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Abstract. Based on the generalised Arnoldi procedure, we develop an implicitly restarted

generalised Arnoldi method for solving the large-scale polynomial eigenvalue problem.

By combining implicit restarting with the refinement scheme, we present an implicitly

restarted refined generalised Arnoldi (IRGAR) method. To avoid repeated converged

eigenpairs in the later iteration, we develop a novel non-equivalence low-rank deflation

technique and propose a deflated and implicitly restarted refined generalised Arnoldi

method (DIRGAR). Some numerical experiments show that this DIRGAR method is ef-

ficient and robust.
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1. Introduction

We consider the matrix polynomial

P(λ) = λdAd +λ
d−1Ad−1 + · · ·+λA1 + A0, (1.1)

where the coefficient matrices Ai(0≤ i ≤ d) are n×n large and sparse. The scalar λ is said

to be an eigenvalue of P(λ) if det(P(λ)) = 0, where det(P(λ)) denotes the determinant

of the matrix P(λ). The nonzero vectors x , y are said to be the right and left eigenvectors

corresponding to the eigenvalue λ if

P(λ)x = 0 and yH P(λ) = 0 , (1.2)

respectively. This is the well known polynomial eigenvalue problem (PEP). For conve-

nience, the two-tuple (λ, x) or the triplet (λ, x , y) is used to denote an eigenpair of the

problem (1.2).
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The PEP reduces to the generalised eigenvalue problem if d = 1; and to the quadratic

eigenvalue problem (QEP) if d = 2, which is one of the most important cases. Thus for

the QEP Tisseur & Meerbergen [31] surveyed many applications, properties and numerical

methods. The cubic eigenvalue problem (CEP) when d = 3 arises in the numerical sim-

ulation of the semiconductor quantum dot model [15, 32]; and higher order polynomial

eigenvalue problems arise in stability analysis in control systems [12], the simulation of the

three-dimensional pyramid quantum dot heterostructure [16], and in structural dynamic

analysis via the dynamic element method [26] or the least squares element method [27].

Gohberg et al. [9] established the mathematical theory for matrix polynomials. Chu [6],

Dedieu & Tisseur [7], Higham & Tisseur [13] considered perturbation analysis for the PEP.

Tisseur [30], and Higham et al. [10] and Lawrence & Corless [21] analysed the backward

error. Here we consider the computation of some eigenpairs with eigenvalues of largest

modulus. If some eigenpairs with eigenvalues nearest to a target σ are desired, one may

apply the shift-invert transformation λ̃ = 1/(λ−σ) to the matrix polynomial P(λ) and

consider the transferred matrix polynomial

P̃(λ̃) = λ̃d Ãd + λ̃
d−1Ãd−1 + · · ·+ λ̃Ã1 + Ã0 , (1.3)

where Ãi =
∑i

j=0
C

i− j

d− j
σi− jAd− j(0 ≤ i ≤ d), C k

n
= n!

k!(n−k)!
. For σ = 0 (some smallest mod-

ulus eigenvalues are desired), such that the new coefficient matrices satisfy Ãi = Ad−i (0≤
i ≤ d), one simply inverts the order of the coefficient matrices Ai(0≤ i ≤ d) in P(λ). If the

coefficient matrix Ad is singular, then λ=∞ is an eigenvalue of the PEP (1.2) — and here

we assume that Ad is nonsingular throughout.

The classical approach for solving the PEP (1.2) is to linearise the problem and produce

the following generalised eigenvalue problem:

C y = λG y , (1.4)

where

C =









−Ad−1 −Ad−2 · · · −A0

I
. . .

I 0








, G =









Ad

I
. . .

I








,

y =









λd−1 x

λd−2 x
...

x








. (1.5)

Many different linearisations are possible [1,9,11,23,24]. Provided Ad is nonsingular, the

generalised eigenvalue problem (1.4) may be reduced to the standard eigenvalue problem

M y = λy, (1.6)
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where

M = G−1C =









Md−1 Md−2 · · · M0

I
. . .

I 0








,

Mi = −A−1
d

Ai (0≤ i ≤ d − 1) . (1.7)

The linearisation process increases the problem size, and the matrix structures and cer-

tain properties of the original PEP are not preserved. Thus additional memory is required

for any resulting numerical solution, but more importantly the linearised eigenvalue prob-

lems (1.4) and (1.6) become more ill-conditioned. To avoid these disadvantages, many

researchers have been studying numerical methods to solve the PEP (1.2) directly. Sleijpen

et al. [28] discussed the Jacobi-Davidson method for the PEP (1.2), and Hwang et al. [17]

developed a parallel Jacobi-Davidson approach for the large sparse polynomial eigenvalue

problem. The Jacobi-Davidson method targets one eigenpair at a time with local conver-

gence, but if the desired eigenvalues of the PEP (1.2) are clustered near each other it has

difficulties in detecting and resolving them. Meerbergen [25] proposed a quadratic Arnoldi

(Q-Arnoldi) method for the solution of the QEP, but it may suffer from numerical instabil-

ities. Recently, Lu et al. [22] presented a two-level orthogonal Arnoldi (TOAR) procedure

that avoids the instabilities of the Q-Arnoldi method, and Kressner & Roman [20] extended

the Q-Arnoldi and TOAR algorithms to the PEP in an elegant way. Based on the Hessenberg-

triangular decomposition of a matrix pencil, Huang et al. [14] proposed a semiorthogonal

generalised Arnoldi method for solving the QEP, and this method was recently extended for

the PEP by Wei & Dai [33]. Bai & Su [3] proposed a second-order Arnoldi (SOAR) method

for the QEP, and Bao et al. [4] later extended this method to the generalised Arnoldi (GAR)

for solving the higher order polynomial eigenvalue problem. Bao et al. [4] developed an

explicitly restarted refined generalised Arnoldi (RGAR) method for the PEP based on the

refined projection principle [18], but implicit restarting was not considered.

In Section 2, we give a brief description of the explicitly restarted generalised Arnoldi

(GAR) method and its refinement scheme (RGAR). The implicit restarting technique [19]

for the SOAR method led us to develop the implicitly restarted version of the GAR method

discussed in Section 3, on combining the implicit restarting strategy with the refinement

scheme for the PEP — i.e. our implicitly restarted refined generalised Arnoldi (IRGAR)

method. The implicit deflation technique based on Schur forms (e.g. see Ref. [2]) combined

with some eigen-solver procedure performs well for the linear eigenvalue problem, but for

the PEP a Schur form does not exist. Similar to the non-equivalence low-rank deflation

technique presented by Wei & Dai [33], for the PEP we develop a non-equivalence low-

rank deflation technique to provide a deflated and implicitly restarted refined generalised

Arnoldi method (DIRGAR). Our implicitly restarted refined generalised Arnoldi method

with the non-equivalence low-rank deflation is developed in Section 4 for the polynomial

eigenvalue problem. Numerical examples are reported in Section 5, and some concluding

remarks are made in Section 6.
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We use the following notation throughout. The n× n identity matrix is denoted by In,

or I for short, and e j denotes the j-th column of the identity matrix. Superscripta T and

H respectively denote the transpose and conjugate transpose of a vector or a matrix, ‖ · ‖2
the Euclidean vector norm or the induced matrix norm, ‖ · ‖F the Frobenius matrix norm,

diagr(λ1,λ2, · · · ,λr) a diagonal matrix with the entries λi(1≤ i ≤ r), and the subindex r

in diagr denotes the dimension of the diagonal matrix.

2. The Generalised Arnoldi Method

As background, we briefly describe the generalised Arnoldi procedure, the explicitly

restarted generalised Arnoldi (GAR) method, and the refinement scheme (RGAR) for the

PEP [4].

Definition 2.1 (cf. Ref. [4]). Let M0, M1, · · · , Md−1 be the given matrices of order n and

u0,u1, · · · ,ud−1 be n-dimensional vectors with ud−1 6= 0, such that

r0 = u1 ,

r1 = u2 ,
...

rd−2 = ud−1 ,

rd−1 = Md−1ud−1 +Md−2ud−2 + · · ·+M0u0 ,

r j = Md−1r j−1 +Md−2r j−2 + · · ·+M0r j−d , j ≥ d .

Then the sequence {ri}
j

i=0
is called a generalised Krylov sequence based on {Mi}

d−1
i=0

and

{ui}
d−1
i=0

, and the space

Km

�

{Mi}
d−1
i=0 , {ui}

d−1
i=0

�

= span {rd−2, rd−1, · · · , rd+m−3} (2.1)

is called an m-th generalised Krylov subspace.

Let v = (uH
d−1

,uH
d−2

, · · · ,uH
1 ,uH

0 )
H ∈ C dn, when

K(M ,v , m) = span{v , Mv , · · · , M m−1
v} (2.2)

is the Krylov subspace for the standard eigenvalue problem (1.6) and the following relation

holds:








r j

r j−1
...

r j−d+1








= M j−d+2

v , j ≥ d − 1 . (2.3)

The relation (2.3) shows that one may directly solve the PEP (1.2) using the Krylov subspace

(2.1), instead of using the subspace (2.2) for the standard eigenvalue problem (1.6).

We have the following algorithm for generating an orthonormal basis of the subspace

(2.1).
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Algorithm 2.1. Generalised Arnoldi Method (cf. Ref. [4]).

Input: matrices {Mi}
d−1
i=0

, initial vectors {ui}
d−1
i=0

with ud−1 6= 0 and dimension m of sub-

space.

Output: vectors {qi}
m+1
i=1

, {p(i)
1

, p
(i)

2
, · · · , p(i)m , p

(i)

m+1
}d−1

i=1
, and scalars {hi, j}.

1. β = ‖ud−1‖2,











q1

p
(1)

1
...

p
(d−1)

1











= 1
β









ud−1

ud−2
...

u0








;

2. for j = 1 : m do
















q j+1

p
(1)

j+1

p
(2)

j+1
...

p
(d−1)

j+1

















=

















Md−1q j +Md−2p
(1)

j
+ · · ·+M0p

(d−1)

j

q j

p
(1)

j
...

p
(d−2)

j

















,

for i = 1 : j do

hi, j = qH
i

q j+1,










q j+1

p
(1)

j+1
...

p
(d−1)

j+1











=











q j+1

p
(1)

j+1
...

p
(d−1)

j+1











− hi, j











qi

p
(1)

i
...

p
(d−1)

ji











,

endfor

h j+1, j = ‖q j+1‖2,

if h j+1, j = 0, then stop;

else










q j+1

p
(1)

j+1
...

p
(d−1)

j+1











= 1
h j+1, j











q j+1

p
(1)

j+1
...

p
(d−1)

j+1











.

endfor

If Algorithm 2.1 stops prematurely at step j < m, then either breakdown or deflation occurs

at the step. If breakdown occurs, the algorithm just needs to stop, but if deflation occurs

some remedies should be considered — cf. Refs. [3, 19] for details. However, here we

simply assume that Algorithm 2.1 just stops at step m.

Let Qm = [q1,q2, · · · ,qm] and P(i)m = [p
(i)

1
, p
(i)

2
, · · · , p(i)m ]; and let H̃m = (hi, j) denote the

(m+1)×m upper Hessenberg matrix whose nonzero entries are generated by Algorithm 2.1,

and let Hm be the m×m matrix obtained from H̃m by deleting the last row. Bao et al. [4]
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proved that

M









Qm

P(1)m
...

P(d−1)
m








=









Qm

P(1)m
...

P(d−1)
m








Hm + hm+1,m











qm+1

p
(1)

m+1
...

p
(d−1)

m+1











eT
m , (2.4)

and that {qi}
m
i=1

is an orthonormal basis of the generalised Krylov subspace (2.1).

Via the Rayleigh-Ritz projection technique on the subspace Qm = span{Qm}, Bao et

al. [4] developed a generalised Arnoldi method for solving the PEP (1.2). An approximation

eigenpair (θ , z), where θ ∈ C and z ∈ Qm, is obtained by imposing the Galerkin condition

(θ dAd + θ
d−1Ad−1 + · · ·+ θA1 + A0) z⊥Qm ; (2.5)

and since z can be expressed as z = Qmξ (ξ ∈ C
m), this condition (2.5) may be rewritten

as

(θ d Âd + θ
d−1Âd−1 + · · ·+ θ Â1 + Â0)ξ= 0 , (2.6)

where

Âi = QH
mAiQm (0≤ i ≤ d) . (2.7)

The projected matrices Âi(0≤ i ≤ d)may therefore preserve some structures and properties

as Ai(0≤ i ≤ d) such as symmetry, and rhe projected polynomial eigenvalue problem (2.6)

can be solved by the linearisation method.

However, as the dimension m of the projected subspace increases the generalised Arnoldi

method becomes expensive and impractical due to storage requirements or computational

cost, so restarting as in the explicitly restarted generalised Arnoldi (GAR) method [4] is

desirable.

Algorithm 2.2. GAR(m): Explicitly restarted generalised Arnoldi method.

Input: Coefficient matrices Ai(0≤ i ≤ d), initial vectors ui(0≤ i ≤ d −1), dimension m of

the projected subspace and number k of the desired eigenpairs.

Output: k approximate eigenpairs and their relative residuals.

1. Run Algorithm 2.1 with Mi = −A−1
d

Ai (0≤ i ≤ d − 1) to get Qm;

2. Compute Âi (0≤ i ≤ d) from (2.7);

3. Solve the projected polynomial eigenvalue problem (2.6) for (θi,ξi) (1 ≤ i ≤ dm)

with |θ1| ≥ · · · ≥ |θdm|, and get k Ritz pairs (θi, x i) with x i = Qmξi/‖Qmξi‖2 (1 ≤
i ≤ k);

4. Compute k relative residuals

αi =
‖(θ d

i
Ad + · · ·+ θiA1 + A0)x i‖2

|θi|d‖Ad‖F + · · ·+ |θi|‖A1‖F + ‖A0‖F
(1≤ i ≤ k).
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If all k relative residuals αi are satisfied, then output (θi, x i) and αi(1 ≤ i ≤ k), and

stop; otherwise set








ud−1

ud−2
...

u0








=

k
∑

i=1

αi









θ d−1
i

x i

θ d−2
i

x i
...

x i









as new initial vectors and go to 1.

The Ritz vectors may converge very slowly and even fail to converge, even if the Ritz

values converge. To avoid this, Bao et al. [4] extended the refined projection principle

[18] to the generalised Arnoldi method. Thus if θi(1 ≤ i ≤ k) are the desired Ritz values

obtained by Algorithm 2.2, a refined Ritz vector x̂ i ∈ Qm corresponding to the Ritz value

θi is sought such that

x̂ i = arg min
x∈Qm,‖x‖2=1





(θ d
i Ad + · · ·+ θiA1 + A0)x







2
. (2.8)

It was shown that x̂ i = Qmξ̂i , where ξ̂i is the right singular vector corresponding to the

smallest singular value σi of the matrix

Ti = (θ
d
i Ad + · · ·+ θiA1 + A0)Qm ∈ C

n×m . (2.9)

It is easy to see that the approximate eigenpair (θi , x̂ i), called the refined Ritz pair, is better

than the Ritz pair (θi , x i) due to its minimal property. The corresponding relative residual

αi can be rewritten as

αi =
σi

|θi|d‖Ad‖F + · · ·+ |θi|‖A1‖F + ‖A0‖F
(1≤ i ≤ k) , (2.10)

and the explicitly restarted refined generalised Arnoldi (RGAR) method [4] for solving the

PEP is as follows.

Algorithm 2.3. RGAR(m): Explicitly restarted refined generalised Arnoldi method.

Input: Coefficient matrices Ai(0≤ i ≤ d), initial vectors ui(0≤ i ≤ d −1), dimension m of

the projected subspace and number k of the desired eigenpairs.

Output: k refined Ritz pairs and their relative residuals.

1. Implement Steps 1 and 2 in Algorithm 2.2;

2. Compute all the eigenvalues {θi}
dm
i=1

of the projected polynomial eigenvalue problem

(2.6) with |θ1| ≥ |θ2| ≥ · · · ≥ |θdm|;

3. for i = 1 : k do

Compute the smallest singular value σi of Ti defined in (2.9) and the corresponding

right singular vector ξ̂i , the refined Ritz vector x̂ i = Qmξ̂i and the corresponding

relative residual (2.10);

endfor
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4. If all k relative residuals αi are satisfied, then output (θi, x̂ i) and αi(1 ≤ i ≤ k), and

stop; otherwise set








ud−1

ud−2
...

u0








=

k
∑

i=1

αi









θ d−1
i

x̂ i

θ d−2
i

x̂ i
...

x̂ i









as new initial vectors and go to 1.

Numerical results in [4] showed that the explicitly restarted refined generalised Arnoldi

(RGAR) method is superior to the explicitly restarted generalised Arnoldi (GAR) method.

3. Implicitly Restarted Refined Generalised Arnoldi Method

We now develop our implicit restarting strategy for solving the PEP via the generalised

Arnoldi method. Using Algorithm 2.1, we first obtain the decomposition (2.4). Thus for

given s = m−k shifts µi, we perform s implicitly shifted QR iterations [29] on Hm to obtain

the relation

(Hm −µ1 I) · · · (Hm −µs I) = VmR , (3.1)

where Vm = (vi, j) ∈ C
m×m is a unitary matrix and R ∈ C m×m is an upper triangular matrix.

It is straightforward to show that Vm has only s nonzero subdiagonals. Let

Q+m =QmVm = [Q
+
k
,Q+s ] = [q

+
1 ,q+2 , · · · ,q+m] , (3.2)

P(i)m

+
= P(i)m Vm = [P

(i)

k

+
, P(i)s

+
] = [p

(i)

1

+
, p
(i)

2

+
, · · · , p(i)m

+
] (1≤ i ≤ d − 1) , (3.3)

H+m = V H
m HmVm =

�

H+
k

H+
12

H+
21

H+
22

�

, (3.4)

with Q+
k
, P
(i)

k

+
∈ C n×k(1 ≤ i ≤ d − 1), H+

k
∈ C k×k and q+

j
, p
(i)

j

+
∈ C n(1 ≤ j ≤ m, 1 ≤ i ≤

d − 1). It follows from the relation (2.4) that

M











Q+m
P(1)m

+

...

P(d−1)
m

+











=











Q+m
P(1)m

+

...

P(d−1)
m

+











H+m + hm+1,m











qm+1

p
(1)

m+1
...

p
(d−1)
m+1











eT
mVm , (3.5)

where H+
m

remains an upper Hessenberg matrix and Q+
m

satisfies (Q+
m
)HQ+

m
= Im. It is also

notable that Vm has only s nonzero subdiagonals, and

eT
m

Vm = (0, · · · , 0, vm,k, · · · , vm,m) . (3.6)
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Since H+m = (h
+
i, j
) is an upper Hessenberg matrix, the entry h+

k+1,k
in the top right corner of

H+
21

may be nonzero, but the others are all zero. Now let













η+
k
= h+

k+1,k
q+

k+1
+ hm+1,mvm,kqm+1 ,

h̃+
k+1,k

= ‖η+
k
‖2 ,

q+
k+1
= η+

k
/h̃+

k+1,k
,

p
(i)+

k+1
= (h+

k+1,k
p
(i)+

k+1
+ hm+1,mvm,kp

(i)

m+1
)/h̃+

k+1,k
, 1≤ i ≤ d − 1 .

(3.7)

Comparing the first k columns of relation (3.5) and using Eqs. (3.2), (3.3) , (3.4) and (3.7),

we obtain

M











Q+
k

P
(1)

k

+

...

P
(d−1)

k

+











=











Q+
k

P
(1)

k

+

...

P
(d−1)

k

+











H+
k
+ h̃+

k+1,k











q+
k+1

p
(1)+

k+1
...

p
(d−1)

k+1

+











eT
k

. (3.8)

It is easy to verify that (Q+
k
)HQ+

k
= Ik, (Q+

k
)Hq+

k+1
= 0. As a truncated form of the generalised

Arnoldi decomposition (2.4), this relation (3.8) indicates why in Section 5 our implicit

method proves superior to the explicit method (Algorithm 2.2 or 2.3) that only uses new

initial vectors, with the generalised Arnoldi procedure continued from the k-step to the

m-step. The shifts selected are a key for success of the implicit restarting strategy. One

way is to take the unwanted Ritz values as shifts, called exact shifts. We solve the projected

polynomial eigenvalue problem (2.6) to get dm eigenvalues {θi}
dm
i=1

with |θ1| ≥ |θ2| ≥ · · · ≥
|θdm|, and select k Ritz values {θi}

k
i=1

as approximations to the desired eigenvalues. The

remaining unwanted Ritz values {θi}
dm
i=k+1

are shift candidates. (There are dm − k shift

candidates, while we need only s = m− k shifts.) In this case, we select the s Ritz values

among dm− k candidates {θi}
dm
i=k+1

farthest from the Ritz values {θi}
k
i=1

as shifts — i.e.

µi = θ(d−1)m+k+i , 1≤ i ≤ s . (3.9)

However, Jia & Sun [19] pointed out that this selection of exact shifts is problematic and

susceptible to failure for the QEP , so they suggested using the refinement strategy to obtain

better shifts (called refined shifts) for the implicit restarting process — and we extend this

idea to the PEP .

The refined generalised Arnoldi method can not only improve the accuracy of the Ritz

vectors but also provide more accurate approximations to some unwanted eigenvalues. If

ξ̂i denotes the right singular vector corresponding to the smallest singular value of the

matrix Ti (dm − s + 1 ≤ i ≤ dm), then { x̂ i = Qmξ̂}
dm
i=dm−s+1

are the refined Ritz vectors

corresponding to the unwanted Ritz values {θi}
dm
i=dm−s+1

. Using the refined Ritz vector

x̂ i (dm − s + 1 ≤ i ≤ dm), we can obtain a more accurate approximate eigenvalue θ by

imposing the Galerkin condition

(θ dAd + θ
d−1Ad−1 + · · ·+ θA1 + A0) x̂ i⊥ x̂ i . (3.10)
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The condition (3.10) is equivalent to the polynomial scalar equation

a
(i)

d
θ d + · · ·+ a

(i)

1
θ + a

(i)

0
= 0 , (3.11)

where a
(i)

j
= ξ̂H

i
Â jξ̂i (0 ≤ j ≤ d), and Â j is defined by (2.7). From Eq. (3.11) we ob-

tain d roots {ω(i)
j
}d

j=1
with |ω(i)

1
| ≤ |ω(i)

2
| ≤ · · · ≤ |ω(i)

d
|. Using the s refined Ritz vectors

{ x̂ i}
dm
i=dm−s+1

, we get sd roots {ω(i)
j
}d

j=1
(dm− s+1≤ i ≤ dm). Then we select the s values

among sd candidates {ω(i)
j
} (1≤ j ≤ d; dm− s+1≤ i ≤ dm) farthest from the Ritz values

{θi}
k
i=1

as shifts (the refined shifts). Now we propose our implicitly restarted refined gen-

eralised Arnoldi (IRGAR) method for solving the PEP as follows.

Algorithm 3.1. IRGAR(m): Implicitly restarted refined generalised Arnoldi method.

Input: Coefficient matrices Ai(0≤ i ≤ d), initial vectors ui(0≤ i ≤ d −1), dimension m of

the projected subspace and number k of the desired eigenpairs.

Output: k approximate eigenpairs and their relative residuals.

1. Implement Steps 1, 2 and 3 in Algorithm 2.3;

2. If all k relative residuals αi are satisfied, then output (θi, x̂ i) and αi(1 ≤ i ≤ k), and

stop; else set s := m− k. Go to 3 if refined shifts are picked; else go to 4;

3. for i = dm− s+ 1 : dm do

Compute the right singular vector ξ̂i corresponding to the smallest singular value of

Ti defined in (2.9), and solve the polynomial scalar equation (3.11) to get its roots

{ω(i)
j
}d

j=1
;

endfor

4. Select s values among {θi} (k+1≤ i ≤ dm) or {ω(i)
j
} (1 ≤ j ≤ d; dm−s+1≤ i ≤ dm)

farthest from the Ritz values {θi}
k
i=1

as shifts µi(1 ≤ i ≤ s), and perform s implicit

shifted QR iteration as (3.1), and compute the new matrices Q+
k
, P
(i)+

k
(1≤ i ≤ d−1),

vectors q+
k+1

, p
(i)+

k+1
(1 ≤ i ≤ d − 1) and scalar h̃+

k+1,k
as (3.2), (3.3), (3.4) and (3.7),

then go to 1.

In general, the IRGAR method with refined shifts (abbreviated as IRGAR with RS) consumes

much more CPU time than the IRGAR method with exact shifts (abbreviated as IRGAR with

ES), since it involves computing the refined approximate eigenvectors and the roots of the

polynomial scalar equation (3.11). A numerical comparison of results obtained using exact

shifts and refined shifts is presented in Section 5.

4. Deflated and Implicitly Restarted Refined Generalised Arnoldi Method

In the spirit of the non-equivalence low-rank deflation technique [33], we develop

a novel non-equivalence low-rank deflation technique for the PEP and incorporate this



92 W. Wei and H. Dai

with the implicitly restarted refined generalised Arnoldi method. Suppose r eigenpairs

(λi, x i , yi) (1≤ i ≤ r) of the PEP (1.2) have already been obtained, and let

Λ1 = diagr(λ1,λ2, · · · ,λr), X1 = [x1, x2, · · · , xr], Y1 = [y1, y2, · · · , yr]

such that Λ1, X1 and Y1 satisfy

P(Λ1)X1 = 0, Y H
1 P(Λ1) = 0 . (4.1)

Assuming the left eigenvectors y1, y2, . . . , yr are chosen such that Y H
1 X1 = Ir , we construct

a new matrix polynomial

P̃(λ) = λd Ãd +λ
d−1Ãd−1 + · · ·+λÃ1 + Ã0 , (4.2)

involving the new coefficient matrices



















Ã0 = A0 + A1X1Λ1Y H
1 + A2X1Λ

2
1Y H

1 + · · ·+ Ad X1Λ
d
1 Y H

1 ,

Ã1 = A1 + A2X1Λ1Y H
1
+ A3X1Λ

2
1
Y H

1
+ · · ·+ Ad X1Λ

d−1
1

Y H
1

,

Ã2 = A2 + A3X1Λ1Y H
1 + A4X1Λ

2
1Y H

1 + · · ·+ Ad X1Λ
d−2
1

Y H
1 ,

...

Ãd−1 = Ad−1 + Ad X1Λ1Y H
1 ,

Ãd = Ad .

(4.3)

The matrix polynomials (1.1) and (4.2) are then related as follows.

Theorem 4.1. Assume that the diagonal matrix Λ1 ∈ C
r×r and the matrices X1, Y1 ∈ C

n×r

satisfy (4.1) and Y H
1 X1 = Ir , and the new matrix polynomial P̃(λ) is as in Eq. (4.2). Then

P̃(λ) = P(λ)
�

In + X1Λ1(λIr −Λ1)
−1Y H

1

�

(4.4)

and the eigenvalues of P̃(λ) are those of P(λ), except that eigenvalues of Λ1 are replaced by r

zeros.

Proof. It follows from Eq. (4.2) and (4.3) that

P̃(λ) =λd Ãd +λ
d−1Ãd−1 +λ

d−2Ãd−2 + · · ·+λÃ1 + Ã0

=λdAd +λ
d−1(Ad−1 + Ad X1Λ1Y H

1
) +λd−2(Ad−2 + Ad−1X1Λ1Y H

1
+ AdX1Λ

2
1
Y H

1
)

+ · · ·+λ(A1 + A2X1Λ1Y H
1
+ · · ·+ Ad−1X1Λ

d−2
1

Y H
1
+ Ad X1Λ

d−1
1

Y H
1
)

+ (A0 + A1X1Λ1Y H
1
+ · · ·+ Ad−1X1Λ

d−1
1

Y H
1
+ Ad X1Λ

d
1
Y H

1
)

=P(λ) + Ad X1(λ
d−1Ir +λ

d−2
Λ1 + · · ·+λΛ

d−2
1
+Λd−1

1
)Λ1Y H

1

+ Ad−1X1(λ
d−2Ir +λ

d−3
Λ1 + · · ·+λΛ

d−3
1
+Λd−2

1
)Λ1Y H

1

+ · · ·+ A2X1(λIr +Λ1)Λ1Y H
1
+ A1X1Λ1Y H

1
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so that

P̃(λ) =P(λ) +
�

Ad X1(λ
d Ir −Λ

d
1) + Ad−1X1(λ

d−1Ir −Λ
d−1
1 )

+ · · ·+ A2X1(λ
2Ir −Λ

2
1) + A1X1(λIr −Λ1)

�

(λIr −Λ1)
−1
Λ1Y H

1

=P(λ) + (λdAd +λ
d−1Ad−1 + · · ·+λA1 + A0)X1(λIr −Λ1)

−1
Λ1Y H

1

=P(λ) + P(λ)X1(λIr −Λ1)
−1
Λ1Y H

1

=P(λ)
�

In + X1Λ1(λIr −Λ1)
−1Y H

1

�

.

From Eq. (4.4) and the identity det(In+RS) = det(Im+SR)where R ∈ C n×m and S ∈ C m×n,

we have

det(P̃(λ)) = det(P(λ))det
�

Ir +Λ1(λIr −Λ1)
−1
�

=
λr det(P(λ))

det(λIr −Λ1)
.

Hence P̃(λ) has the same eigenvalues as P(λ) except that r eigenvalues of Λ1 are replaced

by r zeros.

Using Theorem 4.1, we can transform the converged eigenvalues of the PEP (1.2) to

zeros so that the next desired eigenvalues become the eigenvalues with the largest modulus.

Suppose that (λ1, x1, y1) ∈ C ×C
n ×C n is a converged eigenpair of the PEP (1.2) such

that yH
1 x1 = 1, when Eqs. (4.3) reduce to







Ãi = Ai +
d
∑

j=i+1

λ
j−i

1
A j x1 yH

1 , 0≤ i ≤ d − 1 ,

Ãd = Ad .

(4.5)

If the non-equivalence low-rank deflation technique has been performed, then the relation

(3.8) no longer holds with the new coefficient matrices Ãi(0 ≤ i ≤ d). For simplicity, we

restart the generalised Arnoldi method on taking

ud−1 = q+1 , ui = p
(d−i−1)+

1
(0≤ i ≤ d − 2) (4.6)

as the new initial vectors, and our deflated and implicitly restarted refined generalised

Arnoldi method (DIRGAR) for solving the PEP is as follows.

Algorithm 4.1. DIRGAR(m): Deflated and implicitly restarted refined generalised Arnoldi

method.

Input: Coefficient matrices Ai(0≤ i ≤ d), initial vectors ui(0≤ i ≤ d −1), dimension m of

the projected subspace and number k of the desired eigenpairs.

Output: k approximate eigenpairs and their relative residuals.

1. Implement Steps 1, 2 and 3 in Algorithm 2.3;

2. Set Ide f = 0. If all k relative residuals αi are satisfied, then output (θi , x̂ i) and

αi(1 ≤ i ≤ k), and stop; if none of αi is satisfied, then set s := m − k and go to
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3 if refined shifts are picked; else go to 4; if r (0 < r < k) relative residuals αi

are satisfied, then output the r converged eigenpairs and the corresponding relative

residuals, and set k := k− r, s := m−k, Ide f = 1. Go to 3 if refined shifts are picked;

else go to 4;

3. for i = dm− s+ 1 : dm do

Compute the eigenvector ξ̂i corresponding to the smallest eigenvalue of T H
i

Ti , and

solve the polynomial scalar equation (3.11) to get its roots {ω(i)
j
}d

j=1
;

endfor

4. Select s values among {θi} (k+1≤ i ≤ dm) or {ω(i)
j
} (1 ≤ j ≤ d; dm−s+1≤ i ≤ dm)

farthest from the Ritz values {θi}
k
i=1

as shifts µi(1 ≤ i ≤ s), and perform s implicit

shifted QR iteration as (3.1), and compute the new matrices Q+
k
, P
(i)+

k
(1≤ i ≤ d−1),

vectors q+
k+1

, p
(i)+

k+1
(1≤ i ≤ d − 1) and scalar h̃+

k+1,k
as (3.2), (3.3), (3.4) and (3.7);

5. If Ide f = 0, then go to 1; otherwise go to 6;

6. Compute r left eigenvectors of the PEP (1.2) corresponding to the r converged eigen-

values with yH
i

x i = 1 (1≤ i ≤ r);

7. Perform the non-equivalence low-rank deflation via (4.5) for each converged eigen-

pair, update the new initial vectors as (4.6), and go to 1.

5. Numerical Experiments

In this section, we report some numerical examples to illustrate the effectiveness of

the IRGAR and DIRGAR methods, and compare them both with the RGAR method. All

numerical calculations were performed in MATLAB R2015b on an Intel Core 2.9 GHz PC

with 4GB memory under the Windows 7 system. The initial vectors are all randomly chosen,

n and m denote the respective dimensions of the PEP (1.2) and the projected subspace,

k denotes the number of desired eigenpairs with the largest modulus eigenvalues, I ter

and I termax = 500 denote the number and maximum number of restarting steps, C PU

is the CPU time (in seconds) for implementing the relevant algorithm, and the tolerance

tol = 10−10 is adopted in the stopping criterion for relative residuals Res =max
i
{αi} ≤ tol.

Example 5.1. Let us consider the cubic eigenvalue problem

P(λ)x = (λ3A3 +λ
2A2 +λA1 + A0)x = 0 , (5.1)

where the coefficient matrices arise in the “plasma-drift" problem in Ref. [5] and the ma-

trices are 512× 512. Using the MATLAB function pol yeig(4) or ei gs(4), we obtained the
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Table 1: Numeri
al results for Example 5.1.

Methods I ter C PU αi computed eigenvalues

0.8669e-10 47.70640814694 - 0.00678490010i

RGAR(20) 25 0.67 0.4807e-10 -47.57496119269 - 0.00669146280i

0.8583e-10 47.09896131054 - 0.00678654473i

0.8274e-10 -46.96756223198 - 0.00669187989i

0.8539e-10 47.70640814711 - 0.00678489997i

IRGAR(20) with ES 8 0.31 0.4644e-10 -47.57496119288 - 0.00669146293i

0.5154e-10 47.09896131016 - 0.00678654527i

0.5299e-10 -46.96756223153 - 0.00669187937i

0.8153e-10 47.70640814694 - 0.00678490012i

IRGAR(20) with RS 7 0.30 0.3226e-10 -47.57496119273 - 0.00669146278i

0.3497e-10 47.09896131073 - 0.00678654451i

0.6009e-10 -46.96756223208 - 0.00669188013i

four largest modulus eigenvalues

λ1 = 47.706408145293460− 0.006784904974176i ,

λ2 = −47.574961194358565− 0.006691467596723i ,

λ3 = 47.098961311207900− 0.006786543786995i ,

λ4 = −46.967562232594950− 0.006691880875913i .

Setting m = 20 and k = 4, we used the RGAR method, the IRGAR with ES and then

the IRGAR with RS, to compute 4 eigenpairs with largest modulus eigenvalues shown in

Table 1.

All three methods converge, and the IRGAR(20) with ES and IRGAR(20) with RS are

both seen to be superior to the RGAR(20) in the number of restarting process and the CPU

time, so the implicitly restarting process improves the RGAR method. We also observe that

the number of restarting steps and the CPU time in the IRGAR(20) with RS are slightly less

than in the IRGAR(20) with ES.

Example 5.2. Let us consider the quartic eigenvalue problem

P(λ)x = (λ4A4 +λ
3A3 +λ

2A2 +λA1 + A0)x = 0 , (5.2)

where the coefficient matrices come from the “planar-waveguide" problem in Ref. [5] and

the matrices are 129× 129. Setting m = 20, we used the RGAR method, the IRGAR with

ES and the IRGAR with RS to compute k eigenpairs with the largest modulus eigenvalues,

where the parameter k was chosen to be 4, 6 and 8, respectively. The numerical results are

shown in Table 2.

Both the IRGAR(20) with ES and IRGAR(20) with RS are seen to converge but the

RGAR(20) does not, even if the number of restarting process reaches the maximum number
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Table 2: Numeri
al results for Example 5.2.

k RGAR IRGAR with ES IRGAR with RS

I ter C PU Res I ter C PU Res I ter C PU Res

4 500 10.53 0.4493e-03 102 3.87 0.9173e-10 102 5.21 0.9865e-10

6 500 10.81 0.6063e-03 100 3.73 0.8507e-10 99 4.78 0.8752e-10

8 500 10.75 0.5514e-03 130 4.43 0.9220e-10 130 5.68 0.9546e-10

I termax . We also observe that the numbers of restarting steps in the IRGAR(20) with RS

are equal to or slightly less than those in the IRGAR(20) with ES, but the IRGAR(20) with

RS consumes some CPU time to compute the refined shifts.

Example 5.3 (cf. Ref. [4]). Let us now consider the cubic eigenvalue problem (5.1) when

A3 = 5In, A2 =











9 −3

−3 9
...

. . .
. . . −3

−3 9











∈ Rn×n ,

A1 and A0 come from the Harwell-Boeing test matrix bwm200 in Ref. [8] and the matrices

are 200×200. Using the MATLAB function pol yeig(20) or ei gs(20), we found the following

20 largest modulus eigenvalues:

λ1 = −16.818263252077116 , λ2 = −16.811593572838266 ,

λ3 = −16.800480319289290 , λ4 = −16.784926442755477 ,

λ5 = −16.764938899706028 , λ6 = −16.740521953786430 ,

λ7 = −16.711687826718137 , λ8 = −16.678441095233900 ,

λ9 = −16.640800204192725 , λ10 = −16.598769047534688 ,

λ11 = −16.552373231465260 , λ12 = −16.501614978427103 ,

λ13 = −16.446527970859920 , λ14 = −16.387111781953113 ,

λ15 = −16.323409058429892 , λ16 = −16.255415761096930 ,

λ17 = −16.183184358833053 , λ18 = −16.106706255110325 ,

λ19 = −16.026044565479502 , λ20 = −15.941185212768882 .

Setting m = 30 and k = 20, we used the RGAR method, the IRGAR method with ex-

act shifts and the DIRGAR method with exact shifts to compute 20 eigenpairs with the

largest modulus eigenvalues. Fig. 1 shows the maximum relative residuals of the 20 desired

eigenpairs computed by the RGAR(30), IRGAR(30) and the DIRGAR(30). We observe that

only the DIRGAR(30) converges, while the maximum relative residuals computed from the

RGAR(30) and the IRGAR(30) oscillate around 10−3. The deflation history of DIRGAR(30)

in Table 3 shows the deflation process is necessary when more eigenpairs are sought, and

the DIRGAR(30) is superior to both the RGAR(30) and IRGAR(30).
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Figure 1: Convergen
e history of RGAR(30), IRGAR(30), DIRGAR(30) for Example 5.3.

Table 3: De�ation history of DIRGAR(30) for Example 5.3.

computed eigenvalues αi deflation process

-16.81826325207 0.8175e-10 the 1st deflation

-16.81159357284 0.5762e-10 the 2nd deflation

-16.80048031929 0.3086e-10 the 3rd deflation

-16.78492644275 0.9765e-10 the 4th deflation

-16.76493889969 0.9386e-10 the 5th deflation

-16.74052195379 0.6242e-10 the 6th deflation

-16.71168782671 0.5285e-10 the 7th deflation

-16.67844109523 0.7992e-10 the 8th deflation

-16.64080020420 0.7870e-10 the 9th deflation

-16.59876904752 0.9753e-10 the 10th deflation

-16.55237323147 0.4537e-10 the 11th deflation

-16.50161497844 0.3745e-10 the 12th deflation

-16.44652797083 0.9818e-10 the 13th deflation

-16.38711178192 0.9653e-10 the 14th deflation

-16.32340905843 0.2909e-10 the 15th deflation

-16.25541576110 0.7592e-10 the 16th deflation

-16.18318435884 0.8878e-10 the 17th deflation

-16.10670625510 0.4921e-10 the 18th deflation

-16.02604456549 0.7263e-10 the 19th deflation

-15.94118521279 0.3999e-10 the 20th deflation
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In summary, our numerical results show that while the RGAR and IRGAR methods can

compute a few eigenpairs with the largest modulus eigenvalues, the DIRGAR method may

compute more eigenpairs for the polynomial eigenvalue problem.

6. Conclusion

Based on implicitly shifted QR iteration, we have developed an implicitly restarted ver-

sion of the generalised Arnoldi method to solve the polynomial eigenvalue problem. The

implicitly restarted strategy combined with the refinement scheme provides an implicitly

restarted refined generalised Arnoldi method for computing a few eigenpairs for the poly-

nomial eigenvalue problem. However, a novel explicit non-equivalence low-rank deflation

technique for the polynomial eigenvalue problem led to a deflated and implicitly restarted

refined generalised Arnoldi method to compute more eigenpairs, and some numerical re-

sults indicate that this method is efficient and robust.
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