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Abstract. Many physical problems involve unbounded domains where the physical
quantities vanish at infinities. Numerically, this has been handled using different tech-
niques such as domain truncation, approximations using infinitely extended and van-
ishing basis sets, and mapping bounded basis sets using some coordinate transforma-
tions. Each technique has its own advantages and disadvantages. Yet, approximating
simultaneously and efficiently a wide range of decaying rates has persisted as major
challenge. Also, coordinate transformation, if not carefully implemented, can result in
non-orthogonal mapped basis sets. In this work, we revisited this issue with an em-
phasize on designing appropriate transformations using sine series as basis set. The
transformations maintain both the orthogonality and the efficiency. Furthermore, us-
ing simple basis set (sine function) help avoid the expensive numerical integrations. In
the calculations, four types of physically recurring decaying behaviors are considered,
which are: non-oscillating and oscillating exponential decays, and non-oscillating and
oscillating algebraic decays. The results and the analyses show that properly designed
high-order mapped basis sets can be efficient tools to handle challenging physical
problems on unbounded domains. Decay rate ranges as large of 6 orders of magni-
tudes can be approximated efficiently and concurrently.

AMS subject classifications: 65D99, 65M70
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1 Introduction

As known, physical phenomena are modeled and represented mathematically by sets of
differential equations with appropriate conditions (initial and/or boundary conditions).
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A small number of these differential equations can be solved analytically and hence nu-
merical methods are routinely used to solve such problems. Therefore, numerous meth-
ods have been developed accordingly. They can be categorized into two general classes,
namely, mesh-based and mesh-free methods [1–8]. In mesh-based methods, the computa-
tional window is spatially discretized (meshed) in a priori. The resulted predefined mesh
is then utilized using low-order and localized basis sets to solve the considered differ-
ential equations in different ways [8]. The most commonly used mesh-based numerical
methods are finite different methods (FDM) and finite element methods (FEM). Obvi-
ously, these methods scale up exponentially with the space dimension (D); i.e. O(ND).
So, they become computationally very expensive for D>2 [5, 9, 10]. However, for highly
sparse matrices, better scaling can be achieved by further exploitation of the sparsity and
by imposing locality to reduce the number of required operations. For example, in the
sparse grid method, a computational cost of O(N(logN)D−1) can be achieved [9, 11, 12].
The second class is meshfree methods, where the unknown quantities are approximated
by high order basis sets without the need for the mesh [1,7]. The most known techniques
of this family are the various spectral and pseudospectral methods [2, 7, 13] including
Galerkin methods.

Recently, spectral methods (SM) have gained more attention and implementation pri-
marily because of its high-order nature, which would result in high level of accuracy with
less required computational resources (i.e. time and memory). This is because a consid-
erable portion of the formulation is handled analytically [6, 7, 14]. In these methods, the
real-space solution of a differential equation is presented in terms of a sum of certain ba-
sis or trial functions [15]. The basis functions are chosen to satisfy the constraints and
needed conditions [2, 6, 16–20]. The methods then follow the general steps of weighted
residual methods (WRM) where various weight (test) functions can be used. For more
details about spectral methods and their applications, we refer the reader to more dedi-
cated sources [1, 2, 7, 13, 15, 21].

The spectral methods have been implemented successfully for many challenging prob-
lems in bounded domains [2,7,11,22]. Basically, this is due to the finite computational do-
main and the abundance of convenient orthogonal basis sets for such bounded domains.
More development is needed to match that for unbounded domains [12,14,16,17,21]. Ac-
tually, some numerical techniques have been used to apply SM for unbounded domains;
but, with some persistent challenges. Among the commonly used techniques are the do-
main truncation, implementation of basis functions that are intrinsically unbounded, and
coordinate transformation (mapping) [12, 14, 16, 17, 21, 23].

Domain truncation is one of the most commonly used techniques in FDM and FEM,
where the infinite physical domain is represented by a finite computational window.
Consequently, it will be inevitable to have a truncation error, which is reduced by in-
creasing the size of the computation window. However, the larger computational win-
dow requires an accordingly larger number of mesh points. This can be mitigated by
adopting nonuniform meshing and boundary layers. The second approach is to use
functions like sinc and Hermite polynomials as basis sets. The computational domain



F. Mumtaz and F. H. Alharbi / Commun. Comput. Phys., 24 (2018), pp. 69-85 71

of these functions extends to infinities and hence can be used for solving the physical
problems involving unbounded domains. In the third approach, change of coordinates,
the unbounded domain is converted into a bounded domain by using some appropriate
transformation function. Conceptually, there are unlimited ways to map an unbounded
domain to a bounded one. However, although, the concept of mapping is very straight
forward, there are many aspects that should be considered to ensure the efficiency of a
numerical method. First, orthogonality should be preserved in both physical and com-
putational spaces [24, 25]. Also, it is important to observe how the mapping grows near
the edge of the mapped domain. Different families of mapping (logarithmic mapping,
algebraic mapping, exponential mapping etc) exist depending upon the rate of growth
of function near the edge of the domain [2]. Moreover and from a practical perspective,
the mapping should not complicate significantly the differential equations and should
allow analytical integration [13,26]. In addition to this, there are many physical problems
that have a wide range of decay rates and multi-harmonics that the mapping should
be able to account for concurrently. Sinc and Hermite polynomials fail for such prob-
lems [6, 14, 16, 19, 26–29].

The concept of mapping in not new. It has been implemented successfully to con-
vert unbounded domain to bounded one and vice versa [12, 14, 16, 17, 21, 23, 30–32]. For
example, Grosch and Orszag, in 1977, used mapping to transform semi-infinite domain
[0,∞) to (0,1) using exponential and algebraic mapping, and the resulting transforma-
tion functions are used to solve PDEs by approximating the solution using Chebyshev
polynomials [30]. Boyd, in 1982, performed a comparison of domain truncation with al-
gebraic and exponential mapping for the problems involving semi-infinite domain [31],
and later, in 1987, implemented the mapping to solve ODEs using mapped Chebyshev
polynomials [32]. In 2012, Shen proposed a generalized method to design transforma-
tion functions to transform (−∞,∞) to (−1,1) using algebraic mappings, and then used
Chebyshev interpolation to solve the differential equations [12].

In this work, a general approach to design an efficient mapping based on Shen earlier
work [12, 16] is implemented. The proposed approach can be implemented to physi-
cal problems that extend toward infinities where the involved physical quantities de-
cay smoothly. The approach ensures orthogonality in both physical and computational
spaces. Maintaining orthogonality simplifies the calculations significantly, and hence in-
creasing the computational efficiency as shown later in the paper. More importantly, the
approach approximates efficiently various type of decaying functions with a wide range
of decay rates by appropriate choices of mapping and using simple functions like sine se-
ries as basis sets. Using simple basis sets helps in simplifying the implementation and in
obtaining analytical integration used for solving ODEs and PDEs, and hence increasing
computational efficiency.

The basis set used in this paper is the mapped sine series. The physical unbounded
domain (−∞,∞) is mapped to a computational bounded domain (0,1). The mapping
is tested on four different sets of decaying functions; namely, algebraic decay without
and with oscillation, and exponential decay without and with oscillation, where a very
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wide range of decaying rates are used. It is shown that the appropriate transformations
effectively approximate these types of functions. The range of decays that can be approx-
imated efficiently is larger than 6 orders of magnitude. A comparison of the approxima-
tions and their efficiencies for the considered decaying functions is presented.

2 Formulations

2.1 Coordinate transformation using mapped basis set

In this section, the formulation used to develop efficient mappings from unbounded do-
main to a bounded one is presented. We focus on the one-dimensional (1D) case, which
can be extended to any high-dimension problems by proper tensoral construction. Such
mappings shall enrich the possibilities of efficient basis sets that can deal with the original
unbounded domain. The transformation function is defined as:

x=h(u), u=h−1(x)= g(x), (2.1)

where x ∈ (−∞,∞) and u∈ (a,b) are the original physical space and the computational
space variables, respectively. From basic calculus, the relation between the derivatives in
both spaces is

d

dx
=

1

h′(u)
d

du
, (2.2)

where h′(u)= dx
du . There are an infinite possibilities for such transformation [2, 12, 14, 16].

Let {Pk(u)} be an orthogonal basis set with some weight function w(u), then, the targeted
form of the mapped basis functions is

fk(x)=Pk(g(x))µ(g(x)), (2.3)

where µ(u) is an auxiliary function. To satisfy the vanishing boundary conditions at ∞,
either Pk(g(x)), µ(g(x)) or both must vanish as x→±∞. In this work, we seek µ(g(x))
that vanish at infinities. In order to maintain the orthogonality of { fk(x)}, the following
relationship must be satisfied:

∫ ∞

−∞
fk(x) fl(x)dx=δkl . (2.4)

By applying the coordinate transformation x→u, the orthogonality relation becomes
∫ b

a
Pk(u)Pl(u)µ

2(u)
dx

du
du=δkl , (2.5)

where µ(u) is the mapped auxiliary function which vanishes at the boundaries of the
domain (a,b). Since {Pk(u)} is an orthogonal basis set with some weight function w(u),
its orthogonality relationship in the computational space (i.e. u∈ (a,b)) is

∫ b

a
Pk(u)Pl(u)w(u)du= ckδkl . (2.6)
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From Eq. (2.5) and Eq. (2.6), we see that the following relation must be satisfied to main-
tain the orthogonality in the physical space as well:

µ2(u)
dx

du
=

w(u)

ck
. (2.7)

In this paper, the sine series is used as the basis set in the computational space (i.e.
Pk(u) = sin(kπu)) and hence the associated weight function is w(u) = 1, ck = 1/2, and
u∈ (0,1). By using this and rearranging Eq. (2.7), we get

dx

du
=

w(u)

µ2(u)ck
=

2

µ2(u)
, (2.8)

which illustrates that µ(u) is a key in designing transformations. It is actually the mean
exploited in this paper. Beside efficient approximation of various forms of decaying func-
tions with wide ranges of decaying rates, we seek transformations that can allow analyt-
ical integrations. As we use trigonometric basis set, it is reasonable to seek trigonometric
µ(u) as well. Thus, the first considered family is

µT,r(u)=
sin(πu)r/2

√
L

, r∈N1 . (2.9)

Another transformation family, which is commonly used, is given by

µA,r(u)=
[u(1−u)]

r
4

√
L

, r∈N1 . (2.10)

It is used here for comparison purposes. In both cases, L is used for scaling. As shown
by Alharbi [6], the scaling is merely a unit of a scale normalization. It does not expand
the range of decaying rates that are covered. The range will be only shifted. Thus, in this
work, we use L=1.

Fig. 1 shows the behavior of both µT,r and normalized µA,r for various values of r.
The behavior at the edges of the domain plays a critical role in the approximation effi-
ciency which is depicted in the results. The boundaries 0 and 1 represent the behavior at
−∞ and ∞, respectively. As the value of r increases, the decay behavior of µr becomes
smoother allowing a wider range of decay rates to be approximated efficiently. Further-
more, for same values of r, µT,r gives better smoothing when compared with µA,r, hence
providing a better approximation efficiency over a wider range of decay behaviors. For
the transformations associated with µT,r, we use r=1:6 in this paper. Table 1 and Table 2
list the used transformations x(u) in this paper. The square brackets are the notations to
be used in the remaining of the paper to designate the different transformations.
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Figure 1: Behavior of both µT,r (solid lines) and normalized µA,r (dashed lines) for various values of r.

Table 1: The used trigonometric transformations x(u) to map x∈ (−∞,∞) to u∈ (0,1) (L=1).

r Notation x(u) using µT,r

1 [T1]
2

π
log

[

tan
(πu

2

)]

2 [T2] − 2

π
cot(πu)

3 [T3] − 1

4π
csc2

(πu

2

)

+
1

4π
sec2

(πu

2

)

+
1

π
log

[

tan
(πu

2

)]

4 [T4] − 2

3π
cot(πu)

[

csc2(πu)+2
]

5 [T5]
−1

32π

[

csc4
(πu

2

)

+6csc2
(πu

2

)

−sec4
(πu

2

)

−6sec2
(πu

2

)

−24log
[

tan
(πu

2

)]]

6 [T6] − 2

15π
cot(πu)

[

3csc4(πu)+4csc2(πu)+8
]

Table 2: The used algebraic transformations x(u) to map x∈ (−∞,∞) to u∈ (0,1) (L=1).

r Notation x(u) using µA,r

1 [A1] −4tanh−1(1−2u)

2 [A2]
2

(1−u)
− 2

u
−8tanh−1(1−2u)
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2.2 Approximations of functions in unbounded domains

The mapped basis set are used then to approximate the functions in unbounded do-
mains where the functions vanish at infinities. So, the linear space of approximation
ΦN =span{ fk(x)} is defined by

ΦN =

{

φ : φ(x)=
N

∑
k=1

ak fk(x)=
N

∑
k=1

ak Pk(g(x))µ(g(x))

}

. (2.11)

Given a function S(x), which is to be approximated where x∈ (−∞,∞). Then,

S(x)≈
N

∑
k=0

akPk(g(x))µ(g(x)), (2.12)

where

ak =
∫ ∞

−∞
S(x)Pk(g(x))µ(g(x))dx

=
1

ck

∫ b

a

S(x(u))Pk(u)w(u)

µ(u)
du. (2.13)

As we use sine series for the approximation in the computational domain, then ak is
simply:

ak =
1

2

∫ 1

0

sin(kπu)S(x(u))

µ(u)
du. (2.14)

2.3 Implementation to solve differential equations in unbounded domains

In this subsection, the proposed approximation is implemented to solve differential equa-
tions, where the solutions of these differential equations extend toward infinities and die
smoothly. Since the main scope of this paper is using the mapped basis sets to approxi-
mate functions in unbounded domain, for differential equations, only simple 1D differ-
ential equations problems are presented for illustrations. The considered problems take
generally the following form:

L̂y(x)=F(x), (2.15)

where L̂ is a differential operator, operating on y(x), and F(x) is the force function. We
assume that the solution can be expanded using the mapped basis set; so,

ỹ(x)=
N

∑
l=1

al fl(x), (2.16)

where fl(x) is given by Eq. (2.3). By inserting Eq. (2.16) in Eq. (2.15) and by calculating the

inner products
(

fk(x)
∣

∣

∣∑
N
l=1 alL̂ fl(x)

)

and
(

fk(x)
∣

∣F(x)
)

, we get a set of linear equations

which can be written in matrix form as:

La=Γ, (2.17)
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where a is the vector of unknown coefficients, L is the resulting matrix from the inner
product with the left-hand side, and Γ is the resulting vector from the inner product with
the right-hand side. Once L and Γ are calculated, the unknown coefficients are be then
calculated directly and the final solution can be computed using Eq. (2.16).

3 Results and discussions

This section presents the approximation accuracy of four types of decaying functions,
S(x), with a wide range of decay rates. The considered functions are given in Table 3. The
parameter α in the decaying functions represents the decay rate, whereas k incorporates
for the oscillation. As we consider unbounded domains, S(x) extends towards infinities
(i.e. x ∈ (−∞,∞)). The eight transformations shown in Table 1 and Table 2 are used
with the given basis set. The transformation functions used are given in Table 1 and
Table 2 where as the basis functions are according to Eq. (2.11) where Pn(u)≡ sin(nπu).
MATLAB 2016b is used along with ADVANPIX multi-precision toolbox to evaluate the
proposed numerical method. ADVANPIX allows working beyond the double precision
allowed in basic MATLAB. The results and analyses are based on the resulted errors,
which are quantified by their supremum norms L∞. This is because the aim is to improve
the approximation all over the considered domain and hence we need to minimize the
peak error.

Table 3: The considered decaying functions.

Exponential decay without oscillation S(x)= e−αx2

Exponential decay with oscillation at infinity S(x)=cos(kx)e−αx2

Algebraic decay without oscillation S(x)=
(

1+x2
)−α

Algebraic decay with oscillation at infinity S(x)=
cos(kx)

(1+x2)
α

In the first analysis, the approximation accuracy is presented for several cases. These
cases are classified depending on the number of basis used (N = 100 or N = 200) and
the type of decaying function (exponential or algebraic). Case I and Case II cover the
approximation accuracy results for the exponentially decaying functions for N=100 and
N=200, respectively. Case III and Case IV cover the approximation accuracy results for
the algebraically decaying functions for N=100 and N=200, respectively. Results for the
Case I are shown in Fig. 2. The graph shows the approximation errors of exponentially
decaying functions vs. the decay rate (α), which is varied between 10−4 and 105. In this
figure and the next three ones, subfigure (a) shows the plot of decay without oscillation,
whereas subfigures (b), (c) and (d) show the plots for decay with oscillation when k is set
to 1, 2 and 5, respectively. Results for the Case II are depicted in Fig. 3. In this case, the
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Figure 2: Case I: Exponential decay with and without oscillation: error vs. α for N=100.
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Figure 3: Case II: Exponential decay with and without oscillation: error vs. α for N=200.
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number of used basis functions is increased to 200. In both cases (Case I and Case II), the
new mapped basis set is compared to the Hermite approximation.

As can be seen from Fig. 2 and Fig. 3, i.e. Case I and Case II, respectively, the Her-
mite approximation is only efficient for a very small range of decays around α=0.5. On
the contrary, other transformations give wider ranges of α that can be approximated ef-
ficiently. This is quantified and discussed shortly. Also, it can be seen that the optimum
range of each transformation is differently centered. However, this can be shifted using a
scaling. For algebraic transformation, the centers varied significantly where r is changed
from 1 to 2, while those resulted from trigonometric transformations are almost the same
as r increased from 1 to 6. However, the error increases with r. Yet, the approximations
are still efficient where the errors are less than 10−10.

The next two cases (Case III and Case IV) are for algebraically decaying functions
where the approximation accuracy is also tested. In both cases α is varied between 10−2

and 105. As mentioned above, Case III covers the results for algebraically decaying func-
tions where the number of basis used are 100. Plots from the results of Case III are shown
in Fig. 4 which shows the approximation errors of algebraically decaying functions vs.
the decay rate (α). Results for Case IV are depicted in Fig. 5. Here, the number of used
basis functions is increased to 200. In both cases (Case III and Case IV), the algebraic
transformations and Hermite approximation result in very poor approximations. On the
contrast, the trigonometric transformations provide very accurate approximations and
for very wide range of α where the errors are less than 10−10.

The second analysis is for the implementation of the proposed basis sets to solve
differential equations. As aforementioned, the focus of this paper is approximation of
functions in unbounded domain. Hence, we have considered here simple 1st and 2nd

order ODEs in 1D. By setting the differential operator L̂= dy
dx , and the force function

F(x)=−2αxe−αx2
, the differential equation becomes

dy

dx
=−2αxe−αx2

, (3.1)

and its solution is
y(x)= e−αx2

. (3.2)

Any transformation function can be used to solve Eq. (3.1). Here, we consider trigono-

metric transformation [T1]. In this case, the inner product
(

fk(x)
∣

∣∑
N
l=1

d fl(x)
dx

)

can be found
analytically (an advantage of using trigonometric transformation and bases functions)
and the resulted matrix is L=[Lkl ] where

Lkl =
π

8
[(1−2l)δk,l−1+(1+2l)δk,l+1], (3.3)

where δij is Kronecker delta function while Γ=[Γk] can be calculated numerically where

Γk=
∫ 1

0
2F(h(u))

sin(kπu)

sin(πu)1/2
du. (3.4)
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Figure 4: Case III: Algebraic decay with and without oscillation: error vs. α for N=100.
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Figure 6: The error of the numerical solutions of ODE (Eq. (3.1)) considering various decay rates (α). (a) The
errors of the numerical solutions vs. N for various values of α. (b) N needed to achieve ε≤ 10−10 for various
values of α.

Fig. 6 shows the errors of the numerical solutions for various values of α. Fig. 6(a)
shows how the numerical error decreases by increasing N, and how the decay rate (α)
affects the error. As can be seen from the results, for very low decay rates and very high
decay rates, a higher number of basis functions are needed to achieve a better accuracy.
Whereas, for the range (2<α<1000), a good accuracy can be obtained with relatively less
number of basis function. The rate of decay clearly affects the number of basis functions
needed to achieve a particular accuracy. This is depicted in Fig. 6(b), which shows the
number of basis functions required to find the solution within the accuracy of 10−10 for a
particular α.

The same approach can be extended to higher order differential equations. For exam-
ple, consider the following 2nd order ODE:

d2y

dx2
=2αe−αx2 (

2αx2−1
)

, (3.5)

where the exact solution of Eq. (3.5) is given by Eq. (3.2). The approximate solution is
expanded as in Eq. (2.16). In this case, the operator matrix L for the second derivative
is simply the square of the operator matrix for the first derivative (Eq. (3.3)) due to the
orthonormality of the used bases sets. The results of 2nd order ODE are shown in Fig. 7,
where the Fig. 7(a) shows the graph of numerical error vs. N for various value of α.
Again, for very low or high values of α, higher number of basis functions are needed
of achieve a particular accuracy. This can be seen clearly in Fig. 7(b), which shows the
number of basis functions required to find the solution within the accuracy of 10−10 for a
particular α. It is clear that for 2< α< 1000, an accuracy of 10−10 can be achieved using
relatively less number of basis functions.
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Figure 7: The error of the numerical solutions of ODE (Eq. (3.5)) considering various decay rates (α). (a) The
errors of the numerical solutions vs. N for various values of α. (b) N needed to achieve ε≤ 10−10 for various
values of α.

The last analysis is to quantify the range of α that can be approximated efficiently, for
a fixed number of basis functions, we check the values of α that can be approximated
with a target accuracy. The used target accuracy is 10−10 for all the cases. This is depicted
in Fig. 8 and Fig. 9, where a comparison is provided for the order of magnitude (OM)
for different transformations. The OM is a measure of how much wider ranges of α can
be approximated accurately and efficiently, and this is the measure that is used in this
analysis. The OM is computed for N=(100,200,300 and 500). An OM of greater than 6 can
be achieved using N=500 in the case of exponential decay without oscillation (Fig. 8(a))
The approximation accuracy decreases with the increase in the oscillations. Still, a very
good OM can be achieved using trigonometric transformations. Even with k=5, an OM
of greater than 4 can be achieved in the case of exponentially decaying functions. In the
case of algebraically decaying functions, the algebraic transformations and the Hermite
approximation fail to achieve the target accuracy (10−10) in several cases as shown in
Fig. 9. The approximation efficiency of Hermite and algebraic transformations become
worse when the oscillation factor is increased to 5. However, an OM of greater than 3 can
still be achieved with the trigonometric transformations (Fig. 9(d)). From the results, it
can be seen that all the transformation functions outmatch Hermite approximation in all
the cases. Furthermore, the rate at which is the OM increases with the number of basis
(N) used is also higher when compared with Hermite.

The comparisons show that the proposed mappings are efficient, accurate and robust.
Also, the results show that the proposed method dominates Hermite approximation in
all the cases, and gives a very wide range of decays can be approximated accurately and
efficiently.
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(a) No oscillation (k=0). (b) Oscillation factor (k=1).

(c) Oscillation factor (k=2). (d) Oscillation factor (k=5).

Figure 8: Order of magnitude for exponentially decaying functions.

4 Conclusions

In this paper, an efficient mapping is presented to solve the physical problems involving
unbounded domains with vanishing boundary conditions. The mapping transforms the
unbounded physical domain (−∞,∞) to bounded computational domain (0,1). Mapped
sine series using general coordinate transformation for unbounded domains is used as
the mapped basis set. The proposed scheme is implemented to approximate four sets
of decaying functions with a wide range of decay rates. The decay functions extend to
infinities where they die smoothly. Approximation accuracy of the proposed method is
compared with Hermite approximation which is a standard choice for the problems ex-
tending to infinities. A very good accuracy can be achieved using a small number of basis
functions for various decay rates. In addition to this, the order of magnitude is also used
as a measure to assess the wide range of decay rate that can be approximated efficiently.
Furthermore, the proposed approximation scheme is also implemented to solve differen-
tial equations, where the solutions of such differential equations decay smoothly towards
infinities. The proposed approximation is implemented to solve 1st and 2nd order ODEs
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(a) No oscillation (k=0). (b) Oscillation factor (k=1).

(c) Oscillation factor (k=2). (d) Oscillation factor (k=5).

Figure 9: Order of magnitude for algebraically decaying functions.

in 1D, and the approximate solution is compared with the exact solution. It has been
shown that an accuracy of 10−10 can be achieved with a few number of basis functions
for a wide range to decay rates. The results also show that the proposed method is effi-
cient, accurate and outperforms Hermite approximation in all the cases, and it can be a
useful tool to solve the physical problems involving unbounded domains.
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