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Abstract. A partially penalised immersed finite element method for interface problems

with discontinuous coefficients and non-homogeneous jump conditions based on un-

fitted meshes independent of the interface is proposed. The arising systems of linear

equations have symmetric positive definite matrices which allows the use of fast solvers

and existing codes. Optimal error estimates in an energy norm are derived. Numerical

examples demonstrate the efficiency of the method.

AMS subject classifications: 65N15, 65N30, 35J60

Key words: Immersed finite element method, interface problem, Cartesian mesh, non-homogeneous

jump condition, closest-point projection.

1. Introduction

We consider an immersed interface finite element method to solve the elliptic interface

problem

−∇ · β(x , y)∇u(x , y) = f (x , y) , x ∈ Ω\Γ , (1.1)

u(x , y) = 0 , x ∈ ∂Ω , (1.2)

together with the following non-homogeneous jump conditions across the interface Γ :

[u]Γ = u+ − u− = w , (1.3)

�
β
∂ u

∂ n

�

Γ

= β+∇u+ · n− β−∇u− · n= Q , (1.4)
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Figure 1: The geometry of an interfa
e problem.

where u±(x , y) = u(x , y)|Ω± and n is a unit normal to the interface pointing from Ω− to

Ω
+. In Fig. 1 for an illustration, without loss of generality, we assume that Ω ⊂ R2 is a

rectangular domain, the interface is a closed and smooth curve separating Ω into two sub-

domains Ω−, Ω+ such that Ω− lies strictly inside Ω, and the coefficient β(x , y) is a positive

and piecewise constant function — i.e.

β(x , y) =

�
β−, (x , y) ∈ Ω−,

β+, (x , y) ∈ Ω+,
and β± > 0 .

The homogeneous Dirichlet boundary condition u = 0 is used just for convenience in the

theoretical analysis, since we focus on the interface. Indeed, other boundary conditions

(e.g. non-homogeneous boundary conditions or Neumann boundary conditions) can be

treated using standard finite element techniques. As in the classical level set method, the

interface Γ is implicitly defined as the zero level set of a smooth function ϕ(x , y) satisfying

ϕ(x , y)






< 0 , (x , y) ∈ Ω−,
= 0 , (x , y) ∈ Γ ,

> 0 , (x , y) ∈ Ω+.

The unit normal n to the interface Γ pointing from Ω− to Ω+ is then n =∇ϕ/‖∇ϕ‖2. It is

notable that the method we propose is not restricted to the level set representation of the

interface, for it also works for a parametric representation of the interface — cf. Section 2.4.

The interface problem (1.1)-(1.4) arises in many important scientific and engineer-

ing applications. For example, in electrostatic field computations this interface problem

involves interface data Q referring to surface charge density [14]. For the computation

of the temperature in composite media with thermal contact resistance effect, the solu-

tion may have jumps across the interface — i.e., w 6= 0. We are interested in solving

such an interface problem by a finite element (FE) method based on unfitted meshes in-

dependent of the interface. Numerical methods using such meshes have some advan-

tages compared with body fitted meshes, including the attractive ease in handling prob-

lems with moving interfaces. An early numerical method that used an unfitted mesh is
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Peskin’s immersed boundary (IB) method [32], where the interface jump conditions are

treated as singular sources, and since then various methods using unfitted meshes have

been developed — e.g. the immersed interface method [18, 20], the immersed finite

element/volume method [1, 10, 13, 15, 22, 25, 26, 30, 31], the augmented finite differ-

ence/element method [16, 17, 19, 23], the extended finite element method [6], the un-

fitted Nitsche’s finite element method [8, 29, 35, 36], the kernel-free boundary integral

method [37–39], the virtual node method [2,11], the ghost fluid method [27,28], the cou-

pling interface method [4,34], and the matched interface and boundary method [40,41].

Of these methods, the immersed finite element (IFE) methods have attracted considerable

attention since they are relatively simple and convenient in several aspects. First of all, the

degrees of freedom remain the same as that of the traditional FE method for problems with

no interface, whereas the extended or unfitted Nitsche’s FE methods require extra degrees

of freedom on interface elements to capture jumps across the interface. Secondly, the stiff-

ness matrix of an IFE method is computed element-by-element just like in the traditional

FE method; and one only needs to modify the shape function on interface elements, so the

method can be incorporated readily into existing FE software packages. Thirdly, the IFE

method reduces to the traditional FE method when discontinuities and interfaces disap-

pear. Finally, the solution obtained by the IFE method has optimal convergence, as if there

is no interface.

However, most IFE methods are designed for homogeneous jump conditions. For in-

terface problems with both discontinuous coefficients and non-homogeneous jump condi-

tions, Gong et al. [7] developed a source removal technique that essentially moved the

non-homogeneous terms to the right-hand side using the level set function. Subsequently,

a similar technique was proposed in Ref. [5] to solve the interface problem in which the

coefficient was a constant without a jump. He et al. [9] developed an IFE method by enrich-

ing the classical IFE spaces locally on interface elements to capture the non-homogeneous

flux jump condition with w = 0. Using similar ideas, Chang & Kwak [3] proposed an ap-

proach by constructing a bubble function that satisfied the same non-homogeneous jump

conditions as the solution in a certain sense. Hou & Liu [12] proposed a Petrov-Galerkin

finite element method that can also deal with non-homogeneous jump conditions, where

the stiffness matrix is non-symmetric since the solution function is taken from the classical

IFE space while the testing function is from the traditional linear conforming finite element

space. These IFE methods for interface problems with both discontinuous coefficients and

non-homogeneous jump conditions are shown to be effective, but the convergence analysis

is extremely difficult and is still an open question.

Recently, Lin et al. [24] proposed a partially penalised IFE method for elliptic interface

problems with discontinuous coefficients but homogeneous jump conditions. This method

introduces extra terms only at interface edges, to handle discontinuities of functions in

classical IFE spaces. With these modifications, the optimal error estimates in an energy

norm were obtained and the convergence orders in both the H1 and L2 norms do not de-

teriorate when the mesh becomes finer, which is sometimes a shortcoming of the classical

IFE methods. Here we develop a partially penalised IFE method for solving the interface

problem (1.1)-(1.4) with both discontinuous coefficients and non-homogeneous jump con-
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Figure 2: An un�tted mesh. Gray: T d
h

; Dark green: T int
h

; Red: E int
h

.

ditions. The idea to deal with the non-homogeneous jumps across the interface originally

comes from Ref. [7, 23], where a function satisfying the same non-homogeneous jumps

is constructed by using the level set representation of the interface and extensions of the

interface data. The correction function is non-polynomial and defined on the supports of

the basis functions the interface cuts through, so the interface data need to be extended

to the tube of 2h distance of the interface [7]. Moreover, the gradient or Laplacian of the

non-polynomial correction function needs to be computed numerically, which also makes

the method harder to implement. In contrast, the correction function in our method is

piecewise linear and constructed locally on interface elements, and the interface data only

need to be extended to the vertices of the interface elements in the tube of h distance of

the interface. The extension is obtained by using a closest-point projection. We prove the

optimal error estimate in an energy norm, and present numerical examples to show the

performance of the method. To the best of our knowledge, this is the first IFE method that

proves to be convergent optimally in an energy norm for an elliptic interface problem with

both discontinuous coefficients and non-homogeneous jump conditions.

This paper is organized as follows. In Section 2, we review the classical IFE space, con-

struct a correction function uJ
h
, and introduce a partially penalised IFE method. Section 3

deals with optimal error estimates in an energy norm. Numerical examples, illustrating

theoretical results, are discussed in Section 4. Our concluding remarks are in Section 5.

2. Finite Element Method

In order to introduce the partially penalised IFE method for the interface problem (1.1)-

(1.4), let us assume that Ω is a rectangular domain with a Cartesian mesh — cf. Fig. 2.

Splitting Ω into uniform rectangles with the side lengths of ∆x and ∆y and dividing the

rectangles by parallel diagonals, one obtains a triangulation Th with the mesh size h =p
(∆x)2 + (∆y)2. We also assume that h can be chosen such that each triangle has either

at most two common points with Γ or one of its edges belongs to Γ . Moreover, if there are

exactly two common points, they are located on different closed edges of the triangle.
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Let Nh refer to the set of all vertices (x i, yi) ∈ Ω of the triangular elements and let

N i
h

:=Nh ∩Ω, N b
h

:=Nh ∩ ∂Ω, N s
h

:=Nh ∩ Γ .

An element T is called the interface element if Γ crosses the interior of T , otherwise it is

refereed to as a non-interface element. The sets of all interface and non-interface elements

are denoted by T int
h

and T non
h

, respectively. We also consider the set

T d
h
= {T ∈ T non

h
: T ⊂ Ω+, Γ ∩ ∂ T ∈ N s

h
or an edge of T is a subset of Γ },

and for t ∈ Γ we define u(t) := lim τ→t
τ∈Ω−

u(τ).

Similar to the set of interior open edges Eh in Th, let us introduce the set of interface

edges

E int
h

:= {e ∈ Eh : e ∩ Γ 6= ;},
so that E non

h
= Eh\E int

h
, where E non

h
denotes the set of non-interface edges — cf. Fig. 2

showing the sets T int
h

, E int
h

and T d
h

.

2.1. Classical IFE space for homogeneous jump conditions

Let us briefly describe the classical IFE space — cf. [22]. For each non-interface element

the functions of IFE are linear, otherwise they are piecewise linear. We consider a typical

interface element △ABC of the IFE space shown in Fig. 3. The line segment DE splits T

into two parts T+
h

and T−
h

. Let nh and th be, respectively, the unit normal and the unit

tangential vectors of DE. For this element T , an IFE function has the form

vh(x , y) =

¨
v+

h
(x , y) = a+ + b+x + c+ y, (x , y) ∈ T+

h
,

v−
h
(x , y) = a− + b−x + c− y, (x , y) ∈ T−

h
,

(2.1)

where coefficients a±, b±, c± are specified in order to satisfy the relations

vh(xA, yA) = V1, vh(xB, yB) = V2, vh(xC , yC ) = V3, (2.2)

v+
h
(xD, yD) = v−

h
(xD, yD), v+

h
(xE , yE) = v−

h
(xE , yE), β+∇v+

h
· nh = β

−∇v−
h
·nh, (2.3)

and Vi , i = 1,2,3 are the nodal variables. Let us emphasise that functions (2.1), containing

six unknowns, shall satisfy six conditions (2.2)-(2.3). It was shown in Ref. [22] that Vi ,

i = 1,2,3 uniquely determine a piecewise linear function.

Let V I F E
h

stand for an IFE space consisting of all functions vh such that

1. For any T ∈ T non
h

, the restriction vh on T is a linear function;

2. For any T ∈ T int
h

, the restriction vh on T is a piecewise linear function defined by

Eqs. (2.1)-(2.3);

3. For any nodal point (x i, yi) ∈ Nh, the function vh is continuous;

4. For any nodal point (x i, yi) ∈ N b
h

, the condition vh(x i, yi) = 0 holds.



6 H. Ji, Q. Zhang, Q. Wang and Y. Xie

E

A G

D

B

ΓF

C

T−

h

T+

h

th

nh

Figure 3: A typi
al interfa
e element and a neighboring element.

Let V L
h

be the standard linear conforming finite element space. It is clear that the IFE

space V I F E
h

is a modification of the space V L
h

for discontinuous coefficients β(x , y). For the

same mesh, these two spaces coincide if β+ = β−. It is well known that on the edges E int
h

,

IFE functions can be discontinuous. For example, for given vh(xA, yA), vh(xB, yB), vh(xC , yC )

and vh(xG, yG), the restrictions vh|△ABC and vh|△ACG of vh on the triangles△ABC and△ACG

are independently determined and the values of vh at the point E may not coincide —

cf. Fig. 3, so that vh(x , y) can have a discontinuity on AC .

For a function v(x , y), let I I F E
h

v ∈ V I F E
h

denote the IFE interpolation of v such that

I I F E
h

v(x i, yi) = v(x i, yi) for all nodal points (x i, yi) ∈ Nh. The IFE space V I F E
h

has an

optimal approximation property for solutions with homogeneous jump conditions. More

exactly, the following result holds.

Lemma 2.1 (cf. Li et al. [21]). If v ∈ H2(Ω+∪Ω−) satisfies the homogeneous jump conditions

[v]Γ = 0 and [β(∂ v/∂ n)]Γ = 0, then there is a constant C > 0, independent of h, such that

for all T ∈ T int
h

one has

‖v − I I F E
h

v‖L2(T) ≤ Ch2‖v‖H2(T+∪T−),

‖v − I I F E
h v‖H1(T) ≤ Ch‖v‖H2(T+∪T−),

where T+ = T ∩Ω+ and T− = T ∩Ω−.

2.2. A correction function for non-homogeneous jumps

Fix a ρ > 0, and let N (Γ ,ρ) be the neighbourhood of Γ ,

N (Γ ,ρ) :=
�
(x , y) ∈ Ω : dist

�
(x , y), Γ

� ≤ ρ	,

where dist((x , y), Γ ) is the distance from (x , y) to Γ . If ρ is sufficiently smaller than the

curvature of the interface, then for any (x , y) ∈ N (Γ ,ρ) there is a unique closest-point

projection (X , Y ) of (x , y) on Γ such that



(x , y)− (X , Y )




2
= dist

�
(x , y), Γ

�
.
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It is clear that the information related to the interface Γ is governed by the level set function

ϕ(x) considered in a neighborhood of the interface. Let us now consider the signed distance

function

d(x , y) :=






−dist
�
(x , y), Γ

�
if (x , y) ∈ Ω− ∩ N (Γ ,ρ),

0 if (x , y) ∈ Γ ,
dist

�
(x , y), Γ

�
if (x , y) ∈ Ω+ ∩ N (Γ ,ρ).

If a function u is evaluated on the interface Γ , its extension ue to a neighborhood N (Γ ,ρ)

of Γ is defined by

ue(x , y) := u(X , Y ), (x , y) ∈ N (Γ ,ρ), (2.4)

where (X , Y ) is the closest-point projection of (x , y) on the interface Γ .

Given interface functions w and Q, let us define the functions eu(x , y) and bu(x , y) by

eu(x , y) := we(x , y) +
Qe(x , y)

β+
d(x , y), (x , y) ∈ N (Γ ,ρ), (2.5)

bu(x , y) := H
�
ϕ(x , y)

�
eu(x , y), (x , y) ∈ N (Γ ,ρ),

with the Heaviside function

H(s) =

�
0 if s ≤ 0,

1 if s > 0.

If Γ and the interface functions w and Q are sufficiently smooth, then the function eu is also

sufficiently smooth and (2.4), (2.5) yield the relations

eu|Γ = w,

∂ eu
∂ n

����
Γ

=
∂ we

∂ n

����
Γ

+
d(x , y)

β+
∂Qe

∂ n

����
Γ

+
Qe

β+
∂ d(x , y)

∂ n

����
Γ

=
Q

β+
. (2.6)

Moreover, it is easily seen that the function

uhom(x , y) := u(x , y)− bu(x , y), (x , y) ∈ N (Γ ,ρ), (2.7)

satisfies the homogeneous interface jump conditions — i.e.

[uhom]Γ = 0,

�
β
∂ uhom

∂ n

�

Γ

= 0. (2.8)

Remark 2.1. The previous considerations deal with the construction of a function eu satis-

fying the conditions

eu(x , y) = w(x , y), β+
∂ eu
∂ n
(x , y) = Q(x , y), (x , y) ∈ Γ . (2.9)
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This can also be done by setting Ω±ρ := Ω±∩N (Γ ,ρ) and determining the required function

eu ∈ H2(Ωρ) from the biharmonic problem

∆
2eu±(x , y) = 0 (x , y) ∈ Ω±ρ ,

eu±(x , y) = w(x , y), β+
∂ eu±
∂ n
(x , y) = Q (x , y) ∈ Γ ,

eu±(x , y) = 0,
∂ eu±
∂ n
= 0 (x , y) ∈ ∂Ω±ρ\Γ . (2.10)

Although for Γ ∈ C2 the problem (2.10) has a unique solution eu ∈ H2(Ωρ), its derivation

meets considerable difficulties and we do not pursue this idea here.

In order to find a correction function which would handle the jumps in non-homogene-

ous interface conditions and be suitable for our numerical method, we use the interpolation

operator I L
h

— viz. if v is a piecewise continuous function such that v|Ω+ = v+ ∈ C(Ω+) and

v|
Ω− = v− ∈ C(Ω−), then I L

h
v ∈ V L

h
is defined by

I L
h

v(x i, yi) := v(x i, yi), (x i, yi) ∈ Nh.

Let

ΩΓ :=
⋃

T∈T int
h
∪T d

h

T.

Then

uJ
h
(x , y) :=

�
H(ϕ)I L

h eu− I I F E
h (H(ϕ)eu) if (x , y) ∈ ΩΓ ,

0 otherwise ,
(2.11)

is the correction function required.

We note that for h < ρ one has ΩΓ ⊂ N (Γ ,ρ). Moreover, the function uJ
h

is piecewise

polynomial with support ΩΓ and is completely determined by the values of eu at the vertices

of the triangles in T int
h

and T d
h

. It is easily seen that all discontinuities of uJ
h

are located

along the interface Γ .

Considering another function

uJ (x , y) =

�
bu− I I F E

h
bu= H(ϕ)eu− I I F E

h

�
H(ϕ)eu

�
if (x , y) ∈ ΩΓ ,

0 otherwise ,
(2.12)

we note that it is non-polynomial and satisfies the interface jump conditions exactly but it

may have a discontinuity on the boundary of ΩΓ .

The following lemma describes approximation properties of the correction function uJ
h
.

Lemma 2.2. Assume that the interface Γ and the interface functions w and Q are such that

the function eu satisfying the conditions (2.9), belongs to the space H2(N (Γ ,ρ)). Then for any
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u ∈ H2(Ω+∪Ω−) satisfying (1.3)-(1.4), there is a constant C > 0, independent of h, such that

for any h< ρ the inequalities

‖u− I I F E
h

u− uJ
h
‖L2(Ω) ≤ Ch2

�‖u‖H2(Ω+∪Ω−) + ‖eu‖H2(ΩΓ )

�
,

 
∑

T∈Th

‖u− I I F E
h u− uJ

h
‖2

H1(T)

!1/2

≤ Ch
�‖u‖H2(Ω+∪Ω−) + ‖eu‖H2(ΩΓ )

�
, (2.13)

hold.

Proof. If T ∈ T int
h
∪T d

h
, then (2.11)-(2.12) yield

u− I I F E
h

u− uJ
h
= u− I I F E

h
u− uJ + uJ − uJ

h

= u− I I F E
h

u− (bu− I I F E
h
bu) +H(ϕ)

�
eu− I L

h
eu
�

= u− bu− I I F E
h (u− bu) +H(ϕ)

�
eu− I L

h eu
�

= uhom− I I F E
h uhom+H(ϕ)

�
eu− I L

h eu
�

. (2.14)

Since h< ρ, one has T ⊂ N (Γ ,ρ), so that the assumption eu ∈ H2(N (Γ ,ρ)), relations (2.8)

and Lemma 2.1 lead to the estimates

‖uhom − I I F E
h uhom‖L2(T) ≤ Ch2

�‖u‖H2(T+∪T−) + ‖eu‖H2(T+)

�
,

‖uhom − I I F E
h uhom‖H1(T) ≤ Ch

�‖u‖H2(T+∪T−) + ‖eu‖H2(T+)

�
, (2.15)

with T± := T ∩ Ω±. The third term in the right hand side of (2.14) can be estimated as

follows:

‖H(ϕ) �eu− I L
h eu
�‖L2(T) = ‖eu− I L

h eu‖L2(T+) ≤ ‖eu− I L
h eu‖L2(T) ≤ Ch2‖eu‖H2(T), (2.16)

and

‖H(ϕ) �eu− I L
h
eu
�‖H1(T+∪T−) = ‖eu− I L

h
eu‖H1(T+) ≤ ‖eu− I L

h
eu‖H1(T) ≤ Ch‖eu‖H2(T). (2.17)

For elements T ∈ T non
h
\T d

h
, we have uJ

h
= 0 — cf. (2.11), hence

‖u− I I F E
h

u− uJ
h
‖L2(T) = ‖u− I L

h
u‖L2(T) ≤ Ch2‖u‖H2(T),

‖u− I I F E
h u− uJ

h
‖H1(T) = ‖u− I L

h u‖H1(T) ≤ Ch‖u‖H2(T), (2.18)

recalling that I I F E
h
= I L

h
for non-interface elements. Putting together the relations (2.14)-

(2.18), we obtain inequalities (2.13), completing the proof of the lemma.

2.3. A partially penalised IFE method

Let e be an edge shared by elements T1 and T2 and ni be the unit normal to e directed

outside of Ti , i = 1,2. The average {{∇u}} and the jump ¹uºn1 on the edge e are defined
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by

{{∇u}} :=
1

2

�
∇u|T1

+∇u|T2

�
,

¹uºn1 := u|T1
n1 + u|T2

n2 =
�
u|T1
− u|T2

�
n1.

For any edge e ∈ Eh, we fix the unit normal vector and denote it by ne. For e ⊂ ∂Ω, we

define {{v}} = ¹vº= v|T .

The finite element method considered here consists in finding uh = uhom
h
+ uJ

h
, uhom

h
∈

V I F E
h

such that

ah(u
hom
h

, vh) =

∫

Ω

f vhd xd y −
∫

Γ

Qvhds− ah(u
J
h
, vh) ∀vh ∈ V I F E

h
, (2.19)

where ah(·, ·) is the bilinear form

ah(w, vh) =
∑

T∈Th

∑

i=±

∫

T∩Ωi

β∇w · ∇vhd xd y

−
∑

e∈E int
h

,e 6⊂Γ

∫

e

�
{{β∇w}} · ne¹vhº+ {{β∇vh}} ·ne¹uhom

h
º− η

h
¹wº¹vhº

�
ds,

with a penalty parameter η ≥ 0.

Remark 2.2. The function uJ satisfies the non-homogeneous interface jump conditions, so

the use of uJ instead of uJ
h

looks more attractive. However, the implementation of such a

method is more involved.

2.4. A closest-point projection

One of main difficulties in implementation of the method consists in the determination

of the projections (X ∗, Y ∗) of nodal points (x i, yi) ∈ Nh near the interface. For interfaces

given implicitly by a signed distance function d(x , y), one can use the Newton iterative

method to find the root α of the one-dimensional nonlinear equation d(x i+α
∂ d
∂ x |(xi ,yi)

, yi+

α ∂ d
∂ y |(xi ,yi)

) = 0 and obtain (X ∗, Y ∗) = (x i, yi) +α∇d(x i, yi).

In the case where the corresponding level set function ϕ(x , y) is not a signed distance

function, the projection (X ∗, Y ∗) and the signed distance d(x i, yi) can be simultaneously
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derived by the Newton iterative method for the coupled nonlinear equations — cf. Ref. [33]:

X ∗ − x i + d(x i, yi)

∂ ϕ
∂ xÈ�

∂ ϕ
∂ x

�2
+
�
∂ ϕ
∂ y

�2

�������
(X ∗,Y ∗)

= 0,

Y ∗ − yi + d(x i, yi)

∂ ϕ
∂ yÈ�

∂ ϕ
∂ x

�2
+
�
∂ ϕ
∂ y

�2

�������
(X ∗,Y ∗)

= 0,

ϕ(X ∗, Y ∗) = 0. (2.20)

We note that the system (2.20) consists of three equations with three unknowns X ∗, Y ∗,
d(x i, yi). The initial value is chosen according to a method developed in Ref. [20, p. 76].

In our computations, the tolerance of the Newton iterative method was set as 10−12, and it

takes only a few iterations to establish the closest-point projection.

For interfaces given by a parametrisation such as

Γ :=
�
(x(t), y(t)) : x , y ∈ C2(I ,R), I ⊂ R)	 ,

the closest-point projection can be derived according to Ref. [33], so that our method is

also applicable to problems with parametric representation of the interface.

2.5. Problems with variable coefficients

In this section, we show how to apply the partially penalised IFE method to the problem

β(x , y) =

�
β−(x , y), (x , y) ∈ Ω−,
β+(x , y), (x , y) ∈ Ω+,

0< βmin ≤ β(x , y) ≤ βmax <∞
with sufficiently smooth coefficients β±(x , y). In order to work in an appropriate IFE space,

the third equation in (2.3) is replaced by the equation

β+∇v+
h
· nh = β−∇v−

h
·nh,

where β± are the averages on the curve Γ ∩△ABC , i.e.

β± =
1

|Γ ∩△ABC |

∫

Γ∩△ABC

β±(x , y)ds. (2.21)

We also will use a new correction function uJ
h
. In case of variable coefficients, the equation

(2.5) takes form

eu(x , y) = we(x , y) +
Qe(x , y)

β+,e(x , y)
d(x , y), (x , y) ∈ N (Γ ,ρ),

where

β+,e(x , y) = β+(X , Y ),

with the closest-point projection (X , Y ) of (x , y).
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3. A Priori Error Estimates

Introducing the space

Hh := {v ∈ L2(Ω) : v|T± ∈ H2(T±), v|T ∈ H1(T ),∀T ∈ Th, T± = T ∩Ω±,
and v is continuous on e ∈ E non

h
},

we can consider a bilinear form ah(·, ·) as acting on Hh × Hh. For every v ∈ Hh, its energy

norm is defined by

‖v‖h =




∑

T∈Th

∑

i=±

∫

T∩Ωi

β∇v · ∇vd xd y +
∑

e∈E int
h

,e 6⊂Γ

∫

e

η

h
¹vº¹vºds




1/2

.

The bilinear form ah(·, ·) is coercive on the IFE space V I F E
h

with respect to the energy norm

‖ · ‖h as is stated in the following lemma.

Lemma 3.1 (cf. Lin et al. [24]). There exists a constant κ > 0, independent of h, such that

for all sufficiently large penalty parameters η and for all vh ∈ V I F E
h

the inequality

ah(vh, vh) ≥ κ‖vh‖2h

holds.

Let us show the consistency of our method.

Lemma 3.2. If u ∈ H2(Ω+ ∪Ω−) is a solution of (1.1)-(1.4) and uh is a solution of (2.19),

then for any vh ∈ V I F E
h

one has

ah(u− uh, vh) = 0. (3.1)

Proof. Let T ∈ Th and D := T ∩Ω+ or D := T ∩Ω−. Using integration by parts, for any

vh ∈ V I F E
h

we obtain

∫

D
f vhd xd y =

∫

D
−∇(β∇u)vhd xd y

=

∫

D
β∇u · ∇vhd xd y −

∫

∂D
(β∇uvh) · νds, (3.2)

where ν is the outward unit normal to ∂D. Summing up Eqs. (3.2) over all subdomains D,



A Partially Penalised Immersed Finite Element Method for Elliptic Interface Problems 13

we arrive at the representation
∫

Ω

f vhd xd y

=
∑

T∈Th

∑

i=±

∫

T∩Ωi

β∇u · ∇vhd xd y −
∑

e∈Eh,e 6⊂Γ

∫

e

¹β∇uvhº · neds−
∫

Γ

¹β∇uvhº · nds

=
∑

T∈Th

∑

i=±

∫

T∩Ωi

β∇u · ∇vhd xd y −
∑

e∈Eh,e 6⊂Γ

∫

e

� {{β∇u}}¹vhº+ {{vh}}¹β∇uº
� · neds

−
∫

Γ

� {{β∇u}}¹vhº+ {{vh}}¹β∇uº
� · nds

=
∑

T∈Th

∑

i=±

∫

T∩Ωi

β∇u · ∇vhd xd y −
∑

e∈E int
h

,e 6⊂Γ

∫

e

{{β∇u}}¹vhº ·neds+

∫

Γ

Qvhds. (3.3)

Note that in the above transformations, we used the relations:

1. ¹abº = {{a}}¹bº+ {{b}}¹aº;

2. ¹vhº= 0 on Γ and the jump condition (1.4);

3. ¹vhº= 0 on e ∈ E non
h

and ¹β∇u · neº= 0 on e ∈ Eh, e 6⊂ Γ .
Moreover, since u ∈ H2(Ω+ ∪Ω−), it implies ¹uº = 0 on e ∈ E int

h
, e 6⊂ Γ and subsequently

∑

e∈E int
h

,e 6⊂Γ

∫

e

{{β∇vh}} · ne¹uºds =
∑

e∈E int
h

,e 6⊂Γ

∫

e

η

h
¹uº¹uºds = 0. (3.4)

It follows from (3.3), (3.4) that

ah(u, vh) =

∫

Ω

f vhd xd y −
∫

Γ

Qvhds for all vh ∈ V I F E
h

.

Combining it with Eq. (2.19), we obtain

ah(u− uh, vh) = 0 for all ∈ V I F E
h

,

which completes the proof.

In order to derive error estimates in energy norm, we need a result from Ref. [24].

Lemma 3.3 (cf. Lin et al. [24]). Let Ω±ρ := Ω± ∩ N (Γ ,ρ). If h < ρ, then for any v ∈
H3(Ω+ρ ∪ Ω−ρ) satisfying the conditions [v]Γ = 0 and

�
β ∂ v
∂ n

�
Γ
= 0, there is a constant C,

independent of Γ , such that



(β∇(v − I I F E
h

v))|T · ne



2

L2(e+∪e−) ≤ C
�
h2‖v‖2

H3(Ω+ρ∪Ω−ρ) + h‖v‖2
H2(T+∪T−)

�
,

where I I F E
h

v is the interpolation of v in V I F E
h

, e± = e ∩Ω±, T± = T ∩Ω±, and e is an edge of

the interface element T .
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This lemma allows us to establish the following result.

Corollary 3.1. If the function eu of (2.9) belongs to H3(N (Γ ,ρ)), then for any u ∈ H3(Ω+ ∪
Ω
−) satisfying the non-homogeneous interface conditions (1.3)-(1.4), there is a constant C,

independent of Γ , such that for any h < ρ the estimate



(β∇(u− I I F E
h

u− uJ
h
))|T · ne



2

L2(e+∪e−)

≤C

�
h2(‖u‖2

H3(Ω+ρ∪Ω−ρ) + ‖eu‖
2
H3(Ω+ρ)

) + h(‖u‖2
H2(T+∪T−) + ‖eu‖2H2(T)

)

�
,

holds.

Proof. According to (2.7), we have uhom(x , y) = u(x , y)−bu(x , y) in N (Γ ,ρ), so that for

an interface element T ∈ T int
h

, the relation (2.14) yields

u− I I F E
h

u− uJ
h
=
�
uhom− I I F E

h
uhom

�
+H(ϕ)

�
eu− I L

h
eu
�

. (3.5)

Since uhom satisfies the conditions of Lemma 3.3, we have



(β∇(uhom− I I F E
h uhom))|T · ne



2

L2(e)

≤C

�
h2‖uhom‖2

H3(Ω+ρ∪Ω−ρ) + h‖uhom‖2
H2(T+∪T−)

�

≤C

�
h2(‖u‖2

H3(Ω+ρ∪Ω−ρ) + ‖eu‖
2
H3(Ω+ρ)

) + h(‖u‖2
H2(T+∪T−) + ‖eu‖2H2(T+)

)

�
. (3.6)

The second term in the right-hand side of (3.5) can be estimated by using the standard

trace inequality, so that



(β∇ �H(ϕ)(eu− I L
h
eu)
� |T ·ne



2

L2(e+∪e−) =


(β∇ �eu− I L

h
eu
� |T · ne



2

L2(e+)

≤


(β∇ �eu− I L

h
eu
� |T · ne



2

L2(e)
≤ C

�
h−1|eu− I L

h
eu|2

H1(T)
+ h|eu− I L

h
eu|2

H2(T)

�

≤Ch|eu|2
H2(T)

, (3.7)

and the result follows from (3.5)-(3.7).

Lemma 3.4. Assume that h < ρ and the function eu of (2.9) belongs to the space H2(N (Γ ,ρ)).

Then



(u− I I F E
h

u− uJ
h
)|T


2

L2(e)

≤Ch−1‖u− I I F E
h

u− uJ
h
‖2

L2(T)
+ Ch|u− I I F E

h
u− uJ

h
|2
H1(T)

+ Ch3‖eu‖2
H2(T)

, (3.8)

where T is an interface element and e is an interface edge of T .

Proof. First of all, we write



(u− I I F E
h

u− uJ
h
)|T


2

L2(e)
≤


(u− I I F E

h
u− uJ )|T



2

L2(e)
+


(uJ − uJ

h
)|T


2

L2(e)
. (3.9)
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Evaluating the first term in the right-hand side of (3.9), we note that u − uJ ∈ H1(T ),

I I F E
h

u ∈ H1(T ) and apply the standard trace inequality. The second term can be estimated

by using (2.11) and (2.12) and the standard trace inequality



(uJ − uJ
h
)|T


2

L2(e)
=


H(ϕ)(eu− I L

h eu)


2

L2(e)
≤ ‖eu− I L

h eu‖2L2(e)

≤ Ch−1‖eu− I L
h eu‖2L2(T)

+ Ch‖eu− I L
h eu‖2H1(T)

≤ Ch3‖eu‖2
H2(T)

,

hence inequality (3.8) follows.

Now we can establish error estimates for the proposed method.

Theorem 3.1. Assume that h < ρ, the function eu of (2.9) belongs to H3(N (Γ ,ρ)) and the

exact solution u of the interface problem (1.1)-(1.4) belongs to H3(Ω+ ∪ Ω−). If uh is the

approximate solution obtained by the method (2.19), then

‖u− uh‖h ≤ Ch
�‖u‖H3(Ω+∪Ω−) + ‖eu‖H3(N(Γ ,ρ))

�
, (3.10)

with a constant C.

Proof. Since uh = uhom
h
+ uJ

h
, we can write

‖u− uh‖h ≤ ‖u− I I F E
h

u− uJ
h
‖h + ‖I I F E

h
u− uhom

h
‖h. (3.11)

By Lemma 3.2,

ah(I
I F E
h u− uhom

h
, vh) = −ah(u− I I F E

h u− uJ
h
, vh), vh ∈ V I F E

h ,

so letting vh = I I F E
h

u− uhom
h

and using Lemma 3.1, one obtains

κ‖I I F E
h u− uhom

h
‖2h ≤ ah(I

I F E
h u− uhom

h
, I I F E

h u− uhom
h
)

≤
��ah(u− I I F E

h u− uJ
h
, I I F E

h u− uhom
h
)
��

≤
�����
∑

T∈Th

∑

i=±

∫

T∩Ωi

β∇(u− I I F E
h

u− uJ
h
) · ∇(I I F E

h
u− uhom

h
)d xd y

�����

+

������

∑

e∈E int
h

,e 6⊂Γ

∑

i=±

∫

e∩Ωi

��
β∇(u− I I F E

h u− uJ
h
)
		 · ne¹I I F E

h u− uhom
h

ºds

������

+

������

∑

e∈E int
h

,e 6⊂Γ

∑

i=±

∫

e∩Ωi

��
β∇(I I F E

h
u− uhom

h
)
		 · ne¹u− I I F E

h
u− uJ

h
ºds

������

+

������

∑

e∈E int
h

,e 6⊂Γ

∑

i=±

∫

e∩Ωi

η

h
¹u− I I F E

h u− uJ
h
º ·ne¹I I F E

h u− uhom
h

ºds

������
.
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Next steps are similar to the proof of Theorem 4.3 in Ref. [24], and the use of Lemma 3.4

leads to the estimate

‖I I F E
h

u− uhom
h
‖2

h
≤C |u− I I F E

h
u− uJ

h
|2
H1(Ω+∪Ω−) + Ch−2‖u− I I F E

h
u− uJ

h
‖2

L2(Ω+∪Ω−)

+ C
∑

e∈E int
h

,e 6⊂Γ

�
h


��β∇(u− I I F E

h u− uJ
h
)
		 · ne



2

L2(e+∪e−) + h2‖eu‖2
H2(N(Γ ,ρ))

�
.

Taking into account Lemma 2.2, Corollary 3.1 and the fact that the number of the interface

elements is O(h−1), we finally obtain

‖I I F E
h

u− uhom
h
‖h ≤ Ch

�‖u‖H3(Ω+∪Ω−) + ‖eu‖H3(N(Γ ,ρ))

�
. (3.12)

The first term in the right-hand of (3.11) can be estimated analogously, so that

‖u− I I F E
h

u− uJ
h
‖h ≤ Ch

�‖u‖H2(Ω+∪Ω−) + ‖eu‖H2(N(Γ ,ρ))

�
. (3.13)

The inequality (3.10) now follows on putting together estimates (3.11), (3.12) and (3.13).

4. Numerical Examples

Let us discuss a few numerical examples to show the efficiency of the method. For sim-

plicity, we only consider the problem (1.1)-(1.4) in the rectangular domain Ω = [−1,1]×
[−1,1]with known analytic solution u+(x , y), u−(x , y), the coefficients β+(x , y), β−(x , y)

and the level set function ϕ(x , y). The domain is partitioned into 2N2 right triangles with

the mesh size h. The integrals on interface elements are evaluated by splitting these ele-

ments into small triangles and using the three-point Gaussian quadrature. For non-interface

elements, the three-point Gaussian quadrature is used directly. If ϕ(x i, yi) is smaller than

machine precision, it is not possible to decide whether a grid point (x i, yi) belongs toΩ+. To

avoid the problem, we set ϕ(x i , yi) = 0 for |ϕ(x i, yi)| < 10−13. In all numerical examples,

the penalty parameter η is set to 0. In problems with variable coefficients, the averages β±
defined in (2.21) are computed by the formula

β± ≈ β
±(xD, yD) + β

±(xE , yE)

2
. (4.1)

and this approximation does not influence the convergence order. The errors are measured

in the broken H1(Ω) norm, L2(Ω) norm and in L∞ norm. The last one is calculated as

maximum error at the grid points.

Example 4.1 (cf. Hou & Liu [12]). The coefficients β±, the level set function ϕ and the

analytic solution u± of the interface problem are

β+ = sin(x + y) + 2, β− = cos(x + y) + 2,

ϕ = x2 + y2 − 0.52 − ε,
u+ = ln(x2 + y2), u− = sin(x + y).
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Table 1: Example 4.1. Grid re�nement analysis.

N L2 error Order H1 error Order L∞ error Order

64 1.2815E-03 9.8904E-02 1.3084E-03

128 3.2863E-04 1.96 4.9569E-02 0.99 3.3643E-04 1.95

256 8.2955E-05 1.98 2.4815E-02 0.99 8.5487E-05 1.97

512 2.0798E-05 1.99 1.2418E-02 0.99 2.1318E-05 2.00

1024 5.2188E-06 1.99 6.2112E-03 0.99 5.3312E-06 1.99
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0

1
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−1
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1
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x

u h

−1
−0.5
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0.5
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0

1
0

0.5

1

1.5

x 10
−3

y
x

|u
−

u h|

Figure 4: Example 4.1. Left: Approximate solution, N = 64. Right: Error distribution.

Let us start with the case ε= 0. The interface is a circle of radius 0.5 with the center (0,0).

The interface contains grid points, e.g. (0,0.5) and (0.3,0.4). The results are presented

in Table 1. We note that the method has optimal convergence in L2, H1 and L∞ norm.

For N=64, the corresponding approximate solution and the error distribution are shown in

Fig. 4.

Let us now consider the case ε = 10−12. The interface is a circle of radius 0.5 +
p
ε.

If |ϕ(x i, yi)| < 10−13, then we set ϕ(x i, yi) = 0. In this situation, there are grid points

(x i, yi) — e.g. (0,0.5), (0.3,0.4), such that 10−12 > |ϕ(x i, yi)| > 10−13. Therefore, the

interface splits certain interface elements in such a way that the ratio between the areas

on two neighbouring regions becomes very large or very small. However, numerical results

are exactly the same as for ε= 0 — cf. Table 1.

Example 4.2 (cf. Li [19]). The coefficients β± are positive constants, and the level set

function ϕ and the analytic solution u± of the interface problem are

ϕ =
Æ
(x − xc)

2 + (y − yc)
2 − �r0 + r1 sin(ωθ)

�
,

u+ =
r4 − C0 log(2r)

β+
, u− =

r2

β−
,

where (r,θ) are the polar coordinates of (x , y), C0 = −0.1, (xc, yc) = (0.2/
p

20,0.2/
p

20),

r0 = 0.5, r1 = 0.2, and ω = 5.



18 H. Ji, Q. Zhang, Q. Wang and Y. Xie

Table 2: Example 4.2. Grid re�nement analysis, β+ = 10, β− = 1.

N L2 error Order H1 error Order L∞ error Order

64 4.8922E-04 4.9366E-02 6.1616E-03

128 9.4417E-05 2.37 1.8894E-02 1.38 4.8933E-04 3.65

256 2.3007E-05 2.03 8.6065E-03 1.13 2.9316E-04 0.73

512 5.6912E-06 2.01 4.0630E-03 1.08 6.0976E-05 2.26

1024 1.4531E-07 1.96 1.9660E-03 1.04 1.3368E-05 2.18
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Figure 5: Example 4.2. Left: Approximate solution −uh; β
+ = 10, β− = 1, N = 64. Right: Error

distribution.
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Figure 6: Example 4.2. Left: Approximate solution −uh; β
+ = 1000, β− = 1, N = 128. Right: Linear

regression analysis for three norms in log-log s
ale.

The interface in this example is more involved. In Table 2 and Figs. 5-7 we report

numerical results for three typical cases — viz. for a moderate jump: β+ = 10, β− = 1 and

for two large jumps: β+ = 1000, β− = 1 and β+ = 1, β− = 1000.

Example 4.3 (cf. Li & Ito [20, Example 3.2, p. 50]). The coefficients β±, the level set
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Figure 7: Example 4.2. Left: Approximate solution −uh; β
+ = 1, β− = 1000, N = 128. Right: Linear

regression analysis for three norms in log-log s
ale.

Table 3: Example 4.3. Grid re�nement analysis.

N L2 error Order H1 error Order L∞ error Order

64 1.1078E-03 1.1098E-01 2.4818E-03

128 2.7858E-04 1.99 5.4595E-02 1.02 8.1044E-04 1.61

256 7.0648E-05 1.97 2.7037E-02 1.01 2.5290E-04 1.68

512 1.7641E-05 2.00 1.3402E-02 1.01 6.4026E-05 1.98

1024 4.4561E-06 1.98 6.6759E-03 1.00 1.6532E-05 1.95

function ϕ and the analytic solution u± of the interface problem are

β+ = 10, β− = 1,

ϕ = x2 + (2y)2 − 0.52,

u+ = sin(2x) cos(2y), u− = (2x)2 − (2y)2.

The results are presented in Table 3 and Fig. 8.

Example 4.4. The coefficients β±, the level set function ϕ and the analytic solution u± of

the interface problem are

β+ = 10, β− = 1,

ϕ =
�
3(x2 + y2)− x

�2 − x2 − y2 + 0.02,

u+ =
1

2
cos(1− x2 − y2), u− = sin(2x2+ y2 + 2).

The interface is heart shaped and the results are presented in Table 4 and Fig. 9.
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Figure 8: Example 4.3. Left: Approximate solution uh; N = 64. Right: error distribution.

Table 4: Example 4.4. Grid re�nement analysis.

N L2 error Order H1 error Order L∞ error Order

64 4.0089E-04 4.3745E-02 1.1634E-03

128 9.9975E-05 2.00 2.1382E-02 1.03 5.3075E-04 1.13

256 2.5062E-05 1.99 1.0507E-02 1.02 1.3197E-04 2.00

512 6.2350E-06 2.00 5.2154E-03 1.01 3.9363E-05 1.74

1024 1.5190E-06 2.03 2.5970E-03 1.00 1.0011E-05 1.97
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Figure 9: Example 4.4. Left: Approximate solution uh; N = 64. Right: Error distribution.

Example 4.5 (cf. Hou & Liu [12]). The coefficients β±, the level set function ϕ and the

analytic solution u± of the interface problem are

β+ = x y + 2, β− = x2 − y2 + 3,

ϕ = x2 − y − 1,

u+ = 4− x2 − y2, u− = x2 + y2.
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Figure 10: Example 4.5. Left: Approximate solution uh; N = 128. Right: Linear regression analysis for

three norms in log-log s
ale.

The interface is tangential to the boundary ∂Ω at the (0,−1), and crosses it at the points

(−1,0), (1,0) under non-zero angles. Numerical results presented in Fig. 10 again demon-

strate an optimal convergence of the method.

5. Conclusion

In this paper, we propose a partially penalised IFE method for interface problems with

discontinuous coefficients and non-homogeneous jump conditions. The method is based on

unfitted meshes independent of the interface. The degree of freedom is similar to that of

traditional linear conforming finite element methods. The corresponding systems of linear

equations have symmetric positive definite matrices which make possible the use of fast

solvers. The implementation of the method is simple since slightly modified existing IFE

codes can be used.
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