
Commun. Comput. Phys.
doi: 10.4208/cicp.260514.231214a

Vol. 18, No. 1, pp. 104-124
July 2015

Computing the Smallest Eigenvalue of Large Ill-Conditioned

Hankel Matrices

Niall Emmart1,∗, Yang Chen2 and Charles C. Weems1

1 College of Information and Computer Science, University of Massachusetts, Amherst,
MA 01002, USA.
2 Department of Mathematics, University of Macau, Macau, China.

Received 26 May 2014; Accepted (in revised version) 23 December 2014

Abstract. This paper presents a parallel algorithm for finding the smallest eigenvalue
of a family of Hankel matrices that are ill-conditioned. Such matrices arise in random
matrix theory and require the use of extremely high precision arithmetic. Surpris-
ingly, we find that a group of commonly-used approaches that are designed for high
efficiency are actually less efficient than a direct approach for this class of matrices.
We then develop a parallel implementation of the algorithm that takes into account
the unusually high cost of individual arithmetic operations. Our approach combines
message passing and shared memory, achieving near-perfect scalability and high tol-
erance for network latency. We are thus able to find solutions for much larger matrices
than previously possible, with the potential for extending this work to systems with
greater levels of parallelism. The contributions of this work are in three areas: deter-
mination that a direct algorithm based on the secant method is more effective when
extreme fixed-point precision is required than are the algorithms more typically used
in parallel floating-point computations; the particular mix of optimizations required
for extreme precision large matrix operations on a modern multi-core cluster, and the
numerical results themselves.

AMS subject classifications: 15B52, 15B57, 42C05, 65F15, 65G30, 65Y05

Key words: Parallel eigensolver, Hankel matrices, extremely ill-conditioned matrices.

1 Introduction

In the majority of standard matrix computations, the matrix elements come from mea-
surements of one kind or another. Accurate measurements might have 6-15 significant

∗Corresponding author. Email addresses: nemmart@yrrid.com (N. Emmart), yayangchen@umac.mo (Y. Chen),
weems@cs.umass.edu (C. C. Weems)

http://www.global-sci.com/ 104 c©2015 Global-Science Press

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 105

digits. In most cases, computations with double precision arithmetic and the right piv-
oting strategy produce results that are valid to the precision allowed by the initial mea-
surements. The round-off errors introduced during the computation are generally much
smaller than the uncertainty in the original measurements. In this paper, we examine
a class of ill-conditioned matrix problems from random matrix theory, whose elements
come not from measurements but are given by an explicit formula that can be evaluated
to arbitrary precision. Unlike standard problems, to perform accurate computations, the
initial matrix must be evaluated to thousands of digits of precision and the intermediate
computations must be performed with tens of thousands of digits of precision. The ex-
treme precision requires enormous computing resources, and presents novel challenges
and trade offs.

In particular, we study the problem of quickly and efficiently computing the smallest
eigenvalue of a family of ill-conditioned Hankel matrices. Recall that Hankel or moments
matrices, denoted as A, are obtained through (positive) weight functions w(x) supported
on R or subsets of R, and are defined by

Ai,j=µi+j :=
∫ b

a
xi+jw(x)dx, (i, j=0,1,2,···).

These matrices are symmetric, and generate a positive definite quadratic form. For the
problem at hand, we consider

w(x) :=e−xβ

, 0≤ x<∞, β>0,

and the moments are given by the formula:

µj =
∫ ∞

0
xje−xβ

dx=
1

β
Γ
(1+ j

β

)

, (j=0,1,2,···).

We denote the order N Hankel matrix by AN=(Ai,j)0≤i,j≤N−1. Γ(z) is the gamma function
and for complex numbers with a positive real part, gamma is defined by

Γ(z)=
∫ ∞

0
tz−1e−tdt.

The following are two example matrixes for N=4, β=1 and N=4, β= 7
4 :











0! 1! 2! 3!

1! 2! 3! 4!

2! 3! 4! 5!

3! 4! 5! 6!











and











4
7 Γ(4

7)
4
7 Γ(8

7)
4
7 Γ(12

7)
4
7 Γ(16

7)
4
7 Γ(8

7)
4
7 Γ(12

7)
4
7 Γ(16

7)
4
7 Γ(20

7)
4
7 Γ(12

7)
4
7 Γ(16

7)
4
7 Γ(20

7)
4
7 Γ(24

7)
4
7 Γ(16

7)
4
7 Γ(20

7)
4
7 Γ(24

7)
4
7 Γ(28

7)











.

In the numerical section of [9], Chen and Lawrence used the Jacobi rotation method to
compute the smallest eigenvalues for matrices up to size 300 by 300. For the 300 by

106 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

300, their algorithm required weeks of CPU time on a single core machine. Yet some
of the problems involving Hankel matrices only become interesting when the matrices
are at least 5000 by 5000. Even though computing capabilities have increased substan-
tially since their initial research in 1999, it is apparent that to handle such large matrices
requires an efficient, scalable, parallel solution.

In this paper, we explore this problem in depth. What makes it so hard? Why does
it require a supercomputer even for moderate matrix sizes? We examine several serial
eigensolver algorithms, comparing their speed and accuracy. Surprisingly, we find that
the best amongst these is a direct approach using the Secant method to find the first
zero of the characteristic polynomial. We then explore parallelizing this algorithm and
show that a simple LDLT determinant algorithm that assigns columns to nodes using
a round-robin technique can successfully overlap the computation and communication.
We demonstrate that this algorithm scales nearly linearly, achieving utilization rates of
over 90% on a range of cluster sizes.

One aspect of this work that is particularly interesting is the unusual combination
of computation and communication. The computations are performed using fixed point
integer arithmetic where each value requires kilobytes of storage. Because of the large
size of the values, the effective use of level 1 and level 2 caches are determined by the
implementation of the arbitrary precision integer routines rather than the blocking of the
original matrix. Further, communication of these very large values across partitions in a
parallel implementation represents an unusual range of message granularities. Our ap-
proach of combining MPI with OpenMP is not in itself novel, but we believe that the way
in which we balance these to obtain scalable performance in this context is informative
for future research in this area.

As a result of our exploration of this corner of the parallel implementation design
space, we are able to obtain completely new numerical results for much larger matrices
in just a few hours of wall-clock time, using a fairly modest cluster of up to 440 cores.
The approach does not appear to have any limitations that would prevent it from effi-
ciently scaling to larger problem sizes, running at the highest levels of parallelism that
are feasible with current technology. Finally, we present some of our numerical results
and describe future research.

2 Background

Random matrix theory which originated in multi-variate statistics in the 1920’s, and in-
dependently in nuclear physics in the 1950’s is an active and on-going area of research. It
has applications in many diverse fields: multi-variate statistics, quantum physics, traffic
and communications networks, and stock movements in financial markets. For a variety
of applications of random matrix theory, some of which are conjectural, ranging from the
zero distributions of the zeta-function to the statistics of the energy levels in chaotic cav-
ity see Mehta [19]. The recent monographs of Anderson, Guionnet and Zeitouni [2] and

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 107

of Blower [5] approach random matrices from a probabilistic point of view. In [23] one
finds statistical linkage analysis on chronic HCV infection. For the application of random
matrices to information theory of wireless networks, see for example [11], [17], and [8],
and the references therein. A collection of review articles on the application of random
matrices can be found in [3]. For a recent application of random matrix theory to a class
of problems in multi-variate statistics see [12], and the references therein.

Random matrix theory considers the properties (determinants, eigenvalues, eigen-
value distributions, eigenvectors, spectra, inverses, etc) of matrices whose elements are
random variables chosen from a given distribution. The properties of certain random
matrices in turn depend on the properties of matrices whose elements are exact math-
ematical functions, such as the Hankel matrices studied in this paper. Kerov [15], for
example, presents a monograph that examines the connections between representation
theory, random matrices and moment problems.

Hankel matrices occur naturally in moment problems - for a given sequence of mo-
ments (mean, variance, skewness, kurtosis, etc), they can be used to determine a proba-
bility distribution/measure that reproduces the moment sequence. In-depth studies on
this can be found in the monographs by Akhiezer [1] and by Krein [16]. Moment prob-
lems are classified according to the support of their distribution/measure. If the support
is a closed interval (the Hausdorff moment problem), there will always be a unique solu-
tion. If the support is the whole number line (the Hamburger moment problem), then one
can encounter a situation where the problem is said to be indeterminate, that is there are
infinitely many probability distributions/measures with the same sequence of moments.

The classic papers by Szegö [24], by Widom and Wilf [26] and by Widom [25] showed
that for those Hankel matrices of order N, generated by a probability density supported
on a closed interval, the corresponding smallest eigenvalue tends to zero as N tends to
infinity.

Berg, Chen and Ismail [4] showed that in the infinite interval case, the moment prob-
lem will be indeterminate if and only if the smallest eigenvalue of the Hankel matrix
tends to a strictly positive number as N tends to infinity. This is a new criteria for the
determinacy of the Hamburger moment problem and is part of our motivation for find-
ing fast algorithms to compute the smallest eigenvalues of large Hankel matrices. For
recent accounts of this and related problem see for example, the papers of Chen and Lu-
binsky [10], Lubinsky [18], and Berg and Szwarc [6].

3 The scale of the problem

The condition number is often a good indicator of the amount of precision required in
order to compute the smallest eigenvalue. Here we show that AN is extremely ill condi-
tioned.

108 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

The condition number is defined to be:

cond(AN)=
λN [AN]

λ1[AN]
, where λN is the largest eigenvalue and λ1 is the smallest.

The condition numbers can be estimated using the computation of λ1 and by bounding
λN as follows. The Raleigh quotient, ρ(u;AN) ranges over the interval [λ1,λN] for non-
zero u, therefore:

ρ(u;AN)=
〈ANu,u〉
〈u,u〉 ≤λN for all non-zero u.

Choosing u to be the column vector (0,0,0,··· ,1):

ρ(u;AN)=
〈ANu,u〉
〈u,u〉 =

1

β
Γ
(2N−1

β

)

≤λN .

Further, λN ≤ trace(AN), therefore:

1

β
Γ
(2N−1

β

)

≤λN ≤ trace(AN)=
1

β
Γ
(2N−1

β

)

+
N−1

∑
k=1

1

β
Γ
(2k−1

β

)

.

For large N, 1
β Γ

(

2N−1
β

)

is a good estimate for λN because ∑
N−1
k=1

1
β Γ

(

2k−1
β

)

is very small

compared to 1
β Γ

(

2N−1
β

)

.

In Table 1, condition numbers has been calculated using the lower bounds for λN

and the results of the λ1 computations. As can be seen from this table, in each case the
condition number is growing faster than NN .

Table 1: Lower bound on COND(AN).

N β=1/3 β=1/2 β=1 β=7/4 NN

100 8.52x10^1396 7.36x10^861 9.40x10^384 1.94x10^228 1.00x10^200

300 5.17x10^5066 4.65x10^3167 6.38x10^1429 3.55x10^819 1.37x10^743

500 4.56x10^9116 6.89x10^5726 3.62x10^2597 4.11x10^1472 3.05x10^1349

1000 1.85x10^20050 6.97x10^12663 7.62x10^5780 6.80x10^3240 1.00x10^3000

1500 1.11x10^31666 3.81x10^20055 8.45x10^9187 3.32x10^5125 1.37x10^4764

4 Properties of AN

The algorithms we explore in this paper rely on three properties of AN:

• AN is real and symmetric. AN has N positive eigenvalues and the smallest eigen-
value is simple.

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 109

• The eigenvalues of AN are the zeros of the characteristic polynomial P(x)=det(AN−
xI).

• AN is the Hankel moment matrix for the weight function w(x)=e−xβ
, x>0, β>0.

The first point is important for rapid convergence of the Secant algorithm which we argue
as follows. Since w(x)=exp(−xβ), as we have previously seen, the moments µj exist for
j = 0,1,2,··· . Let QN(x) be any polynomials of degree N with real coefficients {cj, j =
0,1,··· ,N}, namely,

QN(x)=
N

∑
j=0

cjx
j.

A computation shows that

∫ ∞

0
[QN(x)]2w(x)dx=

N

∑
j=0

N

∑
k=0

cjckµj+k,

where µj =β−1Γ((j+1)/β), j=0,1,2,··· . Since

∫ ∞

0
[QN(x)]2w(x)dx>0,

for QN(x) not vanishing identically in x, the quadratic form is positive definite,

N

∑
j=0

N

∑
k=0

cjckµj+k >0.

Szego’s variational characterization [24] of the quadratic form, shows that the smallest
eigenvalue is simple. Such a technique has been adopted in [9] for the least eigenvalue of
our Hankel matrix (β−1Γ((j+k)/β)), where β>1/2.

5 Algorithm selection

There are several standard techniques for finding eigenvalues, see e.g., [21]. For this
paper we evaluated four that are widely used, based on three criteria: (a) how much
precision does the algorithm require to meet a desired level of precision in the output;
(b) how fast is the calculation relative to the other algorithms; (c) how effectively can
the algorithm be parallelized. To evaluate these criteria in the context of the precision
required by the problem, the four algorithms were implemented using the GNU Multiple
Precision (GMP) library [14]. The specific algorithms are:

• Lanczos Algorithm as described by Stoer and Bulirsch [22, p. 401].

110 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

• Householder’s Algorithm as described by Stoer and Bulirsch [22, p. 391] (with mi-
nor modification).

• The Jacobi Method with Rutishauser’s enhancements, as described by Parlett [21,
pp. 189-196]. The Jacobi Method is known to perform well on graded matrices such
as ours.

• A direct approach with an LDLT determinant algorithm and a Secant root finder, as
described below (hereafter referred to as the Secant algorithm).

The algorithms are tested by varying the number of bits of precision (K) of the inputs and
the computation required to achieve a specific level of precision in the result. In Table 2,
Accuracy is the number of correct significant decimal digits in the result. Run Time is in
seconds. Factor is the slowdown factor for this algorithm relative to the fastest for a given
N. The algorithm with the most accuracy for the least run time will be the best choice for
computing the smallest eigenvalue.

Table 2:

Algorithm N β K Accuracy Run Time Factor

Secant 100 1 800 60 0.96 1.0

Householder 100 1 2490 9 3.80 3.96

Jacobi 100 1 700 58 5.91 6.15

Lanczos 100 1 206250 36 361.46 376.50

Secant 200 1 1400 90 23.67 1.0

Householder 200 1 5940 59 134.32 5.67

Jacobi 200 1 1500 24 216.55 9.15

Secant 300 1 1600 60 144.02 1.0

Householder 300 1 10000 53 990.26 6.88

Jacobi 300 1 2400 8 2027.72 14.08

Secant 400 1 2100 51 603.84 1.0

Householder 400 1 13250 41 4036.11 6.68

Jacobi 400 1 3375 48 9888.59 16.38

It is well known that graded matrices such as AN present special challenges for eigen-
solvers, but one unexpected result was the very poor performance of the Lanczos algo-
rithm, which failed for N=100 with anything less than 205000 bits of precision. There are
a number of variants of the basic Lanczos algorithm, some orthogonalize the new vector
after each iteration and some stop and restart the process. However we do not believe
the variants would improve the Lanczos results enough to make it competitive with the
other algorithms.

As can be seen from the table, for each N, the Secant algorithm is both the fastest and
the most accurate of the algorithms. Therefore, it’s valid to compare the run times. For

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 111

example, we can conclude that for N = 100, the Secant algorithm is at least 3.96 times
faster than the Householder method.

In the remainder of the paper, we thus focus on the Secant algorithm and show how
it can be effectively parallelized in the context of extreme precision arithmetic.

6 The Secant algorithm

The Secant algorithm can be used to find the smallest root of the characteristic polyno-
mial, P(x). P(x) can be defined as either det(xI−AN) or det(AN−xI). We use the latter
because it guarantees P(0) will be positive. The Secant algorithm starts with two initial
points x1 and x2 which must be less than λ1, the smallest eigenvalue. We choose x1 to be
a small negative value and x2 to be zero. The Secant algorithm then computes a sequence
of xj’s using the following recurrence relation:

xj+1= xj−
xj−xj−1

P(xj)−P(xj−1)
P(xj).

The computation is done when the most significant digits (15 decimal digits in our
case) of xj have stabilized. Since the eigenvalues of AN are distinct, the roots of P(x) will
all be simple and the Secant algorithm is guaranteed to converge rapidly to λ1, see [7].
Also note, since P(x) has no inflection points for x less than λ1, the slope of the Secant at
xj will always be less than P′(x) when xj < x≤λ1 and therefore the Secant is guaranteed
not to overshoot λ1.

Finally, there is no need to solve for P(x). Instead, we can evaluate P(x) directly
by computing det(AN−xI). Thus, for our matrices, the problem of finding the smallest
eigenvalue reduces to that of solving a sequence of determinants.

7 Verification using interval analysis

After the secant method has converged to some x∗, the next step is to prove that x∗ is in
fact an eigenvalue of AN. To do this, we need show that

det
(

AN−(x∗−ǫ)I
)

>0 and det
(

AN−(x∗+ǫ)I
)

<0

and prove that round off errors (both in the initial matrix and during the determinant
computation) have not poisoned the result. We do this using interval arithmetic. Interval
arithmetic replaces each value in the computation with a small interval containing the
exact value. Computations on intervals always round the lower end point down and
round the upper end point up, thus guaranteeing that the resulting interval contains the
correct result computed with infinite precision. For further reading see Interval Analysis,
by R.E. Moore [20].

112 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

In our process, we first compute AN to high precision and then construct a matrix of
intervals, guaranteeing that the gamma function evaluated to infinite precision resides in
the interval. We then truncate x∗ to 15 significant digits and compute det(AN−x∗ I). The
lower end point of the interval must be strictly positive. Next we add 1 to the least sig-
nificant digit of x∗ and compute det(AN−x∗ I) again. The upper end point of the interval
must be strictly negative. If zero is contained in the interval that results from either deter-
minant computation, then the verification has failed and we must increase the precision
and repeat the process.

The verification using interval analysis is quite slow to perform, but the results are
very strong. They guarantee that we have found the smallest eigenvalue† and that the
result is correct to 15 significant digits.

8 The LDLT determinant algorithm

There are several standard techniques to compute the determinant of a matrix. The fastest
general methods all involve factoring the matrix in some way and then calculating the
determinant from the factors. In our case, we can make use of the fact that AN is symmet-
ric and perform an LDLT factorization. Because x<λ1, AN−xI will be positive definite
and the factorization will be numerically stable without the need for pivoting. This is
essentially the same as a Cholesky factorization except that it avoids the square root op-
erations. To make the algorithm easy to parallelize, we use the sub-matrix order [13] for
the LDLT algorithm which applies a column of the matrix to all the remaining columns
to its right. See Fig. 1.

Once the matrix has been factorized, the determinant can be computed as the product
of the terms along the main diagonal:

det(AN)=ΠN
i=1Ai[i].

One thing to note, the divisions as shown in Fig. 1 are very expensive. In practice
we will introduce a new vector Bi, where Bi[j] = Ai[j] / Ai[i], and significantly reduce the
number of divisions.

Presented below are serial and parallel versions of the algorithm. All the numeric
computations are performed with arbitrary precision fixed point arithmetic using the
GMP Z functions. Fixed point arithmetic uses a fixed number of bits to the right of the
decimal point and a variable number of bits to the left of the decimal point. For each
element of the initial matrix AN the gamma functions are all evaluated with K bits of pre-
cision, i.e., K bits to the right of the decimal point. All intermediate computations during
the factorization and final determinant computation are done with 2K bits of precision.

†Theoretically, it is possible that roundoff errors during the secant method have caused the algorithm to
overshoot the smallest eigenvalue and instead converge on the wrong odd eigenvalue, i.e., λ3,λ5,λ7,···,
however, we believe it is highly improbable. Further, any such overshoot should be highly dependent on
the exact precision used during the secant method. A second run with slightly higher precision should
eliminate the risk entirely.

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 113

Figure 1: Submatrix order.

for (i=1 to N) {
// this loop computes Bi
for (j=i+1 to N)

Bi[j] = Ai[j] / Ai[i];

// these loops apply ith column (Bi) to columns Ai+1, Ai+2, ... AN
for (j=i+1 to N)

for (k=j to N)

Aj[k]=Aj[k] - Ai[j]*Bi[k];

}

Algorithm 1: Serial LDLT Code

Serial LDLT algorithm

Algorithm 1 shows the serial version of the LDLT algorithm. The algorithm loops
through the columns of A, computing Bi[j] = Ai[j] / Ai[i] and then applying it the column
to the remaining columns to the right.

Parallel LDLT algorithm

The parallel version of the LDLT algorithm partitions the columns across the nodes. The
columns are assigned using a round robin approach that balances the load as described
below. We use a combination of MPI and OpenMP to manage the parallelism. MPI is
used to distribute data between nodes and OpenMP is used to spread the computation
across multiple cores within a node. The inter-core communication overhead of OpenMP
is, of course, much less than for MPI, and the majority of the computation time is spent in

114 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

just a few loops that naturally parallelize with OpenMP. The data distribution between
the nodes is done using MPI broadcasts. These are run in a separate thread that allows
the communication to be overlapped with the computation.

Assign the columns to nodes in a balanced round robin fashion

Broadcast the values needed to construct the initial matrix

Compute B1
for (i=1 to N) {
if(column i+1 is assigned to this node) {
Apply the ith column (Bi) to column Ai+1
Compute Bi+1
Initiate background transmit of Ai+1 and Bi+1
Apply the ith column (Bi) to assigned columns from Ai+2 ... AN
Wait for transmit to complete

}
else {
Initiate background receive of Ai+1 and Bi+1
Apply the ith column (Bi) to assigned columns from Ai+1 ... AN
Wait for receive to complete

Compute any missing Bi+1 elements -- discussed in detail below

}
MPI barrier

}

Algorithm 2: Parallel LDLT Code

Collection of timing data

For all runs where the total run time is more than a few minutes, more than 99% of the
time is taken up by the LDLT factorizations. All the other tasks: start up, generating and
distributing the initial matrix, the secant and interval verification driver routines, and
collection and processing of run times, etc, take less than 1% of the total time.

For each LDLT factorization, times are gathered for each column on each node. If
the next column (column i+1) is assigned to this node, then the following timings are
gathered:

• The total time to apply Ai and Bi to column i+1, then compute Bi+1 and finally to
apply Ai and Bi to Ai+2 to AN. This is the computation time.

• In the transmit thread, two timers are kept, one times the transmission of the Ai+1
vector and the other times the transmission of the Bi+1 vector. The sum is the com-
munication time.

• The main thread records the amount of time the CPU is idle waiting for the transmit
to complete. This is the idle time.

• The time spent at the MPI barrier. This is the barrier time for the column.

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 115

If the next column is not assigned to this node, then the following timings are gathered:

• The time to apply Ai and Bi to Ai+1 to AN. This is the computation time.

• In the receive thread, there are two timers, one for the time to receive the Ai+1 col-
umn and one for the time to receive the Bi+1 column. The sum is the communication
time.

• If some elements of the B column are not sent, they must be computed locally (this
is discussed further in the optimizations section). The time spent computing these
values is measured and is the division time.

• The time spent waiting for the receive to complete is the idle time.

• The time spent at the MPI barrier is the barrier time.

At the end of LDLT factorization, the timing data from all the nodes and all the
columns are collected. The timing values are generated by averaging the values from
each node for each column Ai. The averages are then written to a log file. These average
times are the basis for the timing graphs presented.

Finally, note that because the solution is threaded, the communication time and the
computation time are overlapped.

9 Algorithm optimization

In developing this algorithm, we found that there were four areas in which it was most
profitable to focus our optimization efforts: distribution of the columns over the pro-
cessors, re-blocking and reordering the parallel loop(s), combining partial transmission
with local completion of some computations, and removing the remaining synchroniza-
tion barrier.

Column assignment

Because the matrix is triangular, the amount of processing time required decreases for
each successive column. A simple round robin distribution would assign node 1 far more
work than the last node in the cluster. To resolve this, we use a balanced round robin
approach that alternately assign M columns to nodes 1 up to M and then M columns
to nodes M down to 1. This approach does a satisfactory job of balancing load on a
homogeneous system.

The column assignment problem is, of course, more complex for a heterogeneous
system. We leave distribution over heterogeneous resources, such as a loosely coupled
grid, or a CPU/GPU combination, as a topic for future research.

116 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

OpenMP optimizations

Early versions of the algorithm used OpenMP on the innermost loop. The code was
structured as follows:

for (j=i+1 to N) {
#pragma omp parallel for

for (k=j to N)

Aj[k]=Aj[k] - Ai[j]*Bi[k];

}

Since the multiplications in the inner loop are quite slow (each iteration multiplies
tens of thousands of bits by tens of thousands of bits), and their computation time varies
considerably, depending on their location in the matrix, a significant amount of process-
ing time is wasted at the implicit barrier at the end of the inner for loop. There are a
number of ways this might be solved with OpenMP directives, but for our problem it
was convenient to lay the column vectors out in a single large array (called V in the ex-
ample) and iterate with just a single for loop, as shown on the next page.

#pragma omp parallel for threadprivate(j, k) schedule(dynamic, chunk_size)

for (index=lastIndex downto firstIndex) {
j=... decode j from index ...

k=... decode k from index ...

Vindex=Vindex - Ai[j]*Bi[k];
}

Notice also that this loop counts down through the indices. The reason for going
backwards is that the numbers are much smaller toward the upper left of the triangular
matrix and therefore the multiplications are faster. This arrangement therefore reduces
the time lost at the final barrier. We use a heuristic for the chunk size that balances the
thread synchronization overhead against the wasted time at the final barrier.

Sending versus computing Bi+1

Another problem with early versions of the algorithm was that as the size of the cluster
scaled up, the overall efficiency (percentage of the time spent doing useful computation)
dropped significantly. The original approach was to broadcast Ai+1 and then each node
would compute a local copy of Bi+1. This seems reasonable, given that the total number
of divisions is O(N2) versus O(N3) multiplications in the inner loop. However, all of
the divisions are run on each node, whereas the multiplications are distributed evenly
among the nodes. By the point that system size reaches 20 nodes, the duplicated divisions
represents a substantial performance hit.

Conveniently, during the early columns of the matrix, there is a significant amount of
idle communication bandwidth. We can put that bandwidth to good use by computing
Bi+1 on the node that is assigned column i+1 and broadcasting the values to the other

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 117

nodes. Toward the end of the matrix, however, the computation becomes communication
bound. At that point, sending the Bi+1 values takes more time than computing them
locally, so we stop transmission and let each node pick up with whatever portion of Bi+1
that it has already received.

Our final transmission algorithm can be summarized as:

serialize the Ai+1 column

send the Ai+1 column

break the Bi+1 column into chunks of 100 values

while (... there are more chunks ... and

... at least 8000 more multiplications to perform ...) {
send the next chunk of Bi+1

}

The thresholds of 100 values and 8000 multiplications were chosen empirically and
seem to work well on a variety of problem sizes and cluster geometries.

Removing the MPI barrier

The final optimization is to remove the MPI barrier. As one might expect, the barrier
forces the nodes with less work to wait at the end of each column for all nodes to complete
the column, wasting compute resources. This can be seen in Fig. 2. For columns 1 through
1250, the total column time with a barrier is more than the total column time without the
barrier. However, after column 1250, when the computation is communication bound,
the barrier has almost no effect on the total column time.

0

5

10

15

20

25

30

4

6
0

1
1
6

1
7
2

2
2
8

2
8
4

3
4
0

3
9
6

4
5
2

5
0
8

5
6
4

6
2
0

6
7
6

7
3
2

7
8
8

8
4
4

9
0
0

9
5
6

1
0
1
2

1
0
6
8

1
1
2
4

1
1
8
0

1
2
3
6

1
2
9
2

1
3
4
8

1
4
0
4

1
4
6
0

Column

T
im

e
 i
n

 S
e
c
o

n
d

s

Total Column Time - With Barrier

Total Column Time - No Barrier

Computation Time

Figure 2: The effect of removing the MPI barrier at the end of the loop. 40 nodes, each with 2 cores.

118 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

10 Performance

The performance testing was done on the University of Massachusetts Swarm cluster,
which has 60 compute nodes, each with 8 cores (Xeon 5355 processors at 2.66 GHz) and
16 GB of RAM per node. The nodes are connected via gigabit ethernet. The cluster is
normally partitioned such that our smaller tests were required to run on 48 nodes, each
with 5 cores for a total of 240 cores. To further evaluate scalability, we were granted a
short period in which to run on the full machine, although at that time five of the nodes
were inoperative, so we were able to exercise a maximum of 440 cores on the remaining
55 nodes. In addition to scaling, the performance figures thus also serve to demonstrate
the flexibility of the approach with respect to cluster geometry.

The results show the cumulative time spent running the determinant algorithm. The
results do not include the startup time, the time to generate the AN matrix, nor the time
spent running the actual secant computation. The total for these tasks is less than 1% of
the time spent computing the determinants.

In the tables and graphs below Total Time is the total wall time spent computing de-
terminants. Computation is the cumulative time spent executing useful, non-duplicated
computation, and Idle + Divs is the cumulative time in waiting for the communications
and local (duplicated) divisions to complete. We present Idle + Divs together because
they both represent wasted time due to a lack of network bandwidth and duplicated
computation. The values in parenthesis are times in seconds.

The Constant N table shows two trends. First, as β moves away from 1, the compu-
tation becomes more efficient. That is, the percentage of time spent doing computations
increases and the percentage of time spend waiting for results from another node and
divisions (Idle + Divs) decreases. Second, if the computation is communication bound,
which is the case for β≤ 1, then increasing the number of cores makes the computation
substantially less efficient. However, if it’s compute bound, as is the case when β=7/4,
the computation scales nicely. In fact, the amount of time wasted waiting for results from
another node and duplicate division is almost constant, 417 seconds vs. 426 seconds. In
other words, the algorithm scales almost perfectly when the problem is large enough to
be compute bound. The compute utilization graphs are shown in Figs. 3 and 4.

The constant beta table shows that as N increases, the percentage of time spent doing
useful computation increases. Efficiency for large values of N remains well into the 90%
range as the number of cores scales up from 80 to 440.

Fig. 5 shows breakdown of the times on a per column basis for a run of β= 7/4 and
N = 2000 with 440 cores. For columns up to approximately 1300, the computation time
is greater than the communication time, so the system is compute bound. After column
1300, the computation becomes communication bound and starts to do local divisions on
each node (which reduces communication time but increases duplicated computation).
Fig. 6 shows a graph of CPU utilization (computation time, excluding local division)
verses the wall time in seconds for the run. The utilization is roughly 90% for 90% of the
time and then drops off rapidly during the final columns.

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 119

Table 3: Constant beta.

β=7/4, N=1000 β=7/4, N=1500 β=7/4, N=2000 β=7/4, N=2500

80 Total Time 0:43:57 (2,638) 4:04:31 (14,672) 13:57:35 (50,255)

Cores Computation 92.2% (2,432) 97.0% (14,231) 98.4% (49,438) Run not performed

Idle + Divs 7.2% (190) 2.8% (417) 1.5% (773)

240 Total Time 0:17:33 (1,054) 1:24:53 (5,094) 4:45:25 (17,125)

Cores Computation 77.0% (811) 91.2% (4,645) 96.2% (16,466) Run not performed

Idle + Divs 21.5% (227) 8.4% (426) 3.7% (630)

440 Total Time 0:13:26 (806) 0:53:06 (3,186) 2:47:48 (10,068) 7:33:36 (27,216)

Cores Computation 57.1% (460) 82.5% (2,629) 91.6% (9,226) 95.3% (25,933)

Idle + Divs 42.0% (339) 16.8% (536) 7.9% (797) 4.4% (1,202)

Table 4: Constant N.

β=1/3, N=1500 β=1/2, N=1500 β=1, N=1500 β=7/4, N=1500

80 Total Time 8:29:45 (30,585) 6:38:32 (23,912) 3:59:40 (14,380) 4:04:31 (14,672)

Cores Computation 88.5% (27,075) 87.3% (20,868) 85.4% (12,277) 97.0% (14,231)

Idle + Divs 11.4% (3,483) 12.6% (3,013) 14.4% (2,076) 2.8% (417)

240 Total Time 4:21:12 (15,673) 3:38:29 (13,109) 2:23:07 (8,588) 1:24:53 (5,094)

Cores Computation 54.7% (8,575) 49.3% (6,469) 43.9% (3,767) 91.2% (4,645)

Idle + Divs 45.1% (7,073) 50.4% (6,609) 55.8% (4,793) 8.4% (426)

Utilization Graph

80 Cores

80 Cores
80 Cores

240 Cores

240 Cores

240 Cores440 Cores 440 Cores440 Cores
440 Cores

0

25

50

75

100

1000 1500 2000 2500

N (Matrix Size)

U
ti

li
z
a

ti
o

n

Figure 3: Constant beta.

Utilization Graph

80 Cores

Series1
Series1

Series1

240 Cores

Series2

Series2

Series2

0

25

50

75

100

1/3 1/2 1 7/4
Beta

U
ti

li
z
a

ti
o

n

Figure 4: Constant N.

11 Communication

There are a couple of interesting things to note about the algorithm. First, it works by
preparing a column, starting a background broadcast and then applying the column to
the remainder of the matrix. As the matrix size grows, or the precision in the numbers

120 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

0

2

4

6

8

10

12

14

1
0

7
0

1
3
0

1
9
0

2
5
0

3
1
0

3
7
0

4
3
0

4
9
0

5
5
0

6
1
0

6
7
0

7
3
0

7
9
0

8
5
0

9
1
0

9
7
0

1
0
3
0

1
0
9
0

1
1
5
0

1
2
1
0

1
2
7
0

1
3
3
0

1
3
9
0

1
4
5
0

1
5
1
0

1
5
7
0

1
6
3
0

1
6
9
0

1
7
5
0

1
8
1
0

1
8
7
0

1
9
3
0

1
9
9
0

Column

T
im

e
 i
n

 S
e
c
o

n
d

s

Computation (Seconds)

Communication (Seconds)

Divisions + Idle (Seconds)

Figure 5: Column Timing Graph, Beta=7/4, N=2000, 440 cores.

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000

Time in Seconds

U
ti

li
z
a
ti

o
n

Figure 6: Utilization Graph, Beta=7/4, N=2000, 440 cores.

grows, it becomes easier and easier to fully overlap the computation and communica-
tion. This means that, with a large enough problem, network latency has minimal impact
on performance, which is dominated by network throughput. Given sufficient network
throughput, the algorithm can scale to very large systems.

Second, as N grows, the precision (K) required to perform the computation increases.
In the inner loop of the computation two numbers, each with K bits are being multiplied.
Increasing K thus increases the processing time by approximately O(K2), while the com-

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 121

munication time increases only linearly. Therefore, as N grows, there is a very powerful
effect on the efficiency and scalability of the algorithm.

12 Numerical results

Table 5 shows a sampling of results for the smallest eigenvalue computations. It clearly
illustrates the wide range of values that the algorithm must handle. These values are
entirely new solutions for this problem.

Table 5: The smallest eigenvalue of AN .

N β=1/3 β=1/2 β=1 β=7/4

100 3.4720 2.7397×10−1 2.1079×10−15 1.6976×10−45

300 3.3984 1.5837×10−1 5.5215×10−28 1.4844×10−102

500 3.3763 1.2047×10−1 1.1138×10−36 6.7121×10−149

1000 3.3544 8.2087×10−2 1.0892×10−52 3.6209×10−246

1500 3.3447 6.6295×10−2 5.4593×10−65 6.4232×10−330

2000 6.2011×10−406

2500 1.1483×10−476

13 Comparing with theory

When N gets large, there is an analytical approach to provide solution to the smallest
eigenvalue problem. The theory based on the ideas of Dyson’s Coulomb fluid, gives a
large N expression for our orthogonal polynomials, from which we derived an analytic
expression for β 6= p+1/2, p=1,2,··· in Chen and Lawrence, eq.(3.18).

Specializing this to β=7/4, the inverse of the smallest eigenvalue for large N reads

1

λ1(N)
∼ 1

8π5/4

c1/4

√
A0

esec(7π/4)N−5/7exp

[

2N5/7

√
πc

(

A0−
A1

c

1

N4/7

)]

,

where

c=4

[

(Γ(7/4))2

Γ(7/2)

]4/7

, A0=
14
√

π

5
, A1=

7
√

π

3
.

We find, for β = 7/4, the results shown in Table 6, which compares very well with the
numerics.

For β=1, we have,

λ1(N)∼27/2 π3/2eN1/4 e−4
√

N .

From which we have the results in Table 7, again in very good agreement with numerics.

122 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

Table 6: β=7/4: numerical vs. theoretical result.

N Numerical λ1 theoretical λ1 error

100 1.6976×10−45 1.7424×10−45 2.64%

300 1.4844×10−102 1.5074×10−102 1.55%

500 6.7121×10−149 6.7929×10−149 1.20%

1000 3.6209×10−246 3.6514×10−246 0.84%

1500 6.4232×10−330 6.4667×10−330 0.68%

2000 6.2011×10−406 6.2369×10−406 0.58%

2500 1.1483×10−476 1.1542×10−476 0.51%

Table 7: β=1: numerical vs. theoretical result.

N Numerical λ1 theoretical λ1 error

100 2.1079×10−15 2.3006×10−15 9.14%

300 5.5215×10−28 5.8083×10−28 5.19%

500 1.1138×10−36 1.1585×10−36 4.01%

1000 1.0892×10−52 1.1200×10−52 2.83%

1500 5.4593×10−65 5.5852×10−65 2.31%

Table 8: β=1/2: numerical vs. theoretical result.

N Numerical λ1 theoretical λ1 error

100 0.27397 0.40360 47.32%
300 0.15837 0.21365 34.91%
500 0.12047 0.15855 31.61%

1000 0.082087 0.10555 28.58%
1500 0.066295 0.083130 25.39%

At β = 1/2 the classical moment problem is at the verge of being indeterminate, a
conjectured smallest eigenvalue for large N reads

λ1(N)∼8π

√

ln(4π Ne)

(4π Ne)2/π

from which we find, for β=1/2, the results shown in Table 8.

14 Conclusion

Large ill-conditioned Hankel matrices present an unusual mix of computation that are
not readily solved with traditional approaches. We have explored a space of potential al-
gorithmic solutions to determine which approach provides the greatest efficiency given
the special precision requirements of the problem. Surprisingly, we found that a direct

N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124 123

method is more effective than the more sophisticated algorithms that are commonly em-
ployed. Our parallel implementation of this algorithm uses shared memory and message
passing to optimize performance, taking into account the unusual mix of computation
and communication involved in working with extreme precision values. Some of the
related optimizations involve the distribution and blocking of the data, sending com-
puted columns during the idle communication time that is available during the lengthy
local computations, sometimes transmitting partial results for which the computations
are completed by the receiver, and eliminating a barrier that counter intuitively improves
performance. The result is a parallel implementation that scales nearly perfectly, and that
can be made nearly insensitive to network latency while taking maximum advantage of
network throughput. The algorithm we presented has thus proved to be an elegant, ef-
ficient, fast and scalable solution to the problem, with guaranteed numeric results. As
a result, we have been able to considerably extend the known set of solutions for these
matrices using a modest 440 node cluster. The apparent continued scalability of the ap-
proach at last puts solution of larger Hankel matrices associated with particularly inter-
esting problems within reach of modern hardware.

Acknowledgments

This work is supported in part by the National Science Foundation under Award No.
CCF-1217590 and NFS grant #CNS-0619337 and by FDCT 077/2012/A3. Any opinions,
findings conclusions or recommendations expressed here are the authors and do not nec-
essarily reflect those of the sponsors.

References

[1] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver
and Boyd, Edinburgh, 1965.

[2] G. W. Anderson, A Guionnet and O. Zeitouni, An introduction to random matrices, The
University Press, Cambridge, 2010.

[3] Z. Bai, Y. Chen and Y.-C. Liang, Random matrix theory and its applications, Lecture Notes
Series. Institute for Mathematical Sciences. National University of Singapore. Vol. 18, 2009.

[4] C. Berg, Y. Chen and M.E.H. Ismail, Small eigenvalues of large Hankel matrices: the inde-
terminate case, Math. Scand., vol. 91, 67–81, 2002.

[5] G. Blower, Random Matrices: High dimensional phenomena, The Univeristy Press, Cam-
bridge, 2009.

[6] C. Berg and R. Szwarc, The smallest eigenvalue of Hankel matrices, Constructive Approxi-
mation, vol. 34, 107–133, 2011.

[7] R. L. Burden, J. D. Faires, Numerical Analysis, 4th edition. PWS-KENT Publishing Company,
Boston, Massachusetts, 1989.

[8] Y. Chen, N. Haq and M. McKay, Random matrix models, double-time Painleve equations,
and wireless relaying, J. Math. Phys., vol. 54, 063506, 2013.

124 N. Emmart, Y. Chen and C. C. Weems / Commun. Comput. Phys., 18 (2015), pp. 104-124

[9] Y. Chen and N. D. Lawrence, Small eigenvalues of large Hankel matrices, J. Phys. A: Math.
Gen., vol. 32, 7305–7315, 1999.

[10] Y, Chen and D. S. Lubinsky, Smallest eigenvalues of Hankel matrices for exponential
weights, J. Math. Anal. Appl., vol. 293, 476-495, 2004.

[11] Y, Chen and M. McKay, Coulomb fluid, Painlevé Transcendents, and the information theory
of MIMO systems, IEEE Trans. Information Theory, vol. 58, 4594–4634, 2012.

[12] P. Dharmawansa, M. McKay and Y. Chen, Distributionsof Demmel and Related Condition
Numbers, Siam J. Matrix Anal., vol. 34, 257–279, 2012.

[13] J. W. Demmel, M. T. Heath, H. A. van der Vorst. Parallel Numerical Linear Algebra, ACTA
Numerica, 1992.

[14] GNU Open Source Community. The GNU Multiple Precision Arithmetic Library.
http://www.gmplib.org/

[15] S. V. Kerov, Asymptotic representation theory of symmetric group and its application in
analysis, American Mathematical Society, 2003.

[16] M. G. Krein and A. A. Nudelman. Markov moment problems and extremal problems, Amer-
ican Mathematical Society, 1977.

[17] S. Li, M. Mckay and Y. Chen, On the distribution of MIMO mutual information: An indepth
Painlevé based characterization, IEEE Trans. Information Theory, vol. 59, 5271–5296, 2013.

[18] D. S. Lubinsky, Condition of Hankel matrices for exponential weights, J. Math. Anal. Appl.,
vol. 314, 266285, 2006.

[19] M. L. Mehta, Random Matrices, 3rd edition. Elsevier, Singapore, 2006.
[20] R. E. Moore, Interval Analysis. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1966.
[21] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics in Applies Mathematics; 20.

Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1997.
[22] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edition. Texts in Applied Math-

ematics 12. Springer Science and Business Media, LLC, New York, New York, 2002.
[23] A. A. Quadeer, R. H. Louie, K. Shekhar, A. K. Chakraborty, M. Hsing, M. R. Mckay, Statistical

linkage analysis of substitutions in patient-derived sequences of genotype 1a Hepatitis C
Virius non-structural protein 3 exposes targets for immunogen design. J. Virology, 2014, Apr.
23.

[24] G. Szegö, On some Hermitian forms associated with two given curves of the complex plane,
Trans. Amer. Math. Soc., vol. 40, 450–461, 1936.

[25] H. Widom, Rapidly Increasing Kernels, Proc. Amer. Math. Soc. vol., 14, 501–506, 1963.
[26] H. Widom and H. Wilf, Small eigenvalues of large Hankel matrices, Proc. Amer. Math. Soc.,

vol. 17, 338–344, 1966.

