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Abstract. An efficient and accurate numerical scheme is proposed for solving the trans-
verse electric (TE) mode electromagnetic (EM) propagation problem in two-dimensional
earth. The scheme is based on the alternating direction finite-difference time-domain
(ADI-FDTD) method. Unlike the conventional upward continuation approach for the
earth-air interface, an integral formulation for the interface boundary is developed and
it is effectively incorporated to the ADI solver. Stability and convergence analysis to-
gether with an error estimate are presented. Numerical simulations are carried out
to validate the proposed method, and the advantage of the present method over the
popular Du-Fort-Frankel scheme is clearly demonstrated. Examples of the electromag-
netic field propagation in the ground with anomaly further verify the effectiveness of
the proposed scheme.
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1 Introduction

Interpretation of electromagnetic data in complex geological environments depends on
the multidimensional forward and inverse modeling, and the topic is of great interest
to geophysics community. The finite-difference time-domain (FDTD) method first intro-
duced by Yee [44] and Taflove [38] is now generally regarded as one of the most com-
monly used tools in the EM exploration applications. Oristaglio and Hohmann [28] used
the DuFort-Frankel scheme to simulate 2D transient response to the shut-off of a line
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source. Lepin [24] extended the FDTD scheme into 3D cases by using the Fourier trans-
form along the strike direction, in which a 2D problem was solved for discrete wavenum-
bers. Such model is usually referred as a 2.5D problem, and it performs well for a general
3D structures [36]. Wang and Hohmann [42] extended the FDTD scheme to 3D applica-
tions, where the DuFort-Frankel scheme was employed with a staggered-grid. The di-
vergence condition of the magnetic field was imposed and a displacement current term
was introduced to ensure the numerical stability. Commer and Newman [4] developed
a parallel version for 3D applications. By transforming the Maxwell equation to another
form which was less frequency dependent, Maao achieved an efficient implementation of
FDTD computation [25]. Other works basing on the finite difference including the hybrid
finite-difference method and parallel computing were reported in [45] and [34].

In addition to the finite difference (FD) method, the finite volume (FV) and finite el-
ement (FE) methods have also been frequently used. The work on FV method covers
both the frequency domain [5,14] and time domain [15]. With the advantage of dealing
well with complex geometric domains as well as complicated geologic interfaces, the FE
method is very popular in time domain [16,17] and in frequency domain [18]. Gold-
man et al. [10] applied the FE method in the spatial formulation for the 2D problem and
the backward Euler method in the time-domain. Everett and Edwards [7] developed
the finite-element time-domain (FETD) method to simulate the marine electromagnetic
propagation in 2.5D case. Um et al. [41] developed an iterative FETD to investigate the
diffusion behavior in 3D earth, where an adaptive time step doubling method was con-
sidered to reduce the computing time. Besides the time domain approaches, many work
has also been reported in the frequency domain. Without the consideration of time step,
it is particularly suitable for applying FE to 2D [23], 2.5D [20] and 3D [30,40] problem:s.
Recent development on the FE method in EM includes the edge-based FE method [3,26],
multifrontal method [6], adaptive FE method [12, 31], parallel computation [21,30] and
other inversion related problems [11,32].

However, it is well known that the computing cost associated with FE method is very
expensive. It is not a trivial task to generate a proper grid system, the more complex the
earth structure is, the more cost there will be needed. Besides, since the resultant matrix
in the FE method is frequently ill-conditioned, the solutions may require the use of direct
methods [40, 41]. It is worth to note that the computational cost for a direct solver is
O(N?), therefore a tremendous amount of storage requirement and computing time are
demanded.

Compared with the FETD approach, one attractive advantage of the FDTD algorithm
lies in its straightforward implementation. It is feasible to implement an efficient FDTD
code with limited computing and storage resource. Further improvements are possible
by considering implicit FDTD because of their favorable stability condition as well as
computing efficiency, such as ADI-FDTD, Symplectic-FDTD, EC-S-FDTD, etc [2,5, 8,9,
27,37]. With its unconditional stability, the ADI method first introduced by Peaceman
Rachford [29] and Douglas [19] could take larger time step than the explicit schemes.
Moreover, it is easy to extend an ADI algorithm from 2D problems to 3D problems.
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The storage requirement and computing cost usually depend on the model and the
governing equations. Various FDTD formulations have been proposed using diffusion
equation [4,28,42], Maxwell equations [22,33,43] and Helmholtz equation [35,40,41]. In
this study, we consider a 2D model based on the diffusion equation simulating the electric
field. The primary advantage of this choice is that the number of unknowns is much
smaller than in other cases. The study of a 2D wave propagation problem is essential,
since developing an efficient and accurate solution for a 2.5D model directly depends on
the quality of the 2D scheme. Moreover, when implementing a 3D computational code,
the 2D scheme can also be extended by adding variables without changing the governing
equations.

The major contribution of the presented study are threefold. First, we implement ac-
curate boundary conditions for the earth-air interface and the underground interface. A
popular approach to avoid the discretization in the air is to extend one layer into the
air [1,4,28,42], and this procedure is known as upward continuation. Here, an integral
equation is imposed at the earth-air interface, which provides an accurate relationship be-
tween the normal derivative and horizontal derivative of the electric field. The challenge
is how to incorporate the integral equation numerically. Moreover, for the boundary in
the earth, the Neumann boundary condition is applied instead of the PEC (i.e. Dirichlet
type boundary condition) in order to reduce the reflection error. Secondly we propose
the ADI-FDTD scheme including the treatment of a nonlocal boundary condition, which
appears due to the integral boundary condition at the earth-air interface. The stability
analysis and convergence order are reported. Finally, as an implicit scheme, numeri-
cal example demonstrates that the combined ADI-FDTD algorithm has a competitive
advantage over the explicit FDTD in both efficiency and accuracy. This is because the
ADI-FDTD is unconditionally stable and allows the use of larger time steps.

Our paper is organized as follows. In Section 2, we present the mathematical model
for the 2D TEM problem with the boundary conditions in the earth-air interface and un-
derground interface. The ADI-FDTD formulation for this model are reported in Section
3. Then, Sections 4 and 5 give the stability analysis and error estimate. The proposed
ADI-FDTD scheme is validated, and numerical simulations are reported in Section 6.

2 TEM model

Consider a 2D transient electromagnetic (TEM) model in the x-z plane with a rectangular
domain Q = [0,a] x [0,b] as depicted in Fig. 1, and the time interval is [0,T]. Under the
quasi-stationary assumption of the Maxwell’s equations, the TEM model is constructed
as the following initial-boundary value (IBV) problem [28]:

9E PE PE s
P‘OUg—W‘Fﬁ:—VOa—;, in (), (2.1)
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where E is the electric field, g is the permeability of the free space, o = o (x,z) is the
conductivity distribution, Js is the density of the source current in the y-direction. P
represents a principal value integral and 7 is the outward pointing normal direction.
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Figure 1: Geometry for the 2D TEM problem with the double line source.

The system (2.1)-(2.3) describes the electric field induced by the variation of the source
Js in the earth. Since the conductivity ¢ in the earth is normally much larger than the per-
mittivity € so that the wavelike features of the electric field vanish very quickly, therefore
we consider the diffusion equation (2.1) as the governing equation. The upper boundary
condition (2.2) is derived from the radiation boundary condition, it indicates the relation-
ship to be satisfied for the electric field at the earth-air interface.

For the treatment of the earth-air interface in a 2D TEM modelling, a popular ap-
proach is to use the upward continuation by extending one layer into the air [28, 42].
Moreover, to avoid the reflection error from the Dirichlet boundary condition, the com-
putation domain must be large enough so that the values at the subsurface boundaries to
be the analytical solution for half-space.

In the present study, we handle the earth-air interface by imposing the exact integral
boundary condition (2.2). In addition, the Dirichlet condition is replaced by a Neumann
condition for the boundary in the earth (I';, I's, I'y) (2.3). For the simulation of a suffi-
ciently large domain, this would significantly reduce the reflections from the subsurfaces.

In fact, to avoid the singularity at the early time, the excitation of EM responses from
the shut-off of the current source J; is generally replaced by imposing the initial condi-
tions on the electric field. Thus, we set J; to zero and adding the following initial condi-
tion:

E(x,z,0)=Ep(x,z), in Q. (2.4)
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3 Numerical formulation for ADI-FDTD with integral boundary

In this section, the ADI-FDTD scheme is proposed for the IBV problem (2.1)-(2.4).

First, let us introduce the partition of the computation domain as displayed in Fig. 1,
where x;, i=0,1,---,I, and zj, j=0,1,---,], represent the mesh grids along the x and z
directions, respectively. Here, z; is the earth-air interface. Let t* denote the discretization
for the time interval [0,T] and At, =#"—#""! be the time step. Also define x, 1= (xi+

Xiv1)/2, Zi1= (zj+zj41)/2and 13 = (#"+£"11) /2. Let Axj=x;—x;_1, Azj=zj—2zj_1 be
the spatial steps in the x and z directions. Define the central-differential operators as:

—E. 1. E...i—E .
i+3, i-3, ij+3 Tij—3
5sz]— 2]_x 2]/ 5ZE1]: Z] Z_Z] 2/ (31)
iyl i+
— (A ‘ _1(A. ‘
where X1 =% 1= 5 (Ax;+Axiy1), and Zi 172 1= 7 (Azj+Azjiq).

The proposed ADI-FDTD scheme for the TEM model (2.1)-(2.4) is constructed as fol-
lows:

Step 1: Compute the intermediate variable Ents using E" implicitly in the x direction
and explicitly in the z direction.

"t _pn .

L] L] 2phts 21n
oL M S2p"Ta Ly s2En
]’l L] Atn+1/2 X 1,j z71,]

Z(En—&-% En—i—%) Z(En—i-%_En—i-%)

B i+1,; " Fij _ ij i—1,
Axi1(Axi+Axi1)  Axi(Axi+Axiiq)
Z(Eng_Eg]‘) Z(Egj_Egj—l)

_ , i=1,---,1-1, j=1,...,]—1, 3.2
AZj+1(AZj+AZj+1) AZj(AZj+AZj+1) J ] ( )

with the following boundary conditions for I';, I's and I'y:

n—&-% _ n+%

n+% _ 1 n+% i s
Ei,O _Ei,l 7 EO/] _Ellj 7 EL]‘ _Elfl,]" (3.3)

It is necessary to note that in the first step, there is no need to compute the values of

the intermediate variable E"*2 on the upper boundary I'y since they would not be used
in the second-step calculation.
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To clarify the computing procedure of this step, the scheme (3.2) is rearranged as:

<1+ Atn+1 + Atn+1 >En+%
noi jAX; (Axi+Axip1)  poi jAxip1 (Axi+Axiq) )Y
_ Aty nty Aty En—&-%
oy DX (DX +Axi 1) Y 0y i AX o (Ax+ Axgyg) Y
_ (1 B Aty B Atyiq > "
‘MO'Z',]‘AZ]‘(AZ]‘—FAZ]‘+1) ]/lo-i,jAZjJrl (AZj+AZj+1) ]
Atn+1 Atn—H
E". E" .. 3.4
+ Pla’i’jAZj(AZj—’_AZjJrl) ij—1 * ]/lo-i/jAZj+1 (AZ]‘+AZ]‘+1) Chs S

For a givenindex j (j=1,---,]—1) in the z direction, (3.4) and (3.3) lead to a tridiagonal
linear system which could be computed effectively by Thomas” algorithm with a cost of

O(I) [39].

Step 2: Compute E"*! using Erts explicitly in the x direction and implicitly in the z
direction.

1
ErHl_ En+§

i,j i,j 2pNts | 2pntl
o— M 2"t s2pn
MO Aty /2 X 02N
n+3 n+3 n+%  n+i
2(Ei+1,j_Ei,j ) Z(Ei,j _Ei—l,j)

T Axi 1 (Axi+Axip1)  Axi(Axi+Axi4)
n+l _ pn+l n+l__ pn+l
2(E 5 —E)  2(ET BT 1, )1, G5)
Azjy1(Azj+Azjq)  Dzj(Azj+Azj ) A , PRy ,

with the boundary conditions for I'p, I's and T's:

n+1_ rn+1 n+1__ rn+1 n+1_ rn+l1
EZ’O - El’l / EO/] - Elr] ’ EI!] - EI*lr]. (3.6)

The numerical scheme for the upper boundary I'; is given by (we will elaborate on
this shortly):

+1 +1 +1 _ +1 +1
SEf; 4B HES, 1 Ey By

=0. 3.7
2Az; T xi—kar% (37)
Scheme (3.5) can be rewritten as
<1+ Atn—H + Atn—i—l ) ’.1.+1
]/lUi,jAZj(AZj+AZj+1) "MO'Z',]‘AZ]‘+1 (AZj+AZj+1) i
Aty n+1 Aty n+l

_ il E'
i iAzj(Azj+Azj) T oAz (Azj+Azj) P
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_ (1 _ Aty _ Aty > n+}
in,iji(Axi—kAxiH) ;llO'i,ijH] (Ax;+Axii1)) Y
Aty n+3 Aty g ntl

L2 E. 2. 3.8
+P‘Ui,iji(Axi+Axi+1) U o A (Axi+Axy) Y 8)

For a given index i (i=1,---,I1—1) in the x direction, a tridiagonal linear system could
be constructed by (3.8), (3.6) and (3.7).

For simplicity, we will take homogeneous mesh grids and time steps, thatis Ax=Az=
h, At=T/N.

3.0.1 Treatment of the integral boundary condition (2.2)

In the second step of the ADI-FDTD scheme, the electric field at the earth-air interface
EZ]H (i=0,---,I) must be known in order to make the linear tridiagonal system solvable.
This can be achieved by discretizing the boundary condition (2.2) by numerical differen-
tial and integral. We approximate the derivative term ‘3—5 by:

JE"+1 N 3EZ}H —4EZ?__11+EZ;__12

on i 2h !

(3.9)

which is second order accurate. For the integral term, we employ the following dis-
cretization:

Y En+1
&%y

—+o0
P/ L’a—li(x’,z:b,tnﬂ)dx’i Z — 2y
—c0 X—x"0x k=1%i ™ Xt

Beng =Bl gy (3.10)

k=1 i Xpql

Substituting (3.9) and (3.10) into (2.2), it leads to (3.7). Note that (3.7) can be rewritten

as
+1 +1 —
EET‘H_ ET,] E?fl,] +lIZ:2< 1 B 1 >E”+1
270 7‘C(i—3/2) 7‘C(i—[—|—3/2) T i—k+1/2 i—k—1/2) 7k
4E{7+l _EﬁJrl
_ -1 1,1*2’ i=1,---,I—1. (3.11)

2

From (3.11), it is clear that the values of E"*! at the earth-air interface, i.e. Eﬁ’}l, J, can
be computed by solving the following linear system:

AET;JIFEL] = BE;Z:—}_El,]fl—i_CE?jEl,]fZ’ (3.12)
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where B=diag(2), C=diag(—3). And the matrix A is given by

A(r-1)

x (I-1)
3,2 21 201_1 2/ 1 1 2 1
st (-1 7(—3) s —7) —EEm
_2 3.4 2(1_1) E(L_L) _2_1
T 2'n m\3 m\2[-7 2I-9 T (21-7)
21 2(1 3.4 2/ 1 1 2 1
| s (-1 s+ =) —rE
2 1 2/ 1 1 2/ 1 1 3, 4 P
_§ (21;7) §(211—7 N 211—9) E2(21;9 B 21111) ) ij’% 3_ %2
T (20-5) %(21—5_21—7) E(21—7_21—9) E(é_ ) 2tx
pa) ol Bi(1)
=|pB(2:1-2) Ay pi1(2:1-2) |, (3.13)
B(I-1) af  pi(I-1)
where

+
Bi=A(l:I-1,1-1)=( -2 L 2 1 3,2
P "\ x5 wQ@l=7) 2w )”

T

2 /1 2,1 1 2/ 1 1
=A(1,2:1-2)T=( =(2-1), =(=-2), - —
x=A(L ) <7r<3 )'7‘((5 3)’ (21 5 20— 7))

T
et 1-07=( g gt) o) 20 )
(3.14)

It is obvious that Ag is an (I—3) x (I —3) symmetric matrix.
However, with the unknowns Eﬁr}l,],l and Eﬁil,}ﬁ in (3.12), it is impossible to
compute E" 11 To resolve the problem, we could eliminate Eﬁil -1 and 1'51 T-1,]-2

1:1-1,]"
using (3.5).
First let us express the system (3.5) in a matrix form, for each i from 1 to I —1, we have
PE} ] =F, (3.15)
with
—a 14a 0 O e 0 0
—a 142a —a O o 0 0
P=| i I : (3.16)
0 0 oo —q 142a —a 0
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where a =

Zth’ F represents the RHS of this linear system.

Now, the downward recursion algorithm could be applied to the tridiagonal system
(3.15) to eliminate the lower diagonal and render the diagonal elements to be ones (upper
triangularization). The last two equations in the system are given by

Ef;rll pn+lEﬂ+1 qﬁrll E;q]+12 pn+lEn+11_|_qn+1' (3.17)

Substituting the first equation of (3.17) into the second one, we obtain

Elf L =pi i EL e s (3.18)

Using (3.17) and (3.18), we could replace Eﬁr}l/ -1 and Eﬁil, -2 in (3.12) to complete

the linear system with respect to Ef. 11, ; and solve it by a linear solver. With the values
of Eﬁil, I the second step of the ADI-FDTD scheme can be implemented.

Remark 3.1. The proposed ADI-FDTD scheme is easy and efficient to implement. For
the integral boundary condition (2.2), there is only one extra linear system to compute in
each iteration besides a sequence of tridiagonal linear systems. However, the extra cost
is negligible since there are many fast solvers. In addition, in each substep, the original
2D problem is transformed to a series of 1D problems with tridiagonal linear systems.

4 Stability analysis of ADI-FDTD in L? norm

Now, we analyze the stability of the proposed ADI-FDTD scheme for the model (2.1)-
(2.4). Firstly, define the following discrete L? norms and the corresponding inner product:

J-11—
’En||2 ZZEH h2 ’(5 EnHZ ZZ (5 E;’lJr 2h2
j=li= j=li= 4
2 __ (=S 2 2 2__ o 21,2
|6, E"||> = ZZ(SE:’H W, ||6:6,E"|| 2255E1+ ]+1 V22,
j=0i= j=0i=
J-1I—
(u,v)= ZZ%MW (4.1)
j=li=
and
2h2 2h2 2h2 =t a2

HEnHFl ZEII 2 ||EHHF2 ZEI] 2 ”En||r3 ZEZO 2 HEH||%4:Z;E8,]E/ (42)
]:

where I'; refers to the earth-air interface, I';, I's and I’y are the three subsurfaces counter-
clockwise as shown in Fig. 1.
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The discrete L2 norm of E in the inner domain without boundaries is defined by (4.1),
and (4.2) gives the discrete L? norm of E on the four boundaries respectively. By esti-
mating the discrete energy of this system, we will analyze the stability of the ADI-FDTD
algorithm.

Eliminating the intermediate variables E "+3 from the schemes (3.2) and (3.5), it is not
hard to verify that the ADI scheme is equivalent to the following scheme for all the inner
points:

E; ]+ - E;,lj 1
At 2uo

At
4uo?
i=1,-,1-1, j=1,--,]J—1 (4.3)

(2482) (E"+ E" 1) by 0202 (E™1 — )=,

Multiplying (E" +E”+l)i,]- to both sides of (4.3), computing the inner product and de-
noting the three items on the left hand side as I;, I, and I3, respectively, it follows that
with the definition in (4.1),

En+1_En n n+1 1 n+17|2 n12

h= (S (B ) = (B P IR),
1

12:_270 ((5§+5§)(E”+E”+1), (E”+E”+1)>, (4.4)
At

L= pre <5§5§(E”+1 —E"), (E" —|—E”+1)> :
Using the discrete Green formula and imposing the Neumann boundary conditions
on the subsurface I'y, T'3 and I'y (3.6), for the 62 and 42 terms in I, we deduce respectively,

that

1 1
T (5,%<E”+En+l>, <E"+E"+l>) = g (BT (45)

122:_%<5§(En+15n+1), (En_|_En+l)>

I-1

:zlllia_{Héz(En‘FEn+l)H2_Z[(En+En+l)iJ_(EH+EH+1)Z}]—1] X(En+En+l)i’]}.
i=1

(4.6)

In fact, the boundary schemes on subsurfaces I, —I'y (3.6) imply the following rela-
tionship:
(SzEg/j+% :(SZET,H%, 5ZE’IQJ+% :5ZE?71,]‘+%’ j=0,--,]—1,
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By the discrete Green formula and (4.7), for I3, we derive

IR
Titg? Do Do Ox0z (BT —E") (BT E"), jh?
o imia

{Hax(szE”“HZ—HaxazE"HZ

Iz=

:W

—Z (E"1_E") H%,,—(sx(EnH_E”)H%J1]x5x(E”+E”“>i+%J}' (4.8)

The last terms in the RHS of (4.6) and (4.8) need to be dealt with carefully, since they
involve the values of E at the earth-air interface.
Firstly, we introduce the following lemma.

Lemma 4.1. Assume that E(x,z,t) is the exact solution of the IBV problem (2.1)-(2.4), which is
of sufficient smoothness, and Effj is the numerical solution of the ADI-FDTD scheme (3.2)-(3.6).

Then there exists a constant C independent of At and h, such that

HE”||%1 Z; ] 1+E1] 2)H. (4.9)

Proof. Taking the inner product of Eq.;_1,; with both sides of (3.12) at the n-th time level,
and considering the left-hand side E{‘:TFL JAET 1 (Ais of the form (3.13)), we have

T
Li—1AEL 1)
T T T
=Ej.1_pjA0Ey o+ El -1 BE] j+E1 1 B1E] 1
1-2 1-2
+Y Efja(k—1)Ef ,+ Y Ef | a1 (k—1)E};
k=2 k=2
T 2 2
:Egl 2]A0E31 27 FB() (Ef"y j+ET))+2B(I-1)ET JET 4

+Z (I—k—=1)+B(I—k))E} Ef 4
Z (k—1)+B(k)) E¢ | ET. (4.10)

Note that Ag is a symmetric and strictly diagonal-dominant matrix, thus Ay is positive-
definite and we can estimate its eigenvalues, that is,

(ﬂﬁ) AM(Ag) < (§+78T> (4.11)
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In addition, by applying the Cauchy-Schwartz inequality, monotonic decreasing and
convergence of some series, we conclude that the bound of ||E"| ]%l is given by:

2 h2 h2 -1 2 h2
|E"[7, = ZEH—<M12EH 12+M22Ek, 25 (4.12)
where
3Ci 5 GG 4Cy 50CoCy
M =1/ ——-C{— - ,
! /< T Thi=3) " on >
16C, 200G Cy
=1 —4C,C,—C3 —
M> /<6C2 Ci1Cy C2+7'((I—3) 9 >,
C1,C; are some positive constants independent of At and h.
Therefore, it confirms (4.9) with C=max {4} O

Remark 4.1. Lemma 4.1 reflects that the energy on the boundaries could be bounded by
the inner energy, that is,

IE"|IE, <CI[E"||%. (4.13)

Using Lemma 4.1, we can treat the last terms in the RHS of I, and I3 to present the
following result,

At?

4 2

At? AtM APM
5,.8,E"||?

e

HEn+1H2 ||55En+1||2

<|IE"|]*+

)(IIE”HZHIE”“IF), (4.14)

where M =max(3M;+1,3M»).
Summing 7 for both sides of (4.14), we obtain

A2
2 2
"I+ g gz 10:0:E"
#2 M AtM
012 012 k(12
<||E°||*+ ZUzHéx(SZE Il +2At<2wh2 202h4>2||E I (4.15)

By the Gronwall inequality [13], it implies that:

2AtM
max ||E"|[2 <\t T) poj 2 (4.16)
n<[T/Af]

In a typical TEM problem, the spatial step & is frequently taken as no less than 10
due to the large scale of the computational domain (10 —10%), but the time step At is
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O(107°). The total simulation time for receiving the EM response is generally of the 10~2

(L 20tM )

. MM )T
order, thus the exponential term e‘#"*  #*e**/ " could be bounded by some constant. We

now derive the stability conclusion of the TEM problem as follows.

Theorem 4.1. (Stability) Assume that E(x,z,t) is the exact solution of Egs. (2.1)-(2.4) and is of
sufficient smoothness. Let Egj be the numerical solution of the ADI scheme (3.2)-(3.6), with the

definition of discrete L> norm, there exists a positive constant K, such that

max ||E”H2<6KTHE0H2 4.17)
n<[T/At]

5 Convergence analysis of ADI-FDTD

We further analyze the convergence of the proposed algorithm by the energy method.
First, the error is defined by,
ii=E(xizjt")—Ej;, =0, j=0,--]. (5.1)

For the truncation error at all interior and boundary grids, we have the following
lemma.

Lemma 5.1. Assume that E(x,z,t) is the exact solution of the IBV problem (2.1)-(2.4) and is of
sufficient smoothness. Let E}'; be the numerical solution of the ADI-FDTD scheme (3.2)-(3.6), it
holds that

» Imax {]Rn+2|}§O(At2+h2),
i=1,-,
]Enax {160, ’CI,j|} <O(AP+1?),

max {125l [Rfy|} < O(AL+1?), (5.2)
1
where Rz;rz denotes the truncation error for the interior points, &1 Cior Go,j represent the trun-

cation errors on the three subsurfaces I'y —I'y, respectively and ﬁ? | is the truncation error at the
earth-air interface I'y.

Proof. For the interior points, from the inner equivalent scheme (4.3), we derive the error
equation:

Cn-i—l n 1

At 2uo

1
5252(§ﬂ+1 _Cn)l‘,j:Rz;_zl

(532c+5§) (Cn +§n+1)i,j+4;120.2

i=1,-,1—-1, j=1,--,]—1. (5.3)
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By Taylor expansion,
Rn+% _ E(xi,z]-,t”“) —E(x;,2j,t") 1
b At 2uc
At
4y2
=O0(AP+H?), i=1,--,1-1, j=1,---,]—1. (5.4)
Secondly, in view of the boundary schemes for the subsurfaces (3.6), by Taylor expan-
sion, we have,

(53%4—55) {E(xi,zj,t”)

+E(x;,2),t" )

0202 E(xj,zj, ") —E(x;,2),t") }

h? 9’E

8= E(o,z,t") B =8l— =S (302" + OUF), =0, 55)
Similarly,
i PE o
‘:?,j:C?flj 3 9x 2(Jq,z],t”)+(’)(h ), j=0,---,],
n n W 9’E n .
C0=6i1" 532 (xi,z0, ") +O(H?), i=0,--,1. (5.6)

By considering the scheme for the earth-air interface (3.9) and (3.10), we have the
corresponding error equation

3Ci —4¢i 1 +¢ 2Ck Ck ,
o ”2+n27"“’ SRy, i=1,0-1 (5.7)

k=1 X Xpgl

Using Taylor expansion and the upward continuation (2.2), we have:

ﬁtl _ 3E(xl-,z],t”) —4E(xl-,z]_1,t”)+E(xl-,z]_2,t”) +11§E(xk+1,z],t”) —E(xk,z],t”)
Z 2h i Xi—Xpy1

=O(l?) (since the mid-point integral formula is O(h?)). (5.8)
The proof is completed. O

To derive the error estimation for the ADI-FDTD scheme in the discrete L2 norm,
multiplying both sides of (5.3) with (¢, C”H) and computing the inner product, we
obtain

n+1__ zn 1
Ern = (% ¢”+1+¢") =l P11,

Erry=( R"2, §”+§”+1>. (5.9)
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Since Erry,, Erry,, Errs and Erry are estimated using Lemma 5.1 and similar method
as that for the stability analysis, thus we will omit the detailed procedures and present
the final conclusion,

n 2 At )12 0112 At 0(12
116" +47V202h2!!5x5z5 =<7 +47V202h2!!5x5z5 I
Mo 2AtMo\ &n i s
At 1+—+———— At*+h*). 1
+ <+Wh2+yz(,2h4>§llléll +O(A+1Y). (5.10)

Notice that ‘:?,j =0, and by the Gronwall lemma, we obtain the following theorem.

Theorem 5.1 (Convergence). Assume that E(x,z,t) is the exact solution of the IVB problem
(2.2)-(2.4) and is of sufficient smoothness, let Egj be the numerical solution of the ADI-FDTD
scheme (3.2)-(3.6) and define error C{f f =E(x;,zj,t")— Effj, then there exists a positive constant M,
such that

max |[¢"]| < M(AF+1?). (5.11)
n<[T/At]

6 Numerical simulation

To validate the proposed ADI-FDTD scheme for 2D TEM models, we present the com-
putational results for the following test cases. Particular attentions will focus on demon-
strating the accuracy and performance advantages of the presented algorithm over the
popular FDTD method based on DuFort-Frankel method. Three test cases have been
taken as test examples to validate our ADI-FDTD considered in [28].

6.1 Half-space

As a first check of the proposed numerical algorithm, we compute the responses of a
homogeneous half-space to the shut-off of a steady current in a double line source at the
surface. The test case is chosen because the analytical solution is available for both the
electric field at the surface and in the half-space. The initial condition is taken as that
reported in [28].

The computational domain is [0, 32000m] x [0, 10000m] and the double line source is
set at the centre of the earth-air interface with the negative limb located at x=16250m and
the positive limb at x =15750m. The current is I =1A and the electric conductivity of the
ground is 0 =1/300S/m.

In our simulations, the inhomogeneous grids are adopted along x and z directions
with an increasing step size according to the distance from the source, with the smallest
step size Ax = Az =h,,;, =10m for the grids near the source. In terms of the initial con-
dition, we take to=2.0x10~° and the top eight-layer electric field is assigned. The time
step At used in the computation is listed in Table 1.



W. Lietal. / Commun. Comput. Phys., 19 (2016), pp. 94-123 109

Table 1: Time steps in second for the ADI-FDTD and DF schemes.

response time(ms) | At for DF | At for ADI-FDTD
(0,0.1) 1.1793e-7 9.4345e-7
(0.1,1) 1.1793e-6 1.8869e-5
>1 2.3586e-6 3.7738e-5

We now compare the performance of the developed ADI-FDTD scheme and that
based on DF method [28]. The DF scheme is also unconditionally stable, but the time
step At could not be taken very large in numerical simulations since oscillatory solutions
might occur. Compared with the DF-FDTD method, it is worth to note that more accurate
numerical results could be achieved by using the proposed ADI-FDTD algorithm.

Using the time steps listed in Table 1, the solution snapshots are shown in Fig. 2, and
the corresponding CPU times are reported in Table 2. Due to the transient of the initial
electric fields, at the very beginning (generally before 0.1ms), the time steps must be cho-
sen small enough to describe the responses without distortion. Thus it gives rise to a little
longer CPU times for the ADI-FDTD method than the DF scheme at the early time. How-
ever, consider that the early time is very short compared with the total computational
time, the improvement in accuracy (please refer to Figs. 2 and 3) is more significant. In
practical applications, the late time responses are generally required instead of the early
time responses. From Table 2, after 3ms, the CPU times for these two algorithms are of
the same order.

Table 2: CPU time in second for the ADI-FDTD and DF schemes.

simulation time(ms) | DF | ADI-FDTD
0.007 9 52
0.1 128 265
3 442 482
15 1292 1240

The vertical electromotive force (EMF) at the earth-air interface of the numerical so-
lution and the exact solution are shown in Fig. 2, and they could be obtained by mea-
surement. Figs. 2(a) and 2(b) present the short time response to the switched-off of the
current in the double line source, while Figs. 2(c) and 2(d) are the long time responses.
The relative Lo, and L? errors defined as follows are also illustrated in Fig. 3 with respect
to the response time. It is obvious to see that the ADI-FDTD scheme with large time steps
produces more accurate solutions than the DF scheme with relatively small time steps.
The advantage of using the presented method is clear especially for computing the late
time solution. Fig. 3 confirms that when comparing with the numerical solutions by the
DF scheme, an improvement in accuracy of an order of magnitude can be achieved by
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Figure 2: Comparison of analytical and numerical solutions computed by the ADI-FDTD and DF schemes for
the vertical EMF (9;B;) induced by a double line source on a half-space. Profiles are at (a) 0.007ms, (b) 0.1ms,
(c) 3ms, (d) 15ms after the source current was switched off.
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Fig. 4 gives the contours of the electric field in the whole simulation domain, which
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Figure 4: Contours of electric field in a half-space computed by the ADI-FDTD scheme induced by a switched-
off 500m wide double line source at the earth-air interface. Profiles are at (a) 3ms, (b) 10ms, (c) 15ms, (d)
21ms after source current was switched off.
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illustrates the shape of the induced field propagation. We clearly observe the diffusion of
the smoke ring profiles for the electric field as time marching forward.

6.2 Half-space with conductor (large contrast)

The second test case shown in Fig. 5 models a 300Q2-m half-space containing a thin rect-
angular ore body with the electric conductivity 1000 times more than the surroundings.
The thin ore body with the scale of 20m x300m located 300m away from the negative line
source to the left along the x direction, thus the distance of the ore body from the center
of double line source is about 550m.

+ _
[ J L J
| N
! 500m 1

N
300m ~ 100m

Gh:0.0033 S/m

6,=3.33 S/m /

20m

300m

>/
Figure 5: Model geometry for half-space with large-contrast conductor.

In this example, the time steps for the simulation are taken as in Table 3. For the
sake of exhibiting the influence of the anomaly elaborately, a small enough At is set for
the very early time till 0.0lms. Furthermore, after 0.01ms, we adopt much larger time
steps compared with DF scheme, which is precisely shown in Table 3 to carry out all the
simulations, making the computation efficient and effective. The vertical EMF, horizontal
EMF curves and contours of the electric field induced by the switched-off of double line
source are reported in Fig. 6, Fig. 7 and Fig. 8, respectively.

Table 3: Time steps in second for ADI-FDTD and DF schemes.

response time (ms) | At for DF | At for ADI-FDTD
(0,0.01) 4.7172¢-8 4.7172e-8
(0.01,0.1) 1.1793e-7 9.4345e-7
(0.1,1) 1.1793e-6 1.8869e-5
>1 2.3586e-6 3.7738e-5

The vertical EMF (—0;B;) profiles using the ADI-FDTD algorithm in Fig. 6 are fea-
tured by the crossover from positive to negative values on account of the existence of the
thin vertical conductor, and the location of crossover in Fig. 6 is gradually moving to the
exact horizontal position of the thin anomaly. In addition, the peak of the horizontal EMF
(—0¢By) using the ADI-FDTD algorithm displayed in Fig. 7 could also serve to examine
the horizontal position of the thin body approximately.
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Figure 6: Profiles of the vertical EMF (9;B;) by the ADI-FDTD scheme for the half-space conductor with a

1000:1 contrast. The negative line source is on the right. Open marks indicate negative values and dark marks
represent positive ones.
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Figure 7: Profiles of the horizontal EMF (9;Byx) by the ADI-FDTD scheme for the half-space conductor with a
1000:1 contrast. The negative line source is on the right. Open marks indicate negative values.

Fig. 8 compares the contours of the electric fields for this large contrast model using
ADI-FDTD scheme(on the left) as well as DF scheme(on the right) and the snapshots
presented cover a wide range of time from the very early time 0.006ms to the late time
20ms. It is clear to see that the two sets of results are generally consistent with each
other except for some subtle distinction. Results by the ADI-FDTD method capture the
responses well for both early times and late times.

To illustrate the characters of the electric field around the thin conductor and double
line source, only the central and uniform region of the numerical grid are shown. The
crossover on the left of the first four subfigures makes clear the position of the source
center, while the crossover on the right highlights the main domain containing the thin
conductor. The following subfigures reflect that when the diffusion of electric field en-
counters the thin anomaly, they are distorted and perform by the interaction with this
conductor. The snapshot taken at 3.7ms displays a fully developed target response and
the further evolution of the electric field involves its gradual equalization and decay
within the conductor.
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Figure 8: Contours of electric field(the values are the logarithm of E) computed by the ADI-FDTD scheme(on
the left) and the DF scheme(on the right) for the half-space with the conductor of 1000:1, induced by a
switched-off 500m wide double line source at the earth-air interface.
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6.3 Half-space with conductor (small contrast)

We now consider a small contrast(100:1) version of the second model as the last exam-
ple illustrated in Fig. 9. The parameters for this simulation are set the same as those in

the large contrast case, except that the half-space resistivity is 100Q2-m, while the body
resistivity is 1()-m.
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Figure 9: Model geometry for overburden and half-space with small-contrast conductor.

From the vertical EMF presented in Fig. 10, it is clear that even though the crossover
appears at nearly the exact target position at 1 ms, it moves to the right and away from
the target with time advancing. This may be attributed to the currents in the half-space,
whose contribution covers some of the effect from the currents flowing in the ore body.

On the other hand, the horizontal EMF profiles shown in Fig. 11 obviously illustrate
the location of the anomaly by their peaks. Generally, in contrast to the crossover point
of the vertical EMF, the peak in the horizontal EMF is always directly above the target
in the millisecond time range and thus giving a better indication of the conductor loca-
tion. We also report the snapshots by the ADI-FDTD and DF schemes in Fig. 12 to reveal
some details of the development of the electric field in early time and later the interaction
between the smoke ring and the conductor, and their results are in good agreement.
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Figure 10: Profiles of the vertical EMF (0;B;) by the ADI-FDTD scheme for the half-space with small contrast

conductor model. The negative line source is on the right. Open marks indicate negative values and dark marks
represent positive ones.



118 W. Lietal. / Commun. Comput. Phys., 19 (2016), pp. 94-123

—©-T=Ims
—8-T=5ms
N’; B —é—'l‘:9r_ns
210 ¢ ¢ T=15ms| 7
> T=20ms
<
23
E 8
B 10 F W*E‘E——a E|
5 M
g I 00006 o o
S
RS
510
jan

\ , \ \ \ \
200 300 400 500 600 700 800 900
Distance from the left source (m)

Figure 11: Profiles of the horizontal EMF (9;By) by the ADI-FDTD scheme for the half-space with small
contrast conductor model. The negative line source is on the right. Open marks indicate negative values.

7 Conclusion

We present an efficient and accurate ADI-FDTD algorithm to simulate EM diffusion phe-
nomenon in 2D earth excited by the electric line sources. Comparisons with the analytical
and DuFort-Frankel solutions confirm the accuracy and efficiency of the proposed algo-
rithm. The ADI technique is applied such that the resultant tri-diagonal system can be
effectively computed by the Thomas algorithm. To ensure an accurate representation
for the earth-air interface, an integral formulation is imposed at the interface boundary.
A novel numerical discretization scheme for the integral equation is presented and it is
incorporated to the ADI scheme implicitly. With the numerical implementation for the
integral boundary condition, the stability and convergence analysis for the ADI-FDTD
scheme are reported. Numerical simulations clearly demonstrate that the proposed ADI-
FDTD scheme produces more accurate computed solutions than those resulted by the
DuFort-Frankel scheme both in the early time and late time computation.

It is worth to investigate further applications and improvements of the proposed ADI-
FDTD algorithm. For example, consider using the secondary field instead of total field
in the model. Secondary field is defined as the difference between the total field and the
field of a background model, and they vary more slowly than the total field in both time
and space. The application of an absorbing boundary condition including a perfectly
matched layer (PML) for the underground interface is also an interesting topic. Finally, it
is important to extend the present approach for 2.5D and 3D problems.
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Figure 12: Contours of electric field(the values are the logarithm of E) computed by the ADI-FDTD scheme(on
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