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Abstract. In this paper, direct numerical simulation (DNS) is presented for spatially
evolving turbulent boundary layer over an isothermal flat-plate at Ma∞ = 2.25,5,6,8.
When Ma∞=8, two cases with the ratio of wall-to-reference temperature Tw/T∞ =1.9
and 10.03 are considered respectively. The wall temperature approaches recovery tem-
peratures for other cases. The characteristics of compressible turbulent boundary layer
(CTBL) affected by freestream Mach number and wall temperature are investigated. It
focuses on assessing compressibility effects and the validity of Morkovin’s hypothesis
through computing and analyzing the mean velocity profile, turbulent intensity, the
strong Reynolds analogy (SRA) and possibility density function of dilatation term. The
results show that, when the wall temperature approaches recovery temperature, the
effects of Mach number on compressibility is insignificant. As a result, the compress-
ibility effect is very weak and the Morkovin’s hypothesis is still valid for Mach number
even up to 8. However, when Mach number equal to 8, the wall temperature effect on
the compressibility is sensitive. In this case, when Tw/T∞ = 1.9, the Morkovin’s hy-
pothesis is not fully valid. The validity of classical SRA depends on wall temperature
directly. A new modified SRA is proposed to eliminate such negative factor in near
wall region. Finally the effects of Mach number and wall temperature on streaks are
also studied.

PACS: 47.27.E-, 47.27.nb, 47.40.Ki

Key words: Hypersonic, directly numerical simulation, compressibility effects, turbulent bound-
ary layer, strong Reynolds analogy.

1 Introduction

Generally speaking, friction resistance and heat flux along the out-side metallic layer
(skin) of high-speed aircraft increase sharply when the boundary layer changes from
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laminar to turbulence. But there are two difficulties for drag reducing and heat degrad-
ing. One is how to predict transition region accurately, while another is to fully un-
derstand the inertial mechanism of compressible turbulent boundary layer (CTBL). The
vortex structure and the inertial dynamics mechanism, which are closely related to CTBL,
play a key role in the aero-industry [1]. The transition prediction is a popular subject of
studying of boundary layer stability. The mechanism of CTBL which is another active
studying area, will also be discussed in the present paper.

Direct numerical simulation (DNS) that involves the rapid development of comput-
ing technology is currently an important method in the study of turbulent mechanisms.
In comparison with the results of experiment and theory, as what has been assessed by
Schlatter et al. [2], DNS has the distinct advantage that all of the case-specific parame-
ters (the inflow fields, boundary conditions and disturbances) can be set accurately, and
no random measurement error corrupts the data that are obtained. High-order scheme
always plays an important role in DNS of compressible boundary layer turbulence, es-
pecially at high Reynolds or with high Mach number. In order to numerically simu-
late such complex flow, various high-order and high resolutive schemes [3–7] have been
developed in past decades. No doubt, WENO [8–10] and it’s derived schemes are of
the most successful ones. Especially, some low dissipative WENO type schemes have
been proposed, such as compact-WENO [11, 12], WENO-Z [13], WENO-SYMBO [14],
TWENO [15], which have been successfully used for multi-scales capture. As Piroz-
zoli [16] reviewed and suggested that the hybridization of a high-order compact scheme
with the WENO scheme is good choice for the DNS and larger eddy simulation (LES) of
turbulent compressible flows. Moreover, it is still an arduous work to enhance the robust
or stability of such low dissipative and high resolutive methods, especially for the case
of flow with high Mach number or high Reynolds number.

Recently, most of studies on the DNS for compressible turbulence focus on compress-
ibility effects, especially on checking the validity of Morkovin’s hypothesis [17]. This
hypothesis indicates that, at a moderate free-stream Mach number (about Ma∞ ≤5), the
dilatation is small, and any differences from incompressible turbulence can be considered
by the mean variations in the fluid properties. Hitherto, this hypothesis is the basis for
the analysis of compressible turbulence.

The DNS results of the spatial simulations for the CTBL with Ma∞ ≤ 2.25 over the
flat-plate are proposed by Rai et al. [18], Pirozzili [19], Gatski [20], and Li [21], respec-
tively. The results show that the essential dynamics of the CTBL greatly resemble the
incompressible case. Pirozzli et al. [22] further to proposed the meticulous structure of
a spatially evolving supersonic boundary layer by DNS with Ma∞ =2 up to Reτ ≈1120.
Such a result provides possibilities to start probing the effects of high Reynolds numbers.

Maeder et al. [23] investigated the effects of the Mach number and the wall temper-
ature by using temporal simulations for the CTBL with Ma∞ =3,4.5,6, corresponding to
a isothermal wall with Tw/T∞ = 2.5,4.4,7, respectively, over a flat-plate boundary layer.
In his computations, the wall temperature approximates recovery temperature. The re-
sults demonstrate that Morkovin’s hypothesis and the strong Reynolds analogy (SRA)
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are still valid when Ma∞ up to 7 for different wall temperatures. Martin [24] and Duan
et al. [25–27] proposed a series of investigations on CTBL over a flat-plate by using the
temporally evolving DNS to assess the effects of wall temperature, the Mach number
and high enthalpy on the Morkovin’s hypothesis. In general, when Ma∞=5, Morkovin’s
hypothesis is still valid for different wall temperatures, and with the wall temperature
decreasing compressibility effects can be enhanced, but remain insignificant. Moreover,
when the wall temperature approximates the recovery temperature, a similar conclusion
can be drawn for free-stream Mach number changing from 0.3 to 12. Lagha et al. [28, 29]
went further into this kind of research with wall temperature approaching recovery tem-
perature by temporal evolution DNS. Liang [30,31] proposed the DNS results of the spa-
tially evolving boundary layer at Mach 8 over the flat-plate boundary layer.

In this article, a series of DNS of spatially evolving supersonic and hypersonic CTBL
is presented. The purpose of the present study is to investigate the Mach number effects
and the wall temperature effects and to assess the validity of the Morkovin’s hypothesis.

2 Numerical methods and simulation parameters

2.1 Governing equations and numerical methods

In this paper, the Cartesian coordinate system is employed, with the x axis being the
streamwise direction, the y axis being the normal-to-wall direction and the z axis being
the spanwise direction. In order to capture the rapid change in the boundary layer, the
finest mesh is employed in the fully developed turbulent region in streamwise. Mean-
while an exponential grid distribution is adopted along the wall-normal direction. The
distribution function is defined as,

y(η)=
eηb−1

eb−1
, (2.1)

where η∈ [0,1] is computational region, b is stretch coefficient computed by

e
b

N−1 −1

eb−1
=

hw

Ly
, (2.2)

hw is distance of the first grid point to the wall, N is total number of points, y∈ [0,Ly] is
physical region in wall-normal region. In present paper, Eq. (2.2) is solved by using New-
ton iteration for unknown, b firstly. Then the distribution of grid is decided by Eq. (2.1)
in wall-normal direction. It is considered at least three key factors that impact the dis-
tribution of grid in wall-normal direction. The first one is size of physical region. The
second one is the distance of the first grid point to the wall. This value must be estimated
beforehand and generally is set as one wall viscous lengthscale. The third one is the to-
tal nodes number. In present computation, there are at least 70 nodes are distributed in
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Table 1: Basic grid mesh parameters for the DNS.

case Lx×Ly×Lz Nx×Ny×Nz ∆x+×∆y+×∆z+

M2 10×0.68×0.18 3195×90×256 10.1×1.01×7.2

M5 10×0.68×0.20 3980×90×256 10.4×1.07×4.9

M6 10×0.68×0.20 4450×90×256 6.82×0.90×3.9

M8TH 31×0.70×0.30 12460×100×320 12.2×0.96×4.6

M8TL 11×0.70×0.18 8950×90×640 11.2×1.0×4.5

boundary layer. The first point near by the wall locates at about one viscous lengthscale.
The details of mesh parameters can be found in Table 1.

Although low dissipative 7th-order hybrid WGVC-M7 [32] and 6th-order
monotonicity-preserving optimized scheme (OMP6) [33] have been developed by our
group at present, numerical computation becomes unstable when Mach number or
Reynolds number increases rapidly. So the traditional 7th-order WENO [9] scheme is
employed to approximate the convection terms in compressible NS equations in high
Mach number case. Moreover, an enough fine grid distribution is considered to over-
come the dissipation of present WENO. The viscous terms are approximated by using the
8th-order central difference scheme [34], and the third-TVD type Runge-Kutta method is
used for advancing time. A two-dimensional laminar flat-plate boundary including the
leading edge is simulated, and the computed two-dimensional results at x=4.0 are used
as the inflow conditions for a downstream three-dimensional computation. Non-reflect
boundary conditions are used at the upper boundary and outflow boundary. Blow and
suction disturbance are imposed at the wall in the interval 4.5≤ x≤ 5.0 for arousing the
boundary layer transition early [19, 21].

2.2 Flow conditions and simulation parameters

To study the heat-transfer and Mach number effects on compressibility, the DNS of a
spatially evolving CBLT is performed with a nominal freestream Mach number Ma∞ =
2.25,5,6,8 and a freestream temperature T∞ =169.44K. An isothermal wall that is near to
recovery temperature is set for Ma∞ = 2.25,5,6 respectively. When Ma∞ = 8, two kinds
of wall temperature with Tw/T∞ =1.9 and 10.03 are further considered for investigating
wall temperature effects. The other specific flow parameters are listed in Table 2, where δ
is the thickness of the boundary layer (defined as the location at which the flow velocity
is 99% of the free stream velocity); θ is the momentum thickness; δν = ν

√
ρ/τw = ν/uτ is

the viscous length scale; and uτ is wall friction velocity. Table 2 also provides the different
definitions of Reynolds numbers, where Re∞ ≡ ρ∞u∞l∞/µ∞ is based on the free stream;
Reθ≡ρδuδθ/µδ is based on the momentum thickness θ, the velocity, density and viscosity
at the wedge of the boundary layer; Reτ ≡ ρwuτδ/µw is based on the boundary layer
thickness, the friction velocity (uτ) and the density and viscosity on the wall.
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Table 2: Free steam, boundary-layer edge and wall parameters for the DNS. All of the statistical average values
are obtained at fully developed turbulent region where x=9.8,12.5,12.5,20.0 and 14.5 for the case M2, M5, M6,
M8TH and M8TL, respectively.

case Ma∞ Maδ Tw/T∞ Tw/Tr Re∞ Reθ Reτ δ θ

M2 2.25 2.21 1.78 0.936 635000 6736 948 0.093 0.011

M5 5 4.73 5.0 0.917 2×106 19154 717 0.114 0.0109

M6 6 5.50 6.98 0.942 2×106 13146 413 0.092 0.0082

M8TH 8 7.08 10.03 0.809 5×106 46726 763 0.145 0.0128

M8TL 8 7.29 1.9 0.153 2×106 78000 2360 0.132 0.0135

In hypersonic flat-plate boundary layer flow, the recovery temperature is computed
as

Tr =T∞

(
1+

γ−1

2
Ma2

∞r
)

, (2.3)

where r=Prα is recovery factor with α=1/2 for laminar case and 1/3 for turbulence case.
According to this equation, the wall conditions are close to adiabatic temperature for the
cases M2, M5, and M6 in this paper. For the case M8TH, the wall temperature equals to
0.809Tr , which is also very high. However, for the case M8TL, the wall temperature nears
0.153Tr , which indicates very cold wall condition.

To assess the adequacy of the domain size, spanwise two-point correlations for the
flow fields physics variables, such as density (ρ), velocity, (u,v,w), temperature (T), are
computed. Fig. 1 shows the auto-correlations for streamwise velocity component at
y/δ = 0.05,0.3 and 0.75 for different cases. The results approach to zero in the middle
part of the spanwise, which indicates that the spanwise domain size is large enough for
computation.

Fig. 2 further to compare the skin friction of numerical results and theoretical ones.
The later one is computed by [35]

C f =
0.455

S2

[
ln
(0.06

S
Rex

1

µw

√
1

Tw

)]−2

, (2.4)

where S= 1
sin−1 A

√
Tw−1 and A=

(
r γ−1

2 Ma2
∞

1
Tw

)1/2
. µw and Tw are the average viscosity

coefficient and the temperature on the wall, respectively, r is the correction coefficient,
and x is the distance from the edge of the flat-plate boundary. The simulation shows good
agreement with the results predicted by Eq. (2.4) in the fully turbulent region. Thus, the
present simulation is reliable and valid.
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Figure 1: Spanwise two-point correlation for streamwise velocity component for (a) M2, (b) M5, (c) M6, (d)
M8TH and (e) M8TL.
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Figure 2: Skin friction distribution as function of x for (a) M2, (b) M5, (c) M6, (d) M8TH and (e) M8TL.
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3 Turbulence statistics

3.1 Characteristics of mean flow

Generally, when the Mach number smaller than mediate value (generally ≤ 5), a van
Direst transformed mean velocity profile is similar to incompressible case. The Van Direst
transformation is defined as

u+
vd=

∫ u+

0

( ρ

ρw

)1/2
du+, (3.1)

where u+ = f (y+) is the mean velocity profile. The Fig. 3 shows that the Van Driest
transformation collapses the profiles for different cases to the incompressible log law,

u+
vd=

1

κ
lny++C (3.2)

with the Von Karman constant κ= 0.41 and different integral constant. Fig. 3 shows the
mean velocity profiles. Table 3 gives the concrete parameter of mean velocity profiles.
Q1, Q2 and Q3 denote intervals of the viscous sub-layer, buffer layer and log-law region,
respectively. It indicates that when the wall temperature is near to the recovery tempera-
ture, the distribution of multilevel structure of CTBL is similar to the incompressible case
for different Mach number. But when the wall temperature is very low for high Mach
number case, such as M8TL, the region of viscous sub-layer shrinks, while the buffer
layer enlargers and the log-law region moves far away from the wall. Such changes lead
that the mean velocity profile is different from the incompressible case.
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Figure 3: The Van Driest transformed velocity for different cases.
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Table 3: Multilevel structure for mean velocity profile after Van Direst transformation.

case κ C Q1 Q2 Q3

M2 0.41 5.1 [0,5] [5,30] [30,220]

M5 0.41 6.5 [0,5] [5,35] [35,120]

M6 0.41 6.5 [0,5] [5,30] [30,110]

M8TH 0.41 6.5 [0,5] [5,40] [40,115]

M8TL 0.41 7.4 [0,2] [2,90] [90,350]

3.2 Turbulent intensity

RMS (root-mean-square) of the velocity fluctuation, which is defined as u
′

rms =(u′u′)1/2

(similar to v
′

rms and w
′

rms) and is used to measure the intensity of the turbulence is showed
versus y+ in Fig. 4. In this figure the values of RMS are normalized by the local stream-
wise mean velocity component u (or denoted as 〈u〉 ). The experimental results for the
corresponding incompressible flat-plate boundary layer are denoted by symbols. It can
be found that the compressible and incompressible data are in agreement with those in
the near wall region (about for y+ < 30) for the case M2, M5, M6 and M8TH. But there
exists a large degree of dispersion for different cases when about y+>30. Furthermore,
there are distinct differences between the results for M8TL and the experiments, espe-
cially for the RMS of the streamwise velocity fluctuations which are shown in Fig. 4(a).
Such differences are mainly caused by the limitation of wall coordinator y+.
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Figure 4: The RMS of the fluctuating velocity components vs. y+ in (a) streamwise, (b) wall-normal and (c)
spanwise.

So it is necessary to redraw the turbulent intensity versus a new wall coordinator. As
being pointed in [30,41], the semi-local wall coordinate defined as y∗=y[τwρ(y)]1/2/µ(y),
which takes account of local flow fields information is adopted to redraw the turbulent
intensity. Fig. 5 shows the turbulent intensity versus y∗, It is clearly shown that all the
results for different cases collapsed and agree well with the experiments. Thus, the tur-
bulent intensities are similar for different wall temperatures. Although the experiment
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Figure 5: The RMS of the fluctuating velocity components vs. y∗ in (a) streamwise, (b) wall-normal and (c)
spanwise.

data are not enough, the tendencies of RMS of velocity perturbation conform with the
results of the experiment.

3.3 Distribution of stress

The total shear stress (TSS) is defined as τ = −ρu
′
v
′+µ(∂u/∂y), where −ρu

′
v
′

is the
Reynolds stress (RS) and µ(∂u/∂y) is mean viscous shear stress (VSS). Fig. 6 compares
the RS, VSS and TSS for different cases. It indicates that the VSS differs greatly for dif-
ferent cases, so does RS. Especially for M8TL, the buffer layer is enlarged obviously and
moves away from the wall, which is consistent with the result of mean velocity profile.
The tendencies of other curves for M2, M5, M6 and M8TH are almost the same generally.
It can also be found that when about y+ > 50, the VSS is nearer zero and the TSS that
almost keeps constant when about y+ > 20 mainly depends on the RS for M2, M5, M6
and M8TH.

Moreover, Fig. 7 demonstrates the RS, VSS and TSS vs. y∗. It is clearly shown that
all curves collapse each other. The VSS is almost identical for the different cases. Thus,
changing the wall temperature or the heat environment in the compressible boundary
layer does not markedly impact the VSS. The difference in the TSS lies mainly in the RS.
Fig. 7 shows that the RS increases more rapidly for the case of a strong cold wall (M8TL)
than for other cases (M2, M5, M6 and M8TH), and its value is also bigger. Generally,
the VSSs are almost independent of Mach number and wall temperature when about
y∗.20. The TSS almost keeps constant when about y∗&30, so does the RS. Such results
are consistent with present conditions of zero-pressure-gradient through the boundary
layer.

3.4 Heat flux and friction Mach number

In this paper, there are two inner layer parameters that are used to quantify changes of
heat environment of isothermal simulations. The first one is the friction Mach number,
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Figure 6: Comparison of the DNS results of (a) the Reynolds stress (RS), the mean viscous shear stress (VSS)
and (b) the total shear stress (TSS) vs. y+.
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Figure 7: Comparison of the DNS results of (a) the Reynolds stress (RS), the mean viscous shear stress (VSS)
and (b) the total shear stress (TSS) vs. y∗.

defined as Mτ=uτ/cw where uτ is the friction velocity and cw is the speed of sound based

on the wall temperature. After being further derived, Mτ =
√
(µ∂uw/∂y)/(ρwTw)Maδ

(or M2
τ = C f M2

δ/2). Obviously, Mτ depends on Mach and Reynolds number and can
be used to characterize compressibility. According to above stress analysis, the mean
viscous stress seldom varies for different freestream Mach numbers. So Mτ increases
with freestream Mach number increasing or with wall temperature decreasing. The sec-
ond parameter is wall heat flux whose nondimensional form can be written as Qw =
−(∂T/∂y)w/(PrRδ99

ρwuτ) [36, 37]. When the heat transfers from the flow to the wall, the
value of Qw is negative, while it is positive when the wall is heating the flow.

In the case of compressible boundary layer flows over a zero-pressure-gradient flat-
plate, the mean pressure approximately keeps constant in the boundary layer. And then
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Figure 8: The changes of (a) friction Mach number, Mτ , and (b) negative non-dimensional heat flux, −Qw,
vs. Mδ.

the mean density is approximately in inverse ratio to the temperature. For the supersonic
or hypersonic boundary-layer flows with the given free-stream Mach number, to lower
the wall temperature will increase the wall heat flux as well as the near-wall temperature
gradient, and increase the frication Mach number, and then enhance the compressibility
effects of the near wall flow.

Mτ and Qw are listed in Table 4 for different cases. Fig. 8 further shows the changes
of Mτ and Qw vs. the Mδ (a Mach number at the outer edge of boundary layer). When
wall temperature approaches the recovery temperature (such as case of M2, M5, M6 and
M8TH), the friction Mach number increases with Mach number increasing. Meanwhile,
the absolute value of heat flux has the similar change law. As showed in Fig. 8, Mτ and
|Qw| are more sensitive to the wall temperature than to the Mach number. It indicates
that cooling the wall enhances the compressibility effect obviously when Mach number
equals 8.

Table 4: The friction Mach number and nondimensional heat flux.

case M2 M5 M6 M8TH M8TL

Mτ 0.0766 0.1097 0.122 0.131 0.1556

Qw -0.0243 -0.0317 -0.0981 -0.245 -1.394

4 Reynolds analogies

Strong Reynolds analogy proposed by Morkovin [17] (called classical SRA) gives the rela-
tionship between velocity and temperature with premise that the total temperature keeps
constant and its fluctuation nears zero. In this part, the classical SRA and some modified
SRA are to be evaluated. Furthermore, a new improved SRA based on present DNS data
is presented.
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4.1 Validation of classical SRA

One of the classical SRA can be given as,

T
′′

rms/T̃

(γ−1)Ma2(u′′

rms/ũ)
≈1, (4.1)

where Ma2 = ũ2/(γRT̃) is a local Mach number. In further developments that are based
on considering the influence of the heat flux on the wall or eliminating the influence of
the wall temperature, modified SRA relations have been proposed over recent decades.
For example, Cebeci and Smith [38] derived an extended SRA (ESRA) based on Eq. (4.1):

T
′′

rms/T̃

(γ−1)Ma2(u′′

rms/ũ)
≈

[
1+Cp

T̃w− T̃tδ

ũũδ

]
, (4.2)

where Tt denotes the total temperature. SRA and ESRA agree well with experiments for
boundary layers with adiabatic walls. However, Gaviglio [39] pointed out that SRA and
ESRA are not adequate for isothermal wall flows. This point has been verified by the
present study. Gaviglio [39], Rubesin [40] and Huang [41] also proposed modified SRA
relations, denoted GSRA, RSRA and HSRA, which correspond to c = 1.0, c = 1.34 and
c=Prt, respectively, in the following Eq. (4.3):

T
′′

rms/T̃

(γ−1)Ma2(u′′

rms/ũ)
≈

1

c[1−∂T̃t/∂T̃]
. (4.3)

The relations (4.1), (4.2) and (4.3) indicate ratios near 1 if Morkovin’s hypothesis is valid.
Fig. 9 shows the classical SRA and the modified SRA. The Fig. 9(a)-(c) indicate that all
kinds of SRA are near 1, except that the RSRA has the largest deviation. Such results
prove that the Morkovin hypothesis is still valid for case M2, M5, M6. This is mainly
because the wall temperature is near recovery temperature so that there is not enough
(or even zero) heat flux on the wall.

Furthermore, Fig. 10 shows that the total temperatures, defined as T̃t= T̃+ũiũi/(2cp),
keep constant for the case M2, M5 and M6 through the boundary layer. Meanwhile, the
amplitudes of their fluctuations almost decrease 2 orders, approximating to zero. As a
result, in such case, the basic premise for validation of SRA and Modified SRA is true.
Fig. 10 also shows that the total temperature has a certain extent of change for M8TH. As
a result, the value of SRA is near 0.7, up to 30% deviation from unit. Moreover, as shown
in Fig. 10(a), the total temperature for M8TL has distinctive changes and almost no longer
keeps constant. Meanwhile, as shown in Fig. 10(b), total temperature fluctuation has at
least 25% relative deviation comparing to itself. It is large enough to break the premise
of the validation of SRA. Finally, as shown in Fig. 9(e), the value of classical SRA is near
0.2 which is far away from 1. Moreover, the GSRA, RSRA and HSRA fail to provide
reasonable predicted results for about y+<90. Thus, Mokovin’s hypothesis is no longer
totally valid for M8TL.
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Figure 9: Distribution of SRA, ESRA, GSRA, RSRA, and HSRA vs. y+ for (a) M2, (b) M5, (c) M6, (d) M8TH
and (e) M8TL.
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Figure 10: Total temperature and its fluctuation (normalized by local total temperature).

Generally, for different Mach number, even up to 8 (as case M8TH), if wall tempera-
ture is near recovery temperature, it does not lead to an enough strong compressibility
effect in the near-wall region, and Morkovin’s hypothesis is still valid to a great extent.
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4.2 New modification of SRA

The overall appearance of classical SRA, as shown in Fig. 9, the predicted value is close
to 1 when the wall temperature nears recovery temperature. It also decreases with the
wall cooling. So a modified term which relates to the recovery temperature (or freestream
Mach number) and wall temperature is necessary to be considered and added into clas-
sical SRA formula. A new modified form can be written as

T
′′

rms/T̃

(γ−1)Ma2(u′′

rms/ũ)
≈
(Tw

Tr

)ω
=βω, (4.4)

where Tw and Tr are wall temperature and recovery temperature, respectively. The defi-
nition of Tr, which relates to freestream Mach number, can be found in Eq. (2.3). ω, which
is a function of total temperature or static temperature, changes from 0 to 1. The present
analysis indicates that it can also be simply set as a constant. It equals to 0.7 and work
well in present paper. This new modified form is called LSRA in this paper. When the
wall is adiabatic, β= 1, and Eq. (4.4) degenerates to Eq. (4.1), denoting form of classical
SRA; when the wall is cooled (Tw<Tr), 0<β<1 and approaches 1 with wall temperature
closing to adiabatic case, and approaches 0 with wall temperature decreasing towards
0. As a result, the curve of classical SRA is moved upwards to be close to 1. Contrarily,
when the wall is heated and wall temperature is higher than recovery temperature, β>1,
the curve of classical SRA is moved downwards to 1.

Fig. 11 shows the results of HSRA, ESRA and LSRA. LSRA can provide more accu-
rately predicted results with a comparatively simplified improvement. The results show
that LSRA can eliminate the wall temperature influence and provide more precise re-
sults. Moreover, as shown in Fig. 11(a)-(d), the results of HSRA for case M2, M5 M6 and
M8TH are more accurate than ESRA and LSRA. However, when the wall is very cold
(case M8TL), as shown in Fig. 11(e), ESRA and LSRA give better predicted results than
HSRA in near-wall region.

4.3 Validation of other forms of SRA

Besides the classical expression of SRA shown by Eq. (4.1), three other expressions are
listed below:

Ru′′T ′′ ≈−1, (4.5)

Ru′′v′′ =−Rv′′T ′′

[
1−

v
′′
T

′′

t

v′′T ′′

]
, (4.6)

Prt =
ρu

′′
v
′′(∂T̃/∂y)

ρv
′′
T

′′(∂ũ/∂y)
≈1. (4.7)

Prt, the turbulent Prandtl number, is a measure of the ratio of the turbulent kinematic
momentum transfer over the turbulent kinematic heat transfer.
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Figure 11: Distribution of HSRA, ESRA and LSRA vs. y+ for (a) M2, (b) M5, (c) M6, (d) M8TH and (e)
M8TL.

Eq. (4.5) indicates that u
′′

and T
′′

have a negative correlation. As shown in Fig. 12(a),
when the wall temperature nears recovery temperature (case M2, M5, M6, M8TH), the
distributions of Ru′′T ′′ are almost irrelevant to the Mach number. However, the wall tem-
perature impacts the distribution seriously for the case of high Mach number. Moreover,
Fig. 12(a) indicates that there exist obvious differences when about y+.100 in the distri-
butions between M8TL and other cases. In the present investigation, it is shown that u

′′

and T
′′

are not completely anti-correlated. Ru
′′

T
′′ equals approximately -0.6 through the

most parts of boundary layer.

Additionally, according to the Morkovin’s hypothesis, the total temperature fluctua-
tion equals to zero through the boundary layer, so Eq. (4.6) implies that Ru′′v′′ and Rv′′T ′′

are strongly contrary according to the classical SRA. As shown in Fig. 12(b), the curves
not only test such contrary nature, but also indicate that the correlation of v

′′
and T

′′
is

relatively weak (Rv
′′

T
′′ ≈0.4), as well as the anti-correlation of u

′′
and v

′′
(Ru

′′
v
′′ ≈−0.4).

It is necessary to highlight that there are distinctive differences in the distribution of
Ru

′′
T
′′ (as well as Rv

′′
T
′′ and Ru

′′
v
′′ ) between the case M8TL and other cases in the near-

wall region. This further indicates that very cold wall condition can cause large impacts
on SRA.

Similar to the definition of Prt, the Prandtl number for turbulent mass diffusion, Prρ,
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Figure 12: Comparison of correlations of (a) Ru”T”, (b) Ru”v” and Rv”T”.
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Figure 13: Comparison of (a) Prt and (b) Prρ.

is defined as

Prρ=
−u′′v′′(∂ρ/∂y)

−ρ′v′′(∂ũ/∂y)
. (4.8)

Prρ is a measure of the ratio of the turbulent kinematic viscosity over the turbulent mass
diffusivity. Morkovin’s hypothesis also implies that Prt and Prρ approximate 1 [6,8].
Fig. 13 depicts the distributions of the Prt and Prρ. It shows that the very cold wall
impacts Prt and Prρ seriously for about y+.200. The values of them are far away from 1.
When about y+&200, Prt ≈Prρ and approximates to the order 1. Meanwhile, the figure
also shows that the Mach number does not influence the distribution of Prandtl number
when wall temperature nears to recovery temperature, as in case M2, M5, M6 and M8TH.
At the same time, Prt and Prρ vary from 0.8 to 1.1 in the most parts of the boundary layer.
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5 Compressibility

Compressibility effect is an important area in studying the CTBL. It has been investigated
from different angles [26, 31, 42]. It is closely related to noise, shocklet and heat flux in
hypersonic shear turbulence. In this part, the compressibility effect is studied through in-
vestigating the turbulent Mach number, fluctuating Mach number, dilatation term. Some
similar analysis can be found in Subsection 3.4.

5.1 Turbulent Mach number and perturbation Mach number

In turbulent fields, a sound time scale [43] is defined as τa =Λ/a, where Λ is a charac-
teristic scale of average length of fluctuation moment, an integral scale for instance; and
a is local average sound speed. τa denotes the characteristic time scale of sound wave
propagation. Moreover, multi-scale turbulent fields consist of different scales vortexes,
and their interactions. The turbulent characteristic time scale [44] (or called characteristic

time scale of energy-containing moment) is defined as τt=k/ε, where k=u
′

iu
′

i=q
′2 is twice

of turbulent kinetic energy, and ε= q
′3/Λ, is average dissipation rate. q

′
=
√

u
′

iu
′

i is the
RMS (root mean square) of the fluctuating velocity. τt is a time scale of energy-containing
turbulent vortex. It denotes that the energy-containing turbulent vortex transfers the
most of energy to smaller scale turbulent vortex after τt. Furthermore, the turbulent
Mach number can be defined as

Mt=q
′
/a=τa/τt. (5.1)

So Mt, which is based on the fluctuating velocity and local average sound speed, denotes
the ratio of the characteristic time scale of sound wave propagation over the turbulent
characteristic time scale. It characterizes the internal compressibility effects in compress-
ible turbulent fields. Morkovin’s hypothesis points out that when Mt is very small, the
compressibility effects are mainly reflected by influencing mean flow. When Mt is near
order 1 or τa ≥ τt, it means that the amplitude of velocity fluctuation reaches or exceeds
sound speed order, thus, unsteady shocklet and enough strong internal compressibility
effects can be induced.

Moreover, in some special cases, such as aero-acoustic turbulence, fluctuation of T
′
/T

is more important than Mt to dominate the compressibility. Based on such consideration,
the RMS perturbation of the local Mach number is examined. It is called the fluctuating
Mach number M

′
that characterizes local changes in compressible turbulent fields.

Fig. 14(a) and (b) show Mt and M
′

RMS for different cases, respectively. Here the semi-
local coordinator y∗ is employed for collapsing the positions of peak values of different
curves. Fig. 14(a) indicates that there is only one extreme point on each curve for Mt at
about y∗≈17. When the wall is very cold (as case M8TL), the maximum of Mt approaches
0.6 at the near-wall region, which is big enough to produce strong compressibility effect.
For M8TH, the maximum is about 0.4, which is even slightly less than 0.42 for M6. Such
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Figure 14: Distribution of (a) turbulent Mach number and (b) fluctuating Mach number vs. y∗.

results obviously indicate that Mach number is not the only factor to decide compressibil-
ity effect. The wall temperature, freestream Mach number and combined action should
be counted as a whole in the investigation.

As shown in Fig. 14(b), there are two extreme points (except case M2, denotes low
freestream Mach number case) on the curves of M

′

RMS. One lies in about y∗≈30, (except
y∗≈17 for M2) another lies near by the edge of boundary layer. So the strong temperature
fluctuation as occurs at above two regions is different from the position of extreme point
of Mt. The results show that M

′

RMS > 0.45 for M5, M6, M8TL and M8TH in near-wall
region. And it is bigger than 0.65 for M6, M8TH and M8TL at the edge of boundary layer,
even up to 0.9 for M8TH.

Generally, Mt and M
′

RMS increase with freestream Mach number increasing, or wall
cooling, which further enhances the compressibility effect.

5.2 Dilatation term

The dilatation term ϑ=∇·V
′

is another important characteristic variable that is associ-
ated with compressible effects. It is zero for an incompressible flow and very small for
a low free-stream Mach number. As is well known, the dilatation procedure correlates
with the change of the mean density, and therefore, the density increases when ϑ < 0,
which denotes a compression procedure, or it decreases with ϑ>0 which denotes a dilata-
tion procedure. In other words, the density can also be used to normalize the dilatation
term. Therefore, the probability density functions (PDF) of ϑ and 〈ρ〉ϑ are to be computed
for assessing the compressibility. Figs. 15-17 indicate the PDF of ϑ and 〈ρ〉ϑ at y= 0.1δ,
0.5δ and 0.9δ, respectively. The results show that, besides some slight deviation in near
wall region, the compression and dilatation procedures are almost equal probability as a
whole. The PDF of these two procedures follows the normal distribution. Moreover, they
are more active in near wall region than in far away from wall region.
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Figure 16: The PDF of the dilatation term at y=0.5δ.
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Figure 17: The PDF of the dilatation term at y=0.9δ.
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6 Near-wall turbulent structure

The Mach number and the wall temperature effects on the near-wall streaks is further
investigated. Fig. 18 shows the distributions of the instantaneous streamwise velocity
component along the spanwise direction at about y+ ≈ 15. The present visual region
covers 8δ long in the streamwise and one δ wide in the spanwise directions for each case.
This region lies in the fully developed turbulent region.

There are some distinctive features in the present results, Firstly, the streaks (deep
color structure) along the streamwise direction become flatter with the free-stream Mach
number increasing for wall temperature near recovery temperature. Meanwhile, they
have similar law, as well as reduction of wall temperature for the same free-stream Mach
number. Fig. 18 indicates that the streaks for M6 are flatter than those for M2 (or M5).
And also they are flatter for M8TL than for M8TH. According to previous analysis, this
trend is the result of the enhancement of a compressibility effect. Secondly, the streaks are
retained longer either for a higher Mach number case or for a colder wall case. The figure

Figure 18: The near-wall streaks at about y+≈15 for M2, M5, M6, M8TH and M8TL (from up to down).
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Figure 19: Two-point correlation vs. ∆z+ at y+≈15.

indicates that the steaks for M8TL are obviously longer than those for M2, M5 and M6
and M8TH. Thus, reducing the wall temperature increases the stream-wise coherency of
near-wall streaks.

Thirdly, the average spanwise spacing (ASS) of streaks slightly increase with an in-
crease in free-stream Mach number. This can be found in Fig. 19, where the auto-
correlation coefficients of u

′′
along spanwise at about y+ ≈ 15 is employed to check the

ASS. Table 5 shows some approximate values of ASS. As shown in Fig. 19(a) and Table
5, the ASSs are equal to about 100 wall units for M2, M5, M6 and M8TH. Such results
are similar to the traditional ones [45, 46] (approximately 100 wall units) for incompress-
ible case. Fig. 19(b) shows that the ASS of near-wall streaks increase significantly with
a decrease in wall temperature when Mach number equals 8. The present value of ASS
for M8TL is much bigger than the traditional one. Table 5 also indicates that the ASS
increases with growing distance from the wall.

Table 5: The average spanwise spacing of streaks.

case y+≈4 y+≈15

M2 90.0 113.6

M5 103.7 124.5

M6 105.3 127.1

M8TH 119.7 130.6

M8TL 239.4 259.3

7 Conclusions

The investigation on the spatially evolving turbulent boundary layer over flat-plates with
Mach 2.25, 5, 6 and 8 have been performed by DNS. The effects of Mach number and wall
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temperature on the compressibility and the turbulent statistical characteristics have been
analyzed. Some conclusions have been drawn as follows.

The compressibility effects are insignificant when the wall temperature nears the re-
covery temperature with Mach number up to 8, such as M2, M5, M6 and M8TH. In such
cases, the compressibility effects are enhanced slightly with freestream Mach number
increasing. As a result, the mean velocity profiles with Van Driest transformation are
similar to incompressible case. The Mach number and the wall temperature impact on
the mean viscosity shear stress (VSS) insignificantly, but on the Reynolds stress (RS) sig-
nificantly. Furthermore, an increase in the total shear stress (TSS) is mainly caused by an
increase in the Reynolds stress which increases with freestream Mach number increasing
or wall cooling.

The strong Reynolds analogy (SRA) depends greatly on the wall temperature in high
Mach number case. The validity of the SRA degrades with wall temperature decreasing.
It is still valid for the case M2, M5, M6 and M8TH. In such cases, the total temperatures
are almost invariant through the boundary layer and their fluctuations are relatively very
small, at least less than 2 orders. However, the classical SRA and modified SRA are not
totally valid for the case of M8TL, a very cold wall case, when about y+ < 100 where
the total temperature has dramatically change and amplitude of its fluctuation is as large
as 25% relatively. Due to considering the effects of the wall temperature, free-stream
Mach number and combined action, the present modified model (LSRA) improves the
predicted accuracy, even for very cold wall case.

When the wall temperature is near to the recovery temperature, the average spanwise
space (ASS) slightly increases with Mach number increasing, and the values mainly lie in
interval (90,120) for y+≈4 and (110,130) for y+≈15. This is the similar to incompressible
case. Moreover, the ASS increases with wall cooling, even up to 260 for the very cold wall
case (case M8TL).

The results of turbulent Mach number, perturbation Mach number, friction Mach
number, dilatation term and heat flux along the wall show that the compressibility ef-
fects increase slightly with Mach number increasing for case M2, M5, M6 and M8TH.
And when Mach number is up to 8, the compressibility effects increase with decreasing
wall temperature, which has been partly discussed in reference [31].

Further investigation on effects of Mach number, wall temperature and combined
action on extended self-similarity (ESS), scale law, transition and spatial evolution of flow
structure are in the process.
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