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Abstract. Direct Simulation Monte Carlo (DSMC) methods for the Boltzmann equa-
tion employ a point measure approximation to the distribution function, as simu-
lated particles may possess only a single velocity. This representation limits the
method to converge only weakly to the solution of the Boltzmann equation. Uti-
lizing kernel density estimation we have developed a stochastic Boltzmann solver
which possesses strong convergence for bounded and L∞ solutions of the Boltz-
mann equation. This is facilitated by distributing the velocity of each simulated
particle instead of using the point measure approximation inherent to DSMC. We
propose that the development of a distributional method which incorporates dis-
tributed velocities in collision selection and modeling should improve convergence
and potentially result in a substantial reduction of the variance in comparison to
DSMC methods. Toward this end, we also report initial findings of modeling colli-
sions distributionally using the Bhatnagar-Gross-Krook collision operator.

AMS subject classifications: 82B40, 76P05, 65C35, 82C80
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1 Introduction

Direct Simulation Monte Carlo (DSMC) is a stochastic simulation method which ap-
proximates the physics of the Boltzmann equation on a set of simulated particles. The
method was originally developed in the mid-1960’s by Bird [8, 9], and is based on
a probabilistic simulation of the motions and interactions of a fraction of the total
number of particles in the gas. The method relies on an approximation known as the
uncoupling principle, which allows intermolecular collisions to be decoupled from
particle convection [17].
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Initially, the DSMC method was met with some trepidation. Although remaining
true to the principles of kinetic theory, the method itself was not formally derived
from the Boltzmann equation, the governing equation of kinetic theory. In its sim-
plest form, the Boltzmann equation describes the evolution of the molecular velocity
probability density function, f : (R3 × Λ × R) → R+. The function is defined over
a seven dimensional space which includes three dimensions of velocity components,
three dimensions of physical space in the domain Λ ⊆ R3, and the additional dimen-
sion of time. The term velocity distribution function is used under various definitions
in the literature, all of which represent some scaled form of the probability density
function for molecular velocity. Throughout this paper the term velocity distribution
function taken to mean the probability density function for molecular velocity and
will be denoted by f .

The Boltzmann equation accounts for changes to f due to three influences: particle
convection, acceleration of particles by external forces, and intermolecular collisions.
The equation may be modified to include the distribution of energy over various in-
ternal energy modes, but for simplicity we consider only the basic case of a simple,
monatomic gas. In this case, the Boltzmann equation is given by

∂

∂t
f
(⃗
r, c⃗, t

)
+ c⃗ · ∂

∂⃗r
f
(⃗
r, c⃗, t

)
+ F⃗ · ∂

∂⃗c
f
(⃗
r, c⃗, t

)
= J[ f ]

(⃗
r, c⃗, t

)
.

Here r⃗ is the spatial variable, c⃗ is the velocity variable, t is the temporal variable, and
F⃗ is any externally applied forcing. The collision integral J is defined as

[ f ](⃗r, c⃗, t) =
∫

R3

∫
S+

2

[
f (⃗r, c⃗′ (⃗c, c⃗1, Ω⃗), t) f (⃗r, c⃗′1(⃗c, c⃗1, Ω⃗), t)

− f (⃗r, c⃗, t) f (⃗r, c⃗1, t)
]
gσ(g, Ω)dΩ⃗dc⃗1,

where S+
2 denotes the positive half of the unit sphere in R3, Ω⃗ is the collision orien-

tation vector, σ is the collision cross section, g = ∥⃗c − c⃗1∥, and {c⃗′, c⃗′1} are the post-
collision velocities given by

c⃗′ (⃗c, c⃗1, Ω⃗) =
1
2
[
(c⃗1 + c⃗)− gΩ⃗

]
, (1.1a)

c⃗′1(⃗c, c⃗1, Ω⃗) =
1
2
[
(c⃗1 + c⃗) + gΩ⃗

]
. (1.1b)

In 1980, Nanbu [17] proposed the first DSMC method derived directly from the Boltz-
mann equation, and in 1989, Babovsky and Illner proved weak convergence of Nanbu’s
method for L1 solutions of the space-homogeneous [5], and space-inhomogeneous [6],
Boltzmann equations. Wagner [22] established similar convergence for Bird’s method
in 1992, giving DSMC a firm theoretical foundation.

The DSMC method also has inherent drawbacks. A significant number of particles
must be simulated to achieve realistic results. This raises storage issues as the position
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and velocity vectors of each simulated particle must be stored throughout the sim-
ulation. Selection of representative collisions over these potentially large data arrays
introduces a non-trivial burden on the simulation process. Furthermore, the stochastic
nature of the simulation introduces a significant amount of variation in the results and
consequently, data must be averaged over an ensemble to improve the quality of the
solution. This variance is significantly troublesome in the case of low Mach number
rarefied flows [1].

Despite these drawbacks, DSMC has gained general acceptance in the field of rar-
efied gas dynamics and is the standard computational method employed when in-
creased accuracy over the continuum equation sets (Euler, Navier-Stokes, etc.) is re-
quired. Although other methods for approximating solutions to the Boltzmann equa-
tion exist (e.g., see [4,13,16,18,19]), they are either plagued by increased computational
demands or are not fully consistent with the physics described by the Boltzmann equa-
tion. Consequently, development of improved DSMC algorithms remains an area of
active research. Recently significant progress has been achieved in the development
of variance reduced DSMC schemes for low signal flows (see [1–3, 14]). Monte Carlo
schemes which employ particle simulation to model only the deviation from thermo-
dynamic equilibrium have also been developed (see [14, 23]). These developments
have improved the practicability of DSMC by attempting to combat the aforemen-
tioned drawbacks.

We observe that existing convergence theorems for DSMC methods are fairly weak,
and amount to convergence in moments of the distribution function for well-behaved
test functions (bounded, continuous). In fact, DSMC does not directly solve the Boltz-
mann equation for the distribution function, but rather simulates the physics of the
Boltzmann equation on the collection of simulated particles. One of the major limita-
tions to stronger forms of convergence is the singular nature of the simulated particle
velocities. Specifically, since one simulates only a fraction of the number of actual par-
ticles, each simulated particle represents W = N/Np actual particles, where N is the
total number of particles and Np is the number of simulated particles. In practice W
may be on the order of 106 or more. As a simulated particle can possess only a single
velocity vector, the simulation must approximate the distribution function in terms of
point measures. Therefore, when considering the overall distribution function in the
gas, we obtain

f̂ (⃗c) =
1

Np

Np

∑
i

δ(⃗c − c⃗i), (1.2)

where c⃗i is the velocity vector of the ith particle. A convergent DSMC algorithm can
therefore only achieve convergence in probability measure. Namely

⟨ϕ, f̂ ⟩ → ⟨ϕ, f ⟩,

for any bounded, continuous ϕ on R3.
To illustrate the weakness of this the convergence associated with this approx-

imation, consider the cumulative error between an approximate solution and any
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bounded solution of the Boltzmann equation which we define as

e( f̂ ) =
∫

R3
| f̂ (⃗c, t)− f (⃗c, t)|d⃗c. (1.3)

Let M(t) denote the subset of R3 on which f̂ takes on a nonzero value. Clearly, M(t)
is a set of measure zero. Note also that∫

f (⃗c)d⃗c = 1,

as f is a probability density function. Then if the Boltzmann equation has a bounded
solution f , the cumulative error of the Nanbu approximation to f is given by

e( f̂ ) =
∫

R3
| f̂ (⃗c, t)− f (⃗c, t)|d⃗c

=
∫

R3−M(t)
| f̂ (⃗c, t)− f (⃗c, t)|d⃗c +

∫
M(t)

| f̂ (⃗c, t)− f (⃗c, t)|d⃗c

=
∫

R3−M(t)
| f (⃗c, t)|d⃗c = 1.

This demonstrates that not only does Nanbu’s method fail to converge in this sense,
but the cumulative error is independent of the number of simulated particles and the
time step. As each particle represents W actual particles, the representation of a ve-
locity distribution by a sum of delta functions is nonphysical whenever Np < N. The
probability that any two particles share the exact velocity is zero. Furthermore, as
observed by Rjasanow and Wagner [20] each simulated particle represents a large en-
semble of actual particles and therefore it is natural that a collision causes velocity
changes only for a portion of that ensemble. We suggest that a method which forgoes
the point measure representation of the distribution function in favor of a more real-
istic approximation will achieve improved convergence results. Toward this end, we
have begun development of ”Distributional Monte Carlo” (DMC) methods. In DMC,
replace the point measure representation of the distribution function by allowing each
simulated particle to possess a nonsingular velocity distribution function.

In Section 2, we begin with a brief discussion of kernel density estimation which
we utilize to approximate the velocity distribution function. Section 3 contains a
detailed discussion and mathematical justification of the method we propose. We
prove weak convergence for L1 solutions of the space homogeneous Boltzmann equa-
tion, strong convergence for solutions which are L∞, and pointwise convergence for
bounded solutions. To our best knowledge, no existing DSMC schemes have been
formally proven to exhibit these forms of convergence. Section 3 concludes with a nu-
merical example of the implementation of this scheme. Section 4 presents some initial
steps towards the development of a fully distributional method, and we summarize
our major findings in Section 5.
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2 Kernel density estimation

Kernel Density Estimation (KDE) is a technique for estimating the probability density
function of a random variable X ∈ Rd from a set of discrete samples as follows [24]

f̂ (x; h) =
1

Nhd

N

∑
i=1

K
( x − Xi

h

)
. (2.1)

Here, N is the number of discrete samples, Xi the value of the ith sample, h ∈ R+ the
kernel bandwidth and K ∈ L2 the kernel function. The kernel function must satisfy
the following conditions ∫

K(x)dx = 1, (2.2a)∫
xK(x)dx = 0. (2.2b)

The problem then becomes one of determining a suitable K and h with which to ap-
proximate the distribution function. The value of h is chosen to minimize the error
between the estimator and the actual distribution function in some sense. If h is too
small, the estimator will exhibit overly oscillatory behavior. It h is too large, subtle
features of the distribution function may not be captured by the estimator. Wand [24]
shows that the asymptotic mean square error between f and f̂ is minimized when

h =
[ m(K)
(µ2(K))2m( f ′′)N

] 1
5
, (2.3)

where
m(g) =

∫
[g(x)]2dx, µ2(g) =

∫
x2g(x)dx.

Notice that calculation of such an h requires not only that f ′′ is known, but also that
f ∈ W2,2. If f is normal with variance σ2, Eq. (2.3) becomes,

h =
[ 8

√
πm(K)

3(µ2(K))2N

] 1
5
σ. (2.4)

3 DMC-KDE

Observe that the Nanbu approximation to the distribution function may be viewed
as a special case of a kernel density estimator with K = δ and h = 1. Recognizing
this similarity, we developed a distributional Monte Carlo method employing some
of the results from kernel density estimation. We have termed this approach DMC-
KDE. It should be noted that KDE has been applied in the Variance Reduced DSMC
(VRDSMC) approach proposed by Al-Mohssen and Hadjiconstantinou [1–3] though
in that application it was employed only as a smoothing and stabilization technique.
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In this section, we discuss the mathematical details of the new method, prove weak
convergence for L1 solutions of the space homogeneous Boltzmann equation, as well
as strong convergence for L∞ solutions and pointwise convergence for bounded solu-
tions. We then present results of a numerical implementation of the method.

3.1 Derivation and mathematical justification

In the Distributional Monte Carlo approach we allow each simulated particle to pos-
sess its own velocity distribution function, fi. The overall distribution function in the
gas is then given by

f =
1
N

Np

∑
i=1

fi. (3.1)

In the DMC-KDE approach, we make the simplification that each particle’s velocity is
distributed according to a prescribed distribution, that is

fi (⃗c) =
1
h3

Np

∑
i=1

K
( c⃗ − c⃗i

h

)
. (3.2)

The mean of each particle’s distribution function c⃗i is allowed to vary, but the ker-
nel function and bandwidth are chosen to be identical for all particles. Therefore the
approximation to the overall distribution function of the gas is given by

f̃ (⃗c; h) =
1

Nph3

Np

∑
i=1

K
( c⃗ − c⃗i

h

)
. (3.3)

Choosing
h : N → R+,

with the property
lim

Np→∞
h(Np) = 0,

and K is chosen as described in the previous section, Eq. (3.3) is observed to be a kernel
density estimator for f . Although we prove that convergence is guaranteed for any
such h and K, it is necessary to choose specific values of such parameters from which
to construct a simulation scheme. On the basis of physical reasoning we choose a
Gaussian kernel for K and utilize Eq. (2.4) to determine h.

K(x⃗) = (2π)−
3
2 exp

(
− ∥x⃗∥2

2

)
, (3.4a)

h =
[ 32

3
√

2Np

] 1
5
σest, (3.4b)

where σest is an estimation of the standard deviation of f . These choices are advanta-
geous for a number of reasons. Since h is chosen such that h→0 as Np→∞, Eq. (3.3)
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will converge to the delta representation when Np becomes large recovering the point
measure approximation of DSMC. Further, the distribution function of each simulated
particle is Maxwellian, the prevailing distribution in an equilibrium gas. The interpre-
tation therefore is that although the collection of particles that a simulated particle rep-
resents all possess different velocities, as a collection the particles are in equilibrium
with one another. This represents a relaxation of the assumption made by DSMC that
the collection of particles possess the same singular velocity. To develop the mathe-
matical formulation of this approach, we follow an analysis similar to Nanbu [17].

Beginning with Eq. (3.3) we seek to determine the evolution of the distribution
function due to intermolecular collisions through the time interval ∆t. We begin by
utilizing a forward Euler discretization

f (⃗c, t + ∆t) = f (⃗c, t) + ∆t
∂ f
∂t

(⃗c, t), (3.5)

where ∂ f /∂t is obtained from the space homogeneous Boltzmann equation

∂ f
∂t

(⃗c, t) = J[ f ](⃗c, t). (3.6)

Substituting Eq. (3.3) into Eq. (3.6), one obtains

∂ f
∂t

=
1

N2
p

Np

∑
i=1

Np

∑
j=1

(Sij − Tij), (3.7)

where

Sij =
1
h6

∫
R3

∫
S+

2

K
( c⃗′ − c⃗i

h

)
K
( c⃗′1 − c⃗j

h

)
· gσ(g, Ω⃗)dΩdc⃗1, (3.8a)

Tij =
1
h6

∫
R3

∫
S+

2

K
( c⃗ − c⃗i

h

)
K
( c⃗1 − c⃗j

h

)
· gσ(g, Ω⃗)dΩdc⃗1. (3.8b)

Substituting Eqs. (3.4a) and (1.1a)-(1.1b) into Eq. (3.8a), one obtains

Sij =
1

2πh6

∫
R3

G(⃗c, c⃗1) exp
{
− 1

4h2 [c1
2 + c2 + ci

2 + cj
2 − (c⃗i + c⃗j) · (c⃗1 + c⃗)]

}
gdc⃗1, (3.9)

where

G(⃗c, c⃗1) =
∫

S+
2

exp[⃗a · Ω⃗]σ(g, Ω⃗), a⃗ =
g(c⃗j − c⃗i)

4h2 .

Nanbu [17] shows that G may be approximated for small h by the following

G(⃗c, c⃗1) = 2πσ(g, χ)
e∥⃗a∥

∥⃗a∥ .
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Substituting this expression for G into Eq. (3.9) yields

Sij =
2

gij

∫
R3

{ (2π)−
3
2

h3 exp
[
−

(⃗c + c⃗1 − c⃗i − c⃗j)
2

4h2

]}
·

{ 1√
2πh

exp
[
−

(g − gij)
2

4h2

]}
σ(g, χ)dc⃗1, (3.10)

where gij = ∥⃗cj − c⃗i∥. Next, we consider Eq. (3.5) under the limit as h → 0 with ∂ f /∂t
as in Eq. (3.7)

f (⃗c, t + ∆t) = f (⃗c, t) +
∆t
N2

p

Np

∑
i=1

Np

∑
j=1

(S∗
ij − T∗

ij), (3.11)

where

S∗
ij = lim

h→0
Sij, T∗

ij = lim
h→0

Tij.

Definition 3.1. Let {gα} be a family of locally integrable functions on Rn. {gα} is called an
n-dimensional delta family as α → α0 if

lim
α→α0

∫
Rn

gα(x)ϕ(x)dx = ϕ(0),

where ϕ is any bounded continuous function on Rn. We write

lim
α→α0

gα(x) = δ(x),

in conformance with [21].

It can be shown that each of the bracketed terms under the integrand in Eq. (3.10)
is a delta family, the first being three-dimensional, the second one-dimensional. Using
Eq. (3.8b) and performing a similar analysis, the terms under the integrand for Tij can
also be shown to exhibit this behavior. We therefore conclude

S∗
ij =

4
gij

δ
(
∥c⃗∗∥ − 1

2
gij

)
σ(gij, χ), T∗

ij = gijσT(gij)δ(⃗c − c⃗i).

Substituting these terms into Eq. (3.11), one obtains

f (⃗c, t + ∆t) =
1

Np

Np

∑
i=1

[
(1 − Pi)δ(⃗c − c⃗i) + Qi (⃗c)

]
,

where

Pi =
∆t
N

N

∑
j=1,j ̸=i

gijσT(gij), Qi (⃗c) =
4∆t
N

N

∑
j=1,j ̸=i

σ(gij, χ)

gij
δ
(
∥c⃗∗∥ − 1

2
gij

)
, (3.12a)

σT(gij) =
∫

S+
2

σ(gij, Ω⃗)dΩ⃗, c⃗∗ = c⃗ − 1
2
(c⃗i − c⃗j), (3.12b)
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and χ is the angle between c⃗∗ and c⃗i − c⃗j. Pi represents the probability that the ith

particle collides in the time interval ∆t, while the individual terms

Pij =
∆t
N

gijσT(gij),

represent the probability that the ith particle collides with the jth particle over ∆t. Also,
notice that Qi represents the portion of distribution function describing the effects of
collisions over the time interval ∆t. Having passed to the limit of large Np (where
the distributions tend towards a delta approximation), we have obtained the same
result as Nanbu [17] for the evolution of the distribution function over ∆t. There-
fore, we may reuse the collision selection and modeling rules developed by Nanbu,
but with a new interpretation. Namely, c⃗i now represents the mean velocity of the ith

simulated particle. Collision interactions therefore have the effect of shifting the indi-
vidual Maxwellian distributions to new mean values. The stochastic scheme to evolve
f through ∆t is therefore given as follows:

• For each particle, calculate Pi. Generate a random number r1 in the interval (0, 1).
If Pi > r1, accept the particle for collision.

• Sample a collision partner j from the conditional probability distribution P∗
ik = Pik/Pi,

by sampling a second random number r2 uniformly from the interval (0, 1) and iden-
tifying the j which satisfies

j−1

∑
k=1

P∗
ik < r2 <

j

∑
k=1

P∗
ik.

• Sample the direction of c⃗∗ based on Eq. (3.12), and compute the post collision velocity
of the ith particle.

Like DSMC, the simulation would be evolved many times to generate an ensemble av-
eraged solution so as to reduce statistical fluctuations. Nanbu’s scheme has in the past
been criticized for not mainintaining strict conservation of energy in each collision but
only over the ensemble. Since the current scheme employs a similar sampling proce-
dure for the Maxwellian centers, it will not conserve energy with each collision either.
This is not a major concern in demonstraiting the benefits of such an approach, and
a number of implementable alternative sampling procedures for collision interactions
exist which do conserve energy with each collision.

Although the scheme is in some sense similar to Nanbu, the effect of allowing ve-
locities to be distributed has a significant impact on the mathematical convergence
properties of the method. Namely, whereas DSMC can only achieve convergence in
probability measure (weak convergence), we prove that the DMC-KDE approach re-
sults in convergence in solution (strong convergence) for L∞ and bounded solutions
of the Boltzmann equation. Therefore, rather than a stochastic simulator of the Boltz-
mann equation, the DMC-KDE approach represents a stochastic solver of the Boltz-
mann equation.
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3.2 Convergence of DMC-KDE

In the following, we prove weak convergence of the DMC-KDE approximation for the
space homogeneous Boltzmann Equation. Based upon the results of Babovsky and
Illner [5, 6] this is not unreasonable to expect. Although in the above work we have
chosen specific functions for h and K, our proof is for the more general case.

Let {⃗ci}
Np
i=1 be the mean velocities of the Np simulated particles at a given time

step derived by the above method. The velocity distribution function (VDF) of the
DMC-KDE method is then

f̃ (⃗c) =
1

Nph3

Np

∑
i=1

K
( c⃗ − c⃗i

h

)
,

where

K ∈
{

g ∈ L2(R3) : g(x) ≥ 0 for ∀x;
∫

R3

g(x)dx = 1;
∫

R3

xg(x)dx = 0
}

,

and h : N → R+ with limNp→∞ h(Np) = 0. Define { fh} by

fh(x⃗) =
1
h3 K

( x⃗
h

)
.

Then, f̃ may be rewritten as,

f̃ (⃗c) =
1

Np

Np

∑
i=1

fh (⃗c − c⃗i). (3.13)

Lemma 3.1. { fh} is a delta family as h → 0.

Proof. (see [21]) Let u⃗ = x⃗/h. we have∫
R3

fh(x⃗)dx⃗ =
1
h3

∫
R3

K
( x⃗

h

)
dx⃗ =

∫
R3

K(u⃗)du⃗ = 1.

Also, for any A > 0,

lim
h→0

∫
∥x⃗∥>A

fh(x⃗)dx⃗ = lim
h→0

1
h3

∫
∥x⃗∥>A

K
( x⃗

h

)
dx⃗ = lim

h→0

∫
∥u⃗∥> A

h

K(u⃗)du⃗ = 0,

and

lim
h→0

∫
∥x⃗∥<A

fh(x⃗)dx⃗ = lim
h→0

1
h3

∫
∥x⃗∥<A

K
( x⃗

h

)
dx⃗ = lim

h→0

∫
∥u⃗∥< A

h

K(u⃗)du⃗ = 1.

Now, let ϕ be any bounded and continuous function on R3. We have,

lim
h→0

∫
R3

fh(x⃗)ϕ(x⃗)dx⃗ − ϕ(0) = lim
h→0

[ ∫
R3

fh(x⃗)ϕ(x⃗)dx⃗ − ϕ(0)
∫

R3

fh(x⃗)dx⃗
]

= lim
h→0

∫
R3

fh(x⃗)[ϕ(x⃗)− ϕ(0)]dx⃗.
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Define η(x⃗) = ϕ(x⃗)− ϕ(0). Let ϵ > 0 and B > 0. We have,∫
R3

fh(x⃗)η(x⃗)dx⃗ =
∫
∥x⃗∥<B

fh(x⃗)η(x⃗)dx⃗ +
∫
∥x⃗∥>B

fh(x⃗)η(x⃗)dx⃗.

Choose M > 0 such that
|η(x⃗)| ≤ M,

for ∀x⃗. Let
p(B) = max

∥x⃗∥<B
|η(x⃗)|.

We have, ∣∣∣ ∫
R3

fh(x⃗)η(x⃗)dx⃗
∣∣∣ ≤∣∣∣ ∫

∥x⃗∥≤B
fh(x⃗)η(x⃗)dx⃗

∣∣∣+ ∣∣∣ ∫
∥x⃗∥>B

fh(x⃗)η(x⃗)dx⃗
∣∣∣

≤p(B)
∣∣∣ ∫

∥x⃗∥≤B
fh(x⃗)dx⃗

∣∣∣+ ∣∣∣ ∫
∥x⃗∥>B

fh(x⃗)dx⃗
∣∣∣

≤p(B) + M
∣∣∣ ∫

∥x⃗∥>B
fh(x⃗)dx⃗

∣∣∣.
Since η is continuous and η(0) = 0, there exists B ∈ R such that p(B) < ϵ/2. Also,
from above we have that there exists α > 0, such that∣∣∣ ∫

∥x⃗∥>B
fh(x⃗)dx⃗

∣∣∣ < ϵ

2M
,

whenever 0 < h < α. Therefore, for any ϵ > 0, we have shown that there exists α such
that ∣∣∣ ∫

R3

fh(x⃗)η(x⃗)dx⃗
∣∣∣ ≤ p(B) + M

∣∣∣ ∫
∥x⃗∥>B

fh(x⃗)dx⃗
∣∣∣

<
ϵ

2
+ M

ϵ

2M
= ϵ,

whenever 0 < h < α. Therefore,

lim
h→0

∫
R3

fh(x⃗)η(x⃗)dx⃗ = 0.

Which implies

lim
h→0

∫
R3

fh(x⃗)ϕ(x⃗)dx⃗ = ϕ(0),

and hence { fh} is a delta family as h → 0. �
Recall that the parameter h is chosen in the DMC-KDE method such that

lim
Np→∞

h(Np) = 0.

Then { fh(Np)} is a delta family as Np → ∞ by Lemma 3.1. We will denote this family
by { fNp}. We next prove that in the limit as Np → ∞ the probability measure gener-
ated by the DMC-KDE approach is the same as that generated by the Nanbu DSMC
method.



C. R. Schrock and A. W. Wood / Adv. Appl. Math. Mech., 4 (2012), pp. 102-121 113

Lemma 3.2. For any bounded and continuous ϕ on R3,

lim
Np→∞

∫
R3

ϕ(⃗c) f̃ (⃗c)d⃗c = lim
Np→∞

∫
R3

ϕ(⃗c) f̂ (⃗c)d⃗c.

Proof. Choose any ϵ > 0. Then by Lemma 3.1, for any bounded and continuous ϕ,
there exists M such that ∣∣∣ ∫

R3

ϕ(⃗c) fNp (⃗c − c⃗i)d⃗c − ϕ(c⃗i)
∣∣∣ < ϵ,

for all Np > M. Recalling that the DMC-KDE scheme generates the same values for
the Maxwellian centers as the Nanbu method generates for molecular velocities, we
have ∣∣∣ ∫

R3

ϕ(⃗c)( f̃ (⃗c)− f̂ (⃗c))d⃗c
∣∣∣ =∣∣∣ ∫

R3

ϕ(⃗c)
1

Np

( Np

∑
i=1

fNp (⃗c − c⃗i)− δ(⃗c − c⃗i)
)

d⃗c
∣∣∣

≤ 1
Np

Np

∑
i=1

∣∣∣ ∫
R3

ϕ(⃗c)( fNp (⃗c − c⃗i)− δ(⃗c − c⃗i))d⃗c
∣∣∣

<
1

Np

Np

∑
i=1

ϵ = ϵ,

for all Np > M. �
We will also require the following result proven by Babovsky and Illner.

Theorem 3.1. [Babovsky and Illner [5, 6, 10, 11]]. If the space homogeneous Boltzmann
equation has a non-negative solution f ∈ L1, then the solution f̂ of Nanbu’s method converges
weakly in L1 to f such that for any bounded, continuous test function ϕ,

lim
∆t→0

lim
Np→∞

∫
R3

ϕ(⃗c) f̂ (⃗c)d⃗c =
∫

R3

ϕ(⃗c) f (⃗c)d⃗c.

Combining this result with Lemma 3.2, we have the following theorem.

Theorem 3.2. If the space homogeneous Boltzmann equation has a non-negative solution
f ∈ L1, then the solution f̃ of the DMC-KDE method converges weakly in L1 to f such that
for any bounded and continuous test function ϕ on R3,

lim
∆t→0

lim
Np→∞

∫
R3

ϕ(⃗c) f̃ (⃗c)d⃗c =
∫

R3

ϕ(⃗c) f (⃗c)d⃗c.

Proof. Choose any ϵ > 0. Then,∣∣∣ ∫
R3

ϕ(⃗c)( f̃ (⃗c)− f (⃗c))d⃗c
∣∣∣

≤
∣∣∣ ∫

R3

ϕ(⃗c)( f̃ (⃗c)− f̂ (⃗c))d⃗c
∣∣∣+ ∣∣∣ ∫

R3

ϕ(⃗c)( f̂ (⃗c)− f (⃗c))d⃗c
∣∣∣.
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Applying Lemma 3.2 and Theorem 3.1 to the terms to the right of the inequality yields
the desired result. �

We have therefore proven that the DMC-KDE method exhibits the same conver-
gence as Nanbu’s method in the general case, namely convergence in probability mea-
sure. We next prove that stronger forms of convergence are possible compared with
Nanbu’s method, specifically for solutions which are L∞ or bounded. Such solutions
arise frequently in kinetic theory and are of greater practical interest than L1 solutions.

Corollary 3.1. If the space homogeneous Boltzmann equation has a non-negative solution
f ∈ L∞, then the solution f̃ of the DMC-KDE method converges strongly in L∞ to f . That is

lim
∆t→0

lim
Np→∞

∥ f̃ − f ∥∞ = 0.

Proof. Take any ϵ > 0. Since f̃ , f ∈ L∞, there exist B1, B2 ∈ R+ such that | f̃ (x⃗)| ≤ B1
and | f (x⃗)| ≤ B2 almost everywhere. Let S1 and S2 be the sets of zero measure over
which these inequalities do not hold for f̃ and f respectively. Let S = S1 ∪ S2. For any
x⃗′ ∈ R3 − S, define

ϕh(x⃗) =
1√

2πh3
exp

(
− ∥x⃗ − x⃗′∥2

h2

)
.

By Lemma 3.1, ϕh is a delta family as h → 0 centered at x⃗′. Therefore, there exists
H > 0 such that ∣∣∣ ∫

R3
ϕh(x⃗)( f̃ (x⃗)− f (x⃗))dx − ( f̃ (x⃗′)− f (x⃗′))

∣∣∣ < ϵ

2
,

for all h < H. Thus,

| f̃ (x⃗′)− f (x⃗′)| < ϵ

2
+

∣∣∣ ∫
R3

ϕh(x⃗)( f̃ (x⃗)− f (x⃗))dx
∣∣∣.

Note that ϕh is everywhere continuous and

|ϕh(x⃗)| ≤ 1√
2πh3

,

for all x⃗ ∈ R3. Thus by Theorem 3.2, there exist N > 0, d > 0 such that∣∣∣ ∫
R3

ϕh(x⃗)( f̃ (x⃗)− f (x⃗))dx
∣∣∣ < ϵ

2
,

for all Np > N, ∆t < d. Therefore from Eq. (3.2), we have

∥ f̃ − f ∥∞ = ess sup | f̃ − f | = sup
x⃗′∈R3−S

| f̃ (x⃗′)− f (x⃗′)|

<
ϵ

2
+

∫
R3

ϕh(x⃗)| f̃ (x⃗)− f (x⃗)|dx

<
ϵ

2
+

ϵ

2
= ϵ.

So, the proof is completed. �
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Corollary 3.2. If the space homogeneous Boltzmann equation has a non-negative bounded
solution f , then the solution f̃ of the DMC-KDE method converges pointwise to f .

Proof. The proof follows naturally from Corollary 3.1. �

3.3 Numerical implementation

To demonstrate the DMC-KDE method numerically, we modeled the relaxation of a
space homogeneous gas in the absence of external forces from a uniform initial veloc-
ity distribution. The initial condition for the test case is given by

f (⃗c, 0) = h(cx)h(cy)h(cz), (3.14)

where

h(x) =


1
2

, if |x| ≤ 1,

0, if |x| > 1.

Knowing that the steady state solution in this case must be of Maxwellian form, one
may determine that the steady state solution is given by

f∞ (⃗c) =
( 3

2π

) 3
2

exp
(
− 3∥⃗c∥2

2
2

)
. (3.15)

The evolution of the x-component velocity distribution is shown in Fig. 1. These re-
sults were obtained using only twenty simulated particles and averaged over an en-
semble of one-thousand simulations. In order to obtain an understanding of the con-
vergence of the method, 100 runs were performed for 5 different values of Np and the
cumulative error was computed at t = 0.15 a condition nearing steady state. The re-
sults are shown in Fig. 2. Note that as previously shown, the Nanbu approach does
not converge in this sense, whereas convergence is apparent in the DMC-KDE results.

Figure 1: DMC-KDE Solution of Test Case. Np = 20, Nsamp = 1000.
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Figure 2: Cumulative Error for 100 runs of DMC-KDE Method.

Although having relaxed some of the assumptions inherent to DSMC, the DMC-
KDE has inherent assumptions of its own. First, the particle densities are constrained
to be Maxwellian throughout the entire simulation. Secondly, the collision selection
criteria are consistent only in the limit as Np becomes large. Finally, because of the con-
straint that distributions must be Maxwellian, collision modeling cannot take full ad-
vantage of the distributional framework. Ideally, a fully distributional method would
relax each of these constraints: allowing for generalized particle distributions, pro-
viding for consistent collision selection criteria, and treating collision interactions as
relaxation processes of the collections of actual particles involved. Nevertheless, the
DMC-KDE approach represents a new stochastic Boltzmann solver which although
possessing many similarities to DSMC achieves convergence properties that are not
obtainable with DSMC.

4 A simplified distributional Monte Carlo approach using
the BGK equation

We seek to develop a fully distributional method, with collision selection criteria and
modeling that fully incorporates generalized particle velocity distributions. The anal-
ysis is much more complicated when generalized velocity distributions are involved,
so as a proof of concept case, a simplified scheme was developed. In this case, collision
selections are performed based upon the DMC-KDE criteria using the mean particle
velocity. The collision modeling however is modified to take advantage of the dis-
tributed particle velocities, and the particle velocity distributions themselves are now
estimated using kernel density estimation.

The collision modeling step utilizes the Bhatnagar-Gross-Krook (BGK) equation [7]
to evolve the joint velocity distribution of the two particles in a collision pair. Al-
though not fully consistent with the Boltzmann equation, the BGK model has been
employed in various forms to many applications in rarefied gas dynamics [12, 15, 25]
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and thus serves as a suitable starting point for our efforts. The BGK equation replaces
the complex collision integral of the Boltzmann equation with a simplified model as
follows.

∂

∂t
f (⃗r, c⃗, t) + c⃗ · ∂

∂⃗r
f (⃗r, c⃗, t) + F⃗ · ∂

∂⃗c
f (⃗r, c⃗, t)

=ν( f (⃗r, c⃗, t)− f∞ (⃗r, c⃗)), (4.1)

where ν is collision frequency and f∞ the steady state solution (typically Maxwellian)
that the gas is assumed to be relaxing towards. Although the BGK equation can not be
directly extracted from the Boltzmann equation, the model tends to capture many of
the relevant features exhibited by it especially when ν is allowed to vary with molec-
ular velocity. Other, more complex BGK models (e.g., Ellipsoidal Statistical Model)
exist and have been shown to provide solutions which are more physically meaning-
ful than the basic BGK model [10]. In the space homogeneous case with no external
forcing, the BGK equation reduces to a first order ordinary differential equation

∂ f
∂t

(⃗c, t) = ν( f (⃗c, t)− f∞ (⃗c)). (4.2)

Assuming a constant collision rate, the solution of Eq. (4.2) is given by

f (⃗c, t) = e−νt f0(⃗c) + (1 − e−νt) f∞ (⃗c). (4.3)

We will employ Eq. (4.3) to evolve the combined probability distribution function of
two simulated particles in a collision interaction.

To facilitate this, we begin by generalizing the method to allow for non-Gaussian
distributions on each simulated particles velocity distribution function. To achieve
this and allow greater flexibility, the distributed particle velocities are estimated using
KDE at the particle level instead of at the overall distributional level. The overall
distribution is given by

f̂ =
1

Np

Np

∑
i=1

fi.

The fi is the ith simulated particle’s velocity distribution given by

fi (⃗c) =
1

Nvh3

Nv

∑
j=1

K
( c⃗ − c⃗ij

h

)
,

where Nv is the number of velocity samples in the kernel density estimate of each
particle’s velocity distribution function, c⃗ij is the jth velocity sample of the ith particle’s
distribution function, and h is now given by

h =
[ 32

3
√

2NpNv

] 1
5
σest.
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As mentioned previously, the collision modeling step is performed by evolving the
combined distribution function of the collision pair through ∆t using the BGK equa-
tion. Nv velocities are then re-sampled from the resulting distribution for each particle
to determine new particle distribution functions. The solution to the BGK equation
remains as in Eq. (4.3), however, the initial and final distributions are now based upon
only the two particle distributions involved in the collision. For a collision pair (i, j),

f0 (⃗c) =
1
2
( fi (⃗c) + f j (⃗c)), f∞ (⃗c) =

1

π
3
2 h̃3

exp
(
− ∥⃗c − c̃∥2

h̃2

)
,

ν ≈ 2N
Np∆t

, c̃ =
1

2Nv

Nv

∑
k=1

(⃗cik + c⃗jk),

h̃ =

√√√√h2 +
( Nv

∑
k=1

∥⃗cik∥2 + ∥⃗cjk∥2
)
− 2

3
∥c̃∥2.

To demonstrate the potential benefits of such a scheme, we simulated the same prob-
lem discussed in Section 5. The results of the Simplified DMC method are shown in
Fig. 3. These results show drastic improvement over the DMC-KDE results with a

Figure 3: Simplified DMC Solution of Test Case. Np = 20, Nsamp = 16, Nv = 20.

Figure 4: Mean Cumulative Error for 100 runs of Simplified DMC Method.
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significantly reduced value of Np.
In order to obtain an understanding of the convergence of the method, 100 runs

were performed for 5 different values of Np and 3 different values of Nv. The cu-
mulative error was computed was computed at t = 0.15. The results for the mean
cumulative error are shown in Fig. 4 as they vary with Np and Nv. Marked improve-
ment has been achieved in terms of reduction in the cumulative error. It should be
noted that the computational demands of including an additional velocity sample per
particle (increasing Nv) are lower than those for including an additional simulated
particle (increasing Np). Considering the results shown in Fig. 4, it seems reasonable
that more samples per particle may be desirable for improving accuracy at lower val-
ues of Np, whereas at higher values of Np, the effect is diminished. It would seem that
Np remains the primary driver of accuracy.

5 Conclusions

We have presented a distributional Monte Carlo approach which employs results from
kernel density estimation to provide convergence in solution, rather than only conver-
gence in probability measure (as in the case of DSMC). Specifically, we have proven
that the DMC-KDE scheme maintains convergence in probability measure (weak con-
vergence) for L1 space homogeneous solutions, while obtaining strong convergence
for L∞ and bounded solutions. In this sense, the DMC-KDE approach would be con-
sidered a stochastic Boltzmann solver, rather than a simulation process. To our best
knowledge no formal proofs of the type of convergence we have exhibited appear in
the literature for existing Monte Carlo approaches for the Boltzmann equation.

The DMC-KDE approach achieves this convergence by relaxing some of the as-
sumptions inherent to DSMC. Specifically, instead of assuming that each of the actual
particles represented by a simulated particle all possess the same velocity, it is as-
sumed that the collections actual molecular velocities are distributed according to a
Maxwellian (equilibrium) distribution. This assumption itself imposes a constraint on
the method, namely that non-Maxwellian particle distributions are not provided for.
Nevertheless DMC-KDE serves as a first step toward a fully distributional approach
which would allow generalized particle distributions and compute collision interac-
tions as relaxation process over the collection of actual molecules represented by the
simulated particles undergoing a collision. We have presented our initial findings
in our development of a DMC scheme with collision modeling based upon the BGK
equation which has been employed in various forms to many applications in rarefied
gas dynamics. The numerical results we have presented show significant improve-
ment over DMC-KDE for the example problem we considered. Our initial results sug-
gest that the increased computational cost associated with this new framework are not
prohibitive, and the effect of distributing the particle velocities has significant impact
on the accuracy of the solution.
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