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Abstract. In this study, the Lattice Boltzmann Method (LBM) is implemented through
a finite-volume approach to perform 2-D, incompressible, and turbulent fluid flow
analyses on structured grids. Even though the approach followed in this study ne-
cessitates more computational effort compared to the standard LBM (the so called
stream and collide scheme), using the finite-volume method, the known limitations of
the stream and collide scheme on lattice to be uniform and Courant-Friedrichs-Lewy
(CFL) number to be one are removed. Moreover, the curved boundaries in the com-
putational domain are handled more accurately with less effort. These improvements
pave the way for the possibility of solving fluid flow problems with the LBM using
coarser grids that are refined only where it is necessary and the boundary layers might
be resolved better.
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1 Introduction

The LBM is a fairly new numerical method to simulate fluid flows and can be consid-
ered as an alternative to the classical Navier-Stokes (NS) equations based methods. The
LBM originated from the Lattice-Gas Automata (LGA) method which can be thought as
a simple Molecular Dynamics model. The purpose of the LGA method is to simulate the
behavior and interaction of particles in a gas as simple as possible [1]. For this purpose,
the gas is modeled as a cluster of solid spheres moving along a uniform lattice. Each solid
sphere has a discrete set of possible velocities and the collision between separate parti-
cles is handled by a set of elastic collision rules. Macroscopic quantities, such as particle
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density and velocity at each lattice node, can be computed using the microscopic quan-
tities, making it possible to study the macroscopic behavior of a fluid flow. Even though
the idea is simple, the method still provides similar solutions as the NS equations based
methods do. Beyond being simple, it has the advantage of low memory requirement.
The method is also highly parallelizable because of the locality of the data access pattern.
However, numerically, the LGA method suffers the statistical noise caused by the aver-
aging procedure to obtain the macroscopic properties from the microscopic properties.

To remedy the statistical noise that the LGA method suffers, the LBM was developed.
Being a derivative of the LGA method, the LBM basically relies on the same idea. But, in-
stead of handling single particles, the LBM handles particle distributions. This removes
the need for averaging to obtain the macroscopic properties from the microscopic prop-
erties, so the statistical noise is also removed. Even though the LBM is more memory
intensive compared to the LGA method since it is based on particle distributions that
are in floating point numbers, it retains some of the advantages that LGA method has,
such as being simple and having a high degree of parallelization potential. In addition to
above mentioned advantages, the solution of computationally expensive Poisson equa-
tion, which is required when using NS equations based methods, is not needed when
using the LBM. Also, since no pressure-velocity coupling is needed, unlike the NS equa-
tions based methods; one does not have to use complex staggered-grid systems. Fur-
thermore, the equations solved when using the LBM are linear, so the solution time is
reduced significantly since the solution procedure does not necessitate any iterative al-
gorithm. These properties make the LBM an attractive method, and there is an increasing
interest for the LBM in the Computational Fluid Dynamics (CFD) community. As a re-
sult, the progress in developing and employing the LBM is rapid. The recent applications
range from multiphase flow simulations [2] to aero-acoustic simulations [3], from high
resolution turbulence simulations [4] to biological flow simulations [5].

Even though the LBM in its standard form, which basically consists of streaming and
collision steps, looks very attractive as mentioned above, the method is strictly restric-
tive about the uniformity of the computational grid. This restriction is inherited from the
LGA method in which the particles modeled have to move to the next link after a time
step. This shortcoming in turn dictates that the CFL number has to be equal to one. These
are the major handicaps on widespread use of LBM in engineering problems. So, a lot of
research has been going on to improve these aspects of LBM. One of the first efforts to-
ward improving standard LBM is the work of He et al. [6]. In that work, an interpolation
based approach is applied at every time step to obtain the distribution function at points
of a non-uniform grid. Since the interpolation procedure is very time consuming and the
accuracy of the method highly depends on the interpolation scheme used, this method is
not very practical comparing to the standard LBM. Another approach proposed by Filip-
pova and Hanel [7] is based on the idea of grid refinement method. With this approach,
a coarser background grid is generated and a local refinement is performed in critical
regions. Even though it is less complicated, an interpolation scheme is still needed for
this method to transfer data from different levels of grid. The last approach, which is also
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used in this work, was first proposed by Succi et al. [8]. This approach relies on the finite-
volume formulation of the Lattice Boltzmann Equation (LBE) and makes it possible to
separate space and time discretization, while utilizing structured but non-uniform grids.

In this study, the LBM is implemented through a finite-volume approach to perform
2-D, incompressible, and turbulent fluid flow analyses on structured grids. Even though
the approach followed in this study necessitates more computational effort over the stan-
dard LBM; using the finite-volume method, the known limitations of the stream and
collide scheme on lattice to be uniform and CFL number to be one are removed. More-
over, the curved boundaries in the computational domain are handled more accurately
with less effort. This improvement paves the way for the possibility of solving fluid flow
problems with the LBM using coarser grids that are refined only where it is necessary
and the boundary layers might be resolved better.

2 The numerical model

2.1 Discrete velocity Boltzmann equation

The starting point of the LBM is the continuous form of the Boltzmann Equation with
Bhatnagar-Gross-Krook (BGK) [9] approximation for the collision operator

∂ f

∂t
+~e·~∇ f =− 1

λ
( f − f eq), (2.1)

where f = f (
→
x ,

→
e ,t) is the particle distribution function, in which

→
x is the position vector,

→
e is the particle velocity vector, t is the time, f eq is the equilibrium distribution function
(or Maxwell-Boltzmann distribution function), and λ is the relaxation time. The right
hand side of Eq. (2.1) is the collision operator.

To solve f numerically, Eq. (2.1) is discretized in the velocity space using a set of

velocities,
→
e α;

∂ fα

∂t
+~eα ·~∇ fα=− 1

λ
( fα− f

eq
α ). (2.2)

In Eq. (2.2), fα is the distribution function associated with the αth discrete velocity,
→
eα.

For 2-D problems, one might use D2Q9 [10] model of which the discrete velocities are
shown in Fig. 1.

The discrete velocities of D2Q9 model are given by

e0=0,

eax,ay= c(cos((α−1)∗π/2),sin((α−1)∗π/2)) for α=1,2,3,4,

eax,ay=
√

2c(cos((α−5)∗π/2+π/4),sin((α−5)∗π/2+π/4)) for α=5,6,7,8, (2.3)

where c is an arbitrary constant related to the speed of sound and is given by c= cs

√
3.



216 G. Guzel and I. Koc / Commun. Comput. Phys., 17 (2015), pp. 213-232

Figure 1: Discrete velocities of D2Q9 model.

The equilibrium distribution functions for D2Q9 model is given by

f
eq
α =ρωα

[

1+3
~eα ·~u

c2
+

9

2

(~eα ·~u)2

c4
− 3

2

(~u)2

c2

]

, (2.4)

where ωα is the weighting factor and equals to 4/9 for α=0, 1/9 for α=1−4, and 1/36

for α= 5−8. ρ=∑α fα is the macroscopic density and ρ
→
u=∑α fα

→
e α is the macroscopic

momentum. Pressure is related with density through p= c2
s ρ and the relaxation time is a

function of kinematic viscosity, ν, that is given by λ=ν/c2
s .

2.2 The non-dimensional form

The non-dimensional form of the discrete velocity Boltzmann Equation might be ob-
tained by introducing the non-dimensional variables in Table 1, where L is the character-
istic length and the characteristic velocity is chosen to be c. With the introduced variables,

Table 1: Dimensional parameters and their non-dimensional forms.

Dimensional Non-dimensional

Length x x̂= x
L

Time t t̂= tc
L

Macroscopic velocity
→
u

→̂
u =

→
u
c

Discrete velocity
→
eα

→̂
eα =

→
eα
c

Distribution function fα f̂α =
fα

ρ∞

Macroscopic density ρ ρ̂= ρ
ρ∞

Pressure p p̂= p
ρc2

s

Kinematic viscosity ν ν̂= ν
cL
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Eq. (2.2) can be rewritten in non-dimensional form as

∂ f̂α

∂t̂
+ ~̂eα · ~̂∇ f̂α =− 1

λ
( f̂α− f̂

eq
α ). (2.5)

In Eq. (2.5), the non-dimensional equilibrium distribution function, f̂
eq
α , is given by

f̂
eq
α = ρ̂ωα

[

1+3~̂eα ·~̂u+
9

2
(~̂eα ·~̂u)2− 3

2
~̂u2

]

. (2.6)

It is also notable that when the kinematic viscosity is non-dimensionalized, an im-
portant relationship between the kinematic viscosity and the other flow parameters is
obtained;

ν̂=
Ma∞√
3Re∞

. (2.7)

Here, Re∞ is the reference Reynolds number and Ma∞ is the reference Mach number.
It should also be stated now that, for the rest of the paper, the hats over the variables will
be omitted for convenience of writing.

2.3 Finite-volume formulation of the LBM

The present implementation of the LBM is based on the well-established and generally
accepted form of the finite-volume formulation that utilizes integral form of a governing
equation and solves it over control volumes that cover the solution domain. The same
formulation is also used in the previous works of Peng et al. [11], Stiebler et al. [12],
Patil et al. [13], and Zarghami et al. [14] for the LBM. Stating first that the present imple-
mentation follows a cell-centered approach, the formulation starts with the integration of
Eq. (2.5) over the control volume, quadrilateral cells in this case, that form a structured
grid as shown in Fig. 2.

Figure 2: Quadrilateral control volumes and resulting structured grid.
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Considering the Fig. 2, the first term of the left hand side of Eq. (2.5) (the unsteady
term) is integrated over the control volume [i, j] as

∫

abcd

(

∂ fα

∂t

)

dA≈
(

∂ fα

∂t

)

[i,j]

A[i,j], (2.8)

where Ai,j is the area of the cell that is indexed as [i, j].
For the integration of the second term of the left hand side of Eq. (2.5) (the advection

term), the divergence theorem is applied;
∫

abcd
(~eα ·~∇ fα)dA=

∮

abcd
(~eα ·~n) fαdl, (2.9)

where ~n is the unit normal vectors of the edges that form the cell considered. The right
hand side of Eq. (2.9) can be separated into four parts for a quadrilateral cell as follows;

∮

abcd
(~eα ·~n) fαdl

=
(

~eα ·~n(ab)[i,j]

)

fα(ab)[i,j]l(ab)[i,j]+
(

~eα ·~n(bc)[i,j]

)

fα(bc)[i,j]l(bc)[i,j]

+
(

~eα ·~n(cd)[i,j]

)

fα(cd)[i,j]l(cd)[i,j]+
(

~eα ·~n(da)[i,j]

)

fα(da)[i,j]l(da)[i,j] . (2.10)

In Eq. (2.10), l terms are the length of each edge that forms the cell considered. For
the evaluation of flux-terms introduced in Eq. (2.9), an interpolation scheme is needed
to compute edge values of the distribution functions. For this purpose, the Monotone
Upstream-centered Scheme for Conservation Laws (MUSCL) [15] might be used. For
example, depending on the sign of the (~eα ·~n(bc)[i,j]) term, the distribution function on
the bc edge is given as

fα(bc)[i,j]=



































fα [i,j]+
1

4

(

(1+κ)·( fα [i+1,j]− fα [i,j])+(1−κ)·( fα [i,j]− fα [i−1,j])
)

for ~eα ·~n(bc)[i,j]≥0,

fα [i+1,j]+
1

4

(

(1+κ)·( fα [i,j]− fα [i+1,j])+(1−κ)·( fα [i+1,j]− fα [i+2,j])
)

for ~eα ·~n(bc)[i,j]<0,

(2.11)

where the term κ determines the spatial accuracy and by setting this term to 1/3, one can
obtain second order accuracy.

The term on the right hand side of Eq. (2.5) (the collision term) can be integrated using

− 1

λ

∫

abcd
( fα− f

eq
α )dA≈− 1

λ
( fα− f

eq
α )[i,j]A[i,j]. (2.12)

So, first, collecting the numerical flux terms together under

F[i,j]=
(

~eα ·~n(ab)[i,j]

)

fα(ab)[i,j]l(ab)[i,j]+
(

~eα ·~n(bc)[i,j]

)

fα(bc)[i,j]l(bc)[i,j]

+
(

~eα ·~n(cd)[i,j]

)

fα(cd)[i,j]l(cd)[i,j]+
(

~eα ·~n(da)[i,j]

)

fα(da)[i,j]l(da)[i,j] , (2.13)
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the finite-volume formulation of the LBM for a sample cell of abcd as shown in Fig. 2
takes the final form given as

(

∂ fα

∂t

)

[i,j]

A[i,j]+F[i,j]=− 1

λ
( fα− f

eq
α )[i,j]A[i,j]. (2.14)

2.4 Time advancement method

The previously mentioned works in the literature that adopt the finite-volume approach
to use with the LBM rely on explicit schemes, such as forward Euler method used by Peng
et al., Stiebler et al. and Patil et al. or explicit Runge-Kutta scheme used by Zarghami et
al., to advance the solution in time. The advantage of the explicit schemes is that the
implementation of these schemes is straightforward and the advancement in a time-level
is fast. But, these schemes suffer from a strict stability condition. Since Eq. (2.5) is a hy-
perbolic equation with a stiff source term, the stability condition is even worse for this
case. For better numerical stability, an implicit scheme should be used. On the other
hand, implicit schemes require complicated implementation and the solution procedure
is generally very expensive. The compromise between explicit and implicit schemes is
the Implicit-Explicit Runge-Kutta (IMEX) scheme [16]. With this method, the governing
equation is split into a non-stiff and a stiff component (convective and collision terms
in Eq. (2.5) respectively). Then, an explicit scheme for the non-stiff part and an implicit
scheme for the stiff part is applied. With this method, the computational effort is mod-
erate compared to an implicit scheme while the stability bound is larger compared to an
explicit scheme.

The IMEX scheme consists of multiple stages and the solution of each stage for the
finite-volume based LBM, omitting the index [i, j] of control volume for convenience of
writing, is given by the formula

f
(s)
α = f n

α −
∆t

A

s−1

∑
k=1

m̃skF(k)−∆t

λ

s

∑
k=1

msk

(

f
(k)
α − f

eq,(k)
α

)

, (2.15)

where s, f
()
α , f

eq,()
α , and F() are the stage number, the stage distribution functions, the stage

equilibrium distribution functions, and the stage sum of numerical fluxes, respectively.
f n
α represents the distribution functions of the time level. Then, the solution at next time

level is given by

f n+1
α = f n

α −
∆t

A

r

∑
j=1

ñjF
(j)−∆t

λ

r

∑
j=1

nj

(

f
(j)
α − f

eq,(j)
α

)

, (2.16)

where r is the total number of stages. In addition, the r×r matrices of m̃ and m and the r
vectors of ñ and n contain the coefficients that characterize the IMEX scheme.
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The implicit part of the scheme, which is the last term on the right hand side of

Eq. (2.15), includes two unknown from the stage that is being solved, f
(s)
α and f

eq,(s)
α . To

fix these, the characteristic of the collision invariants of the LBM [17], that can be given as

N

∑
α=1

(

f
()
α − f

eq,()
α

)

ϕ=0, (2.17)

where N is the number of discrete velocity directions, is used to derive

N

∑
α=1

( f
(s)
α )ϕ=

N

∑
α=1

( f n
α )ϕ−∆t

A

s−1

∑
k=1

m̃sk

(

N

∑
α=1

(F(k))ϕ

)

(2.18)

from Eq. (2.15). In the above equations, ϕ is one the collision invariants of the LBM,
i.e. 1 or ~eα. From Eq. (2.18), the macroscopic variables of the stage being solved can
be computed without knowing the stage distribution functions. With these, the stage
equilibrium distribution functions can be found and rearranging Eq. (2.15) as

f
(s)
α =

f n
α − ∆t

A ∑
s−1
k=1m̃skF(k)− ∆t

λ ∑
s−1
k=1msk( f

(k)
α − f

eq,(k)
α )+ ∆t

λ mss f
eq,(s)
α

1+ ∆t
λ mss

, (2.19)

stage distribution functions can be computed. Finally, using Eq. (2.16) the solution at next
time step can be found. For the current implementation, a three stage IMEX scheme is
used.

2.5 Boundary conditions

To implement the boundary conditions, the extrapolation method proposed by Guo and
Zheng [18] is used. The main reason for choosing this method is that it provides a way
of defining boundary conditions not in terms of distribution functions but in terms of
macroscopic properties which are generally known. In addition, this method is shown
to be of second order accurate by Guo and Zheng and exhibit better numerical stability
than the alternative methods considered in the same reference for comparison purpose.

For the present implementation of the finite-volume based LBM, one level of ghost
cells are defined on the borders of the solution domain and the appropriate macroscopic
variables are set in those cells for a given boundary condition. The equilibrium distri-
bution functions at the ghost cells are computed using the macroscopic variables. The
distribution functions at the ghost cells are then found using

fα(ghost cell)= f
eq
α (ghost cell)+

[

fα(inside)− f
eq
α (inside)

]

. (2.20)

The second term of the right hand side of Eq. (2.20) means the non-equilibrium part of
the distribution functions of the cell just next to the boundary.
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2.6 Turbulence model

To model the effect of turbulence in the simulations, one-equation model of Spalart-
Allmaras[19] is used. This turbulence model is based on the transport of an eddy-viscosity
variable υ̃. The transport equation for this model in non-dimensional form is given as

∂υ̃

∂t
=M(υ̃)+P(υ̃)−D(υ̃), (2.21)

where M(υ̃) is the combined advection/diffusion term and is given by

M(υ̃)=−(~u·~∇)υ̃+
1+cb2

σ
~∇·
[

(υ+ υ̃)~∇υ̃
]

− cb2

σ
(υ+ υ̃) ~∇2υ̃. (2.22)

P(υ̃) is the production term
P(υ̃)= cb1(1− ft2)S̃ν̃, (2.23)

D(υ̃) is the destruction term

D(υ̃)=

[

cw1 fw−
cb1

κ2
ft2[

υ̃

d
]2
]

. (2.24)

The parameters that are used in the above equation of turbulence model are given as

χ=
υ̃

υ
′ , S= |ω|, fw = g

(

1+C6
w3

g6+C6
w3

)

,

ft2=Ct3exp(−Ct4χ2), fυ2=1− χ

1+χ fv1
, g= r+Cw2(r

6−r),

S̃=S+
υ̃

κ2d2 fυ2
, fυ1=

χ3

1+χ3c3
v1

, r=
υ̃

S̃κ2d2
, (2.25)

and cb1, cb2, σ, κ, cw1, cw2, cw3, cv1, ct3, and ct4 are the model constants, ω is the viscosity,
and d is the distance to the closest wall boundary.

To solve the above given transport equation for the eddy-viscosity model, the same
cell-centered finite-volume based approach is followed that is applied for the LBM be-
fore. This means that Eq. (2.21) is integrated for the eddy-viscosity variable over the
same quadrilateral control volumes which are also used for the solution of the LBM. It
must also be stated that the time advancement of the two solutions (i.e. distribution func-
tions and eddy-viscosity variable) is segregated from each other, i.e. the eddy-viscosity
variable of a time level is computed after the solution for the distribution functions is
obtained.

The convection term of the turbulence model equation is calculated using first-order
upwind scheme and the diffusion terms are discretized using second-order central dif-
ference scheme. The time advancement is done by the backward Euler scheme with an
approximate factorization procedure. As for the boundary conditions, the eddy-viscosity
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variable is set to zero at the wall boundaries and a ratio of laminar viscosity is used at
the inflow boundaries. If there is an outflow boundary, the eddy-viscosity variable is
extrapolated from the interior of the solution domain.

Once the eddy-viscosity variable is computed, the turbulent kinematic viscosity is
found using the relation

υt = fυ1υ̃. (2.26)

Finally, the relaxation time is updated with the total viscosity as

λ=
υ+υt

c2
s

. (2.27)

3 Validation of the method

To validate the method used in this study, various flow problems are solved. The first
three problems are the laminar cases, namely flow inside a lid-driven cavity, over a flat
plate, and a circular cylinder. Then, turbulent flow over a flat plate and a NACA 0012
airfoil is solved to show the validity of the turbulence model used.

3.1 Laminar flow in a lid-driven cavity

Flow in a lid-driven cavity at four different Reynolds numbers that are ranging from 400
to 5000 is solved to observe the validity of the present method. At this range of Reynolds
number, the flow inside the cavity might be considered as incompressible and laminar
and the structure of the flow is characterized by a large vortex occupying almost the
whole cavity. There are also two smaller vortices around the lower corners of the cavity
and for higher Reynolds numbers (i.e. 3200 and 5000), a fourth vortex forms around the
upper left corner. Once the converged solution is obtained, the results are compared with
the well documented results of a high fidelity numerical study of Ghia et al. [20]. To make
the comparison more realistic, a uniform grid of 129×129 points for Re=400, 1000, and
3200 and a 257×257 grid for Re=5000 is used as Ghia et al. did.

The streamlines computed with the present method is shown in Fig. 3, and this figure
reveals that the general flow structure is captured. For more detailed analysis, the hori-
zontal and vertical velocity profiles along the geometric centerlines of the cavity are com-
pared with the results obtained by Ghia et al. These comparisons are shown in Fig. 4. To
show the capability of the present method, the results from a commercial, finite-volume
based Navier-Stokes solver (i.e. FLUENT) with the same grids used is also added to the
plots. As can be seen from these comparisons, an almost perfect match is obtained be-
tween the three methodologies.

Other than the validation purpose, this case is also used to investigate the numerical
accuracy of the present method. For this purpose, two subsets of the uniform 129×129
grid, that is used for the previous computations, is created. The resulting grids are also
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(a) (b)

(c) (d)

Figure 3: Streamlines computed inside the cavity with the present method for (a) Re=400, (b) Re=1000, (c)
Re=3200, and (d) Re=5000.

uniform and consist of 33×33 and 65×65 points. Then, the numerical error on the hor-
izontal velocity profile at Re= 400 with respect to the results of Ghia et al. is computed
for each grid according to

ǫ=

√

∑
(

ux,re f erence−ux

)2

N2
, (3.1)

where N is the spatial resolution in the grid (i.e. 33, 65, and 129). The resulting variation
of the numerical error with the grid resolution along with -2 slope is plotted in log of the
values and shown in Fig. 5. As can be observed from this figure, the present method has
a spatial accuracy that is better than second order.

3.2 Laminar flow over a flat plate

Solution of the incompressible and laminar flow problem over a flat plate that is at zero
angle of attack was first studied by Blasius [21]. The analytical solution proposed as a
result of this study is now one of the best known validation cases used when validating



224 G. Guzel and I. Koc / Commun. Comput. Phys., 17 (2015), pp. 213-232

(a)

(b)

(c)

(d)

Figure 4: Horizontal (left side of the figure) and vertical velocity profiles along the geometrical centerlines of
the cavity computed using FLUENT (dashed lines) and present method (solid lines) along with the results from
Ghia et al. [20] (circles) for (a) Re=400, (b) Re=1000, (c) Re=3200, and (d) Re=5000.

flow solvers. To validate the present method solving this problem, two Reynolds num-
bers are considered, i.e. 10000 and 100000. A H-grid [22] that consists of 273×193 points
is generated to use in the simulations.
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Figure 5: Variation of the numerical error with grid resolution for the lid-driven cavity flow at Re=400.

(a) (b)

Figure 6: Skin friction coefficients over the flat plate computed using FLUENT (dashed lines) and present
method (solid lines) along with the theoretical results of Blasius [21] (circles) for (a) Re = 10000 and (b)
Re=100000.

The variation of the skin friction coefficients over the plate computed with the present
method and FLUENT for Re=10000 and 100000 are compared with the solution of Blasius
and the results are shown in Fig. 6. As can be seen, very good agreement is obtained
for both cases. Also, the non dimensional velocity profiles are compared and shown in
Fig. 7. Here, the results obtained using the present method seems more satisfactory than
FLUENT.

3.3 Laminar flow around a circular cylinder

The laminar and incompressible flow around a 2-D circular cylinder is solved to show
how the present method can easily handle flow around curved boundaries as opposed
to the standard LBM. For this case, three Reynolds numbers, which are equal to 10, 20,
and 40, are considered. In these flow regimes, flow is separated and forms two counter-
rotating vortices in the wake of the cylinder. For the simulations, an O-grid [22] of
401×201 points is generated. Once the converged solutions are obtained, the length of
the wakes, separation angles and drag coefficients are compared with the experimental
and numerical data from the literature [23–26]. The computed streamlines are shown in
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(a)

(b)

Figure 7: Non-dimensional horizontal (left side of the figure) and vertical velocity profiles computed using
FLUENT (dashed lines) and present method (solid lines) along with the theoretical results of Blasius [21]
(circles) for (a) Re=10000 and (b) Re=100000.

Fig. 8. As can be observed from this figure, the expected counter-rotating vortices are
captured for all the Reynolds numbers considered. The comparison of the wake lengths,
separation angles, and drag coefficients with the data from the literature and the result
from FLUENT is given in Table 2. A satisfactory agreement is obtained.

Table 2: Comparison of the wake lengths, separation angles, and drag coefficients for the cylinder.

Re=10 Re=20 Re=40

L/r θ Cd L/r θ Cd L/r θ Cd

[23] 0.434 27.96 2.828 1.786 43.37 2.053 4.357 53.34 1.550

[24] 0.680 32.50 - 1.860 44.80 - 4.260 53.50 -

[25] 0.474 26.89 3.170 1.842 42.90 2.152 4.490 52.84 1.499

[26] 0.498 30.00 - 1.804 42.10 - 4.380 50.12 -

FLUENT 0.468 28.79 2.769 1.802 43.38 2.006 4.460 53.64 1.500

Present Work 0.476 29.28 2.838 1.819 43.70 2.029 4.460 53.77 1.511
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(a) (b)

(c)

Figure 8: Computed streamlines around the cylinder for (a) Re=10, (b) Re=20, and (c) Re=40.

3.4 Turbulent flow over a flat plate

Since the method is validated against the laminar flow problems in the previous
sections, the next task is to perform turbulent flow simulations. For this purpose,
turbulent flow over a flat plate at zero angle of attack is considered first. An H-
grid with 545×385 points is used for this simulation. The Reynolds number con-
sidered is 5 million for unit length of the grid utilized. The reason for choosing
this Reynolds number is the availability of simulation results that is given in by
C. Rumsey in ”SA Expected Results: 2D Zero Pressure Gradient Flat Plate through
http://turbmodels.larc.nasa.gov/flatplate sa.html” and obtained using a finite-
volume based Navier-Stokes flow solver named as CFL3D with the same 545×385 grid.
The contour lines of the ratio of turbulent to laminar viscosity is given in the above men-
tioned reference, so, a comparison with the present simulation in this respect is possible
and such a comparison is given in Fig. 9. As seen from this figure, almost the identical
distribution of this value is captured with the present method compared with CFL3D
code. The result from FLUENT differs in terms of maximum value from these two meth-
ods (see Fig. 9d), even though the same spatial discretization is used.
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(a) (b)

(c) (d)

Figure 9: Contours of the ratio of turbulent to laminar viscosity over the flat plate computed with (a) CFL3D,
(b) FLUENT, and (c) present method and (d) profile comparison of this ratio at x=0.97 for CFL3D (circles),
FLUENT (dashed line), and present method (solid line).

The computed skin friction coefficient is compared with the result from CFL3D code
and also from FLUENT in Fig. 10. As can be seen, the skin friction coefficient computed
by the present method matches very well with the result of CFL3D code as opposed to
the result from FLUENT.

The horizontal velocity profiles at two different locations on the plate is also com-
pared and shown in Fig. 11. All three flow solvers give almost identical results for this
comparison.

3.5 Turbulent flow over a NACA 0012 airfoil

As the final case, turbulent flow over a NACA 0012 airfoil is considered to validate the
present method. The flow conditions considered here correspond to a Reynolds number
of 6 million. Various experimental data is available in the literature for this problem.
Among them, the results obtained tripping the boundary layer are most appropriate,
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Figure 10: Comparison of skin friction coefficients over the flat plate for Re=5 Million.

(a) (b)

Figure 11: Horizontal velocity profiles over the flat plate computed using CFL3D (circles), FLUENT (dashed
lines), and present method (solid lines) at (a) x=0.97 and (b) x=1.90.

since the simulations performed for the current validation study are fully turbulent. So,
for the comparison of computed and measured forces over the airfoil, data from Ladson
[27] is used. On the other hand, since the resolution of the pressure data from other
resources is not fine enough, results from the measurements of Gregory and O’Reilly [28]
are used here for the comparison of upper surface pressure distributions. With a C-grid
[22] of 513×257 points used, distribution of pressure coefficient over the surface of the
airfoil is computed for three different angle of attack values (i.e. 0, 10, and 15 degrees)
and the results are shown in Fig. 12 along with the measured data of [28]. In this figure,
the computed results present the distribution over the whole airfoil surface, so there are
two distinct curves that correspond to the distribution over the upper and lower surfaces
except for the 0 degree angle of attack case that has the single distribution since the airfoil
is symmetric. Meanwhile, the experimental data is available only for the upper surface
of the airfoil. As can be seen from the figure, the present finite-volume based LBM solver
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(a) (b) (c)

Figure 12: Upper surface pressure distributions over a NACA 0012 airfoil measured [28] (circles) and computed
using present method (solid line) for angle of attack of (a) 0 deg., (b) 10 deg., and (c) 15 deg.

(a) (b) (c)

Figure 13: Upper surface skin-friction distributions over a NACA 0012 airfoil computed using CFL3D (dashed
line) and present method (solid line) for angle of attack of (a) 0 deg., (b) 10 deg., and (c) 15 deg.

is sufficiently accurate, at least for the prediction of the pressure distribution over the
airfoil’s upper surface, since very good agreement is obtained between the experimental
data and simulation results even though the flow considered here is attached for all three
angle of attack values considered.

Furthermore, the computed skin-friction distribution over the upper surface of the
airfoil using the present method is compared with the results from CFL3D code that is
given by C. Rumsey in ”SA Expected Results: 2D NACA 0012 Airfoil through http://

turbmodels.larc.nasa.gov/naca0012 val sa” and the comparison is given in Fig. 13.
Again, very good agreement is obtained between the two methods in terms of the gradi-
ent of the velocity profile tangent to the wall.

Since both the pressure and skin-friction distributions over the airfoil surface is com-
puted, it is also possible to compare the measured and computed forces on the airfoil,
too. Such a comparison for all the angles of attack considered is given in Table 3. As
can be seen, both the computed values with CFL3D (from the same website given in the
previous paragraph) and the present method are very close to the measured ones.
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Table 3: Measured and computed force coefficients for NACA 0012 airfoil.

0 degree 10 degrees 15 degrees

angle of attack angle of attack angle of attack

lift drag lift drag lift drag

[27] 0.00000 0.00809 1.0586 0.01191 1.4961 0.01831

CFL3D 0.00000 0.00819 1.0909 0.01231 1.5461 0.02124

Present Work 0.00000 0.00818 1.0955 0.01236 1.5530 0.02143

4 Conclusion and future work

In this study, the LBM is implemented through a finite-volume approach to perform 2-D,
incompressible, and turbulent fluid flow analyses on structured grids. Once validated
solving various laminar flow problems, the one-equation turbulence model of Spalart
and Allmaras is implemented into the solver. With available data from the literature, the
turbulence model implemented is validated for the flow over a flat plate and a NACA
0012 airfoil. The obtained results show that the present method provides almost identical
solution to the problems considered compared to the NS equations based flow solvers
that are using the same spatial discretization schemes.

Since this study points that the present method is promising and can be an alterna-
tive to the NS equations based methods, a 3-D version of the flow solver might be im-
plemented and more complicated flow problems can be studied. Furthermore, since the
method is very suitable to be parallelized, a version of the solver that takes advantage
of multi-threaded Graphics Processing Units (GPUs) might be implemented to obtain
significant speed-up values.
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