. Existence, uniqueness and representation of the solution

Let us first prove there is no rarefaction so that every point in the strip of interest (x , t) ∈
(−1,1) × (0, T] can be reached by a characteristic, and then from Lemma 3.1 that the
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inverse of the characteristics function is well-defined. This leads us to the representation

of the solution in terms of the initial data and the characteristics.

Lemma 3.2. There is no rarefaction — i.e.

∀(xp, tp) ∈ (−1,1)× (0, T] , ∃sp ∈ [−1− tp, 1+ tp] such that K(xp, tp, sp, y) = 0 ,

so the value of the solution can be found in the initial data through the characteristics at

every point. (Note that sp ∈ [−1− tp, 1+ tp] means the solution also satisfies the causality

condition.)

Proof. First consider c(x , y) < 0, when

∫ xp

−1

dξ

c(ξ, y)
≤

∫ xp

x0

dξ

c(ξ, y)
≤

∫ xp

1

dξ

c(ξ, y)
, ∀x0 ∈ [−1,1] .

The left-hand side is negative and the right-hand side is positive, and there are two cases.

1. 0 < tp < −
∫ xp

−1
1/c(ξ, y) dξ. Then since the integral is a continuous function in x0,

there exists x0 ∈ [−1,1] such that

tp = −

∫ xp

x0

dξ

c(ξ, y)
.

From monotonicity the x0 is unique, so K(xp, tp, x0, y) = L(xp, tp, x0, 0, y) = 0 and

the corresponding characteristics originate from the x -axis.

2. tp > −
∫ xp

−1
1/c(ξ, y) dξ. Then

t0 = tp +

∫ xp

−1

dξ

c(ξ, y)
> 0 ,

so K(xp, tp,−t0 − 1, y) = L(xp, tp,−1, t0, y) = 0 and the corresponding charac-

teristics originate from the boundary x = −1. Clearly t0 < tp, which is simply a

restatement of causality.

When c(x , y) > 0, the argument is almost the same.

From Lemmas 3.1 and 3.2, the characteristics equation K(x , t, s, y) = 0 implicitly de-

fines a well-defined function L : (−1,1)× (0, T]× [−1,1] 7→ [−1− T, 1+ T]— viz.

s = L(x , t, y) ,

which maps every point in the strip of interest to a uniquely defined characteristic starting

from ( f (s), g(s)), and the solution representation is as follows:

Theorem 3.2. There exists a unique solution u(x , t, y) to the SPDE (3.1), with the represen-

tation

u(x , t, y) = h(L(x , t, y), y) .
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3.3. Proof of the main Theorem 3.1

Let us now apply the characteristics approach to the SPDE (3.1) using the above so-

lution representation, to find the expression for
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T V
and then suitable conditions to

bound
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T V
in order to prove the main theorem.

From the solution representation,
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We substitute the terms according to the different conditions, and evaluate the derivatives

of L using the differential form of the implicit function theorem. Thus

∂ L

∂ y
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∂ K
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/
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− c(s, y)D(s, x) , s ∈ [−1,1] ,
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where

D(a, b) =
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c(x , y)
, s < −1 ,

c(s, y)

c(x , y)
, s ∈ [−1,1] ,

1

c(x , y)
, s > 1 ,

which is used later to calculate the Jacobian from d x to ds. Further, in order to change

the variable of integration from d x to d t, introduce the function x = M(t, s, y) ∈ (−1,1)

implicitly defined by K(x , t, s, y) = 0 — i.e.

K(M(t, s, y), t, s, y) = 0 .

This function basically traces the x coordinates of the characteristics s at time t, and is

well-defined because K(x , t, s, y) is monotonic in x .

We split the integral for
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T V
into three components according to the range of s:
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where

Ω1 = [−1,1]∩ {x | s = L(x , t, y) < −1} ,

Ω2 = [−1,1]∩ {x | s = L(x , t, y) ∈ (−1,1)} ,

Ω3 = [−1,1]∩ {x | s = L(x , t, y) > 1} .
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For the first integral, when s < −1 the characteristics originate from the left boundary

x = −1 such that c(x , y) < 0, so
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∫ 1
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where s = L(x , t, y). Then we change the variable θ = −s− 1 = −L(x , t, y)− 1 ∈ [0, T],

and also have

s = L(x , t, y) =⇒ ds =
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∂ x
d x = −
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/
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∂ s
d x = −
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d x ,

where the partial derivative is used because t and y are kept constant. Thus the Jacobian

of this change is given by

d x = −c(x , y) ds = c(x , y) dθ .

Since the integrand is non-negative and θ ∈ [0, T], we can simply use [0, T] as the range

of integral, to obtain
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where x = M(t,−θ − 1, y) as before. For the third integral, we have similarly
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We still have to evaluate the second integral, when the characteristics emanate from

the x axis. Using the same technique with θ = s yields
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(θ , x)D(θ , x)

�

�

�

�

+

�

�

�

�

∂ u0

∂ y
(θ , y)

1

c(θ , y)

�

�

�

�

�

�

�c(x , y)
�

� dθ d y .
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Finally, we define
�

�c(x , y)
�

� ≤ cM (y) on [−1,1]× [−1,1] and substitute these bounds back

into the expressions for I1, I2 and I3. The conditions in the Theorem 3.1 ensure that the

three integrals are bounded, and hence



uy





T V
= I1 + I2 + I3 <∞

so that the solution u(x , t, y) is in BV.

4. Conclusions

The characteristics approach gives sharp estimates and leads to general theorems for

proving regularity of the linear hyperbolic stochastic PDE. The approach outlined is con-

ceptually straightforward. However, even when this approach is applied to a simple linear

initial-boundary value problem, a rigorous proof still needs a careful discussion. In general,

the main obstacle is the interplay between the geometry of the domain and the movement

of the random characteristics, which makes an implicit representation of the solution dif-

ficult to obtain. For nonlinear cases, the solution will generally have shocks and it is even

harder to find a solution representation of the solution. Nevertheless, it should be possible

to extend the approach to nonlinear problems, for example by using the general character-

istics described in Ref. [4].
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