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Abstract. In this paper, we propose a new partitioned approach to compute fluid-
structure interaction (FSI) by extending the original direct-forcing technique and inte-
grating it with the immersed boundary method. The fluid and structural equations are
calculated separately via their respective disciplinary algorithms, with the fluid mo-
tion solved by the immersed boundary method on a uniform Cartesian mesh and the
structural motion solved by a finite element method, and their solution data only com-
municate at the fluid-structure interface. This computational framework is capable of
handling FSI problems with sophisticated structures described by detailed constitutive
laws. The proposed methods are thoroughly tested through numerical simulations in-
volving viscous fluid flow interacting with rigid, elastic solid, and elastic thin-walled
structures.
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1 Introduction

The interactions between viscous fluid flows and immersed solid structures are nonlin-
ear multi-physics phenomena with application to a wide range of scientific and engi-
neering disciplines [4, 10]. The study of fluid-structure interaction (FSI) is an emerging
field that has been fast growing in recent decades. Owing to the difficulties in analysis
and limitations in experiments for these strongly nonlinear problems, FSI research and
development largely rely on computational methods.
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Current numerical methods for FSI may be broadly classified in two categories: the
monolithic approach and the partitioned approach. The first approach [13,23] uses a unified
system to represent the entire FSI problem and employs a single algorithm to solve the
fluid and structure dynamics simultaneously. The monolithic approach can potentially
achieve very high accuracy in FSI simulation, but it typically demands large computa-
tional effort, and it may require substantial resources and expertise to develop and im-
plement such an algorithm. In contrast, the partitioned approach [26, 30] treats the fluid
and the structure as two systems which can be computed separately with their respective
solvers. Thus, fluid and structural dynamics may be solved with different mesh dis-
cretizations and numerical algorithms, and the solution data communicate at the fluid-
structure interface. A significant advantage of this approach is the capability to integrate
available disciplinary algorithms with respect to the fluid and structural dynamics, thus
reducing the effort and time in FSI code development. A challenge, however, is to effec-
tively coordinate the disciplinary solvers to achieve an accurate and efficient FSI solution
procedure.

Another way to categorize FSI methods is based on the types of meshes employed,
and there are two major classes: the conforming mesh methods and the non-conforming
mesh methods. The Lagrangian methods [4, 6] and the Arbitrary Lagrangian-Eulerian
methods [25] are typical examples of the conforming mesh approach, where a mesh-
updating procedure is generally required at each time step corresponding to the move-
ment/deformation of the immersed structures. On the other hand, non-conforming mesh
methods employ fixed (normally Cartesian) grids which eliminate the need of re-meshing
and lead to reduced algorithmic complexity and improved computational efficiency, an
advantage compared to the conforming mesh methods.

The best known non-conforming mesh method for FSI is probably the immersed
boundary method invented by Peskin [20]. This numerical technique solves the fluid
equations with an additional forcing term which represents the effects of the immersed
structure acting on the fluid motion. Essentially, the fluid equations are solved in the
entire domain with a fixed Eulerian mesh, and the immersed structure is represented
as a moving boundary tracked on a separate manner. Due to its efficiency, flexibility
and robustness, the immersed boundary method has become increasingly popular in FSI
study and many progresses, in both the methodology and application, have been made
in recent years (see, e.g., [11, 15, 17, 24, 31, 32]). One major limitation associated with this
approach, however, is that it primarily deals with structures that do not occupy volumes;
e.g., a fiber in 2D space and a membrane in 3D space. Although immersed bodies with
a finite volume can be approximated by a network of connected fibers, each of which
can be treated as an immersed boundary, such an approximation may not accurately
model the realistic structural response to the fluid motion. Some other variations of the
method, such as the immersed finite element method [32], are able to handle bulk solid
structures described by material constitutive laws, yet their applications to more sophisti-
cated structural settings are still to be seen. Additionally, in the presence of rigid or nearly
rigid structures, methods of the immersed boundary type generally result in highly stiff
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systems which are challenging to solve numerically.
The direct-forcing method developed by Mohd-Yusof [18] overcomes the numerical

stiffness encountered by the immersed boundary method and several other penalty forc-
ing techniques (see, e.g., [8]). The method implements the no-slip condition on the fluid
momentum equations at the interface, so that the FSI force can be directly evaluated with
the incorporation of the known structural interfacial velocity. Some recent work related
to the direct-forcing method includes, among others, [9, 29, 34]. We note that most (if not
all) direct-forcing techniques published so far are concerned with FSI problems involving
rigid solid structures.

The main objective of the present paper is to combine the immersed boundary and the
direct-forcing methods into a new, partitioned computational framework that enables ac-
curate and efficient FSI computation and that allows realistic material representation of
sophisticated structures. Within this framework, Cartesian grids will be used for the ma-
jority of the computation, and the fluid and structure equations will be computed sepa-
rately by their respective disciplinary solvers, typically with finite differences for the fluid
domain and finite elements for the structure domain. In particular, a variety of structural
geometries and configurations can be investigated and well-developed structural algo-
rithms with detailed constitutive laws can be easily incorporated. The fluid and struc-
tural solutions are connected at the fluid-structure interface through a procedure based
on an extension of the direct-forcing approach. These algorithms are thoroughly tested
by a number of numerical simulations involving FSI problems with different material
types such as rigid, elastic solid, and elastic thin-walled structures.

The remainder of this paper is organized as follows. We first present the mathematical
formulation and numerical treatment of the fluid and structural systems, respectively, in
Sections 2 and 3. Then we describe in detail the integration of the fluid and structural
solutions; i.e., the FSI coupling procedure, in Section 4. We conduct careful numerical
simulations in Section 5 to demonstrate our computational methods. Finally, we conclude
the paper with some discussion in Section 6.

2 Fluid system

We first describe the dynamics of the fluid part in our FSI problem. Below we present the
governing equations of the fluid motion and the numerical treatment. We refer to [22] and
references therein for a large body of work on computational fluid dynamics, particularly
for solving Navier-Stokes equations. We also list in Appendix A the nomenclature used
in this paper.

2.1 Equations of motion

We consider a two-dimensional (2D) fluid domain, Ω f , with an immersed solid domain,
Ωs (see Fig. 1). Let Γs denote the fluid-structure interface. Let [0, T] denote the time do-
main. The flow is assumed to be viscous and incompressible, and the motion is described
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Figure 1: Fluid-structure domain.

by the standard Navier-Stokes equations

ρ f

(
∂u

∂t
+u·∇u

)
+∇p−µ∇2u= f in Ω f ×[0,T], (2.1a)

∇·u=0 in Ω f ×[0,T], (2.1b)

u |t=0=u0 in Ω f , (2.1c)

where u and p denote the fluid velocity and pressure, ρ f and µ denote the fluid density
and dynamic viscosity, respectively, and f is the external force. At the fluid-structure
interface, we have the no-slip condition

u=Us on Γs . (2.1d)

In addition, we assume periodic boundary conditions on both the x and y directions of
the fluid domain. Below we briefly describe our numerical procedure for solving the
fluid equations.

2.2 Numerical calculation

For ease of notations, we introduce the central difference operators on the Eulerian grids.
Let e1, e2 be the standard basis of R

2. For any function ϕ(x), x∈Ω f , we define

(Dβ ϕ)(x)=
ϕ(x+heβ)−ϕ(x−heβ)

2h
, β=1,2; (2.2)

(Lϕ)(x)=
2

∑
β=1

φ(x+heβ)+ϕ(x−heβ)−2ϕ(x)

h2
, (2.3)
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where h = ∆x = ∆y. Let D = (D1,D2). The differential operators in the Navier-Stokes
equations are then discretized as follows:

∇·ϕ≈D·ϕ, (2.4a)

∇ϕ≈Dϕ, (2.4b)

∇2φ≈ Lφ. (2.4c)

Since ∇·u=0, we have,

u·∇ϕ=∇·(uϕ). (2.4d)

To take advantage of (2.4d), a skew symmetric difference operator is employed to ap-
proximate the convective term u·∇u:

(S(u)u)=
1

2
u·∇u+

1

2
∇·(uu)∼

1

2
u·Du+

1

2
D·(uu). (2.4e)

As a result, equations (1a)(1b) can be spatially discretized as follows:

ρ f
(∂u

∂t
+S(u)u

)
+Dp−µLu= f, (2.5a)

D·u=0. (2.5b)

For temporal discretization, implicit methods can be applied to Eqs. (2.5a) and (2.5b)
to ensure time-stepping stability. However, to treat the nonlinear terms, an iterative pro-
cedure is usually necessary. To reduce computational effort, fractional-step methods are
widely used to calculate the incompressible Navier-Stokes equations. Here we adopt the
fractional-step method presented in [20].

Assume that the solution is known at time tn. At the preliminary (or, predictor) step,

we solve for the intermediate variables un+ 1
2 and pn+ 1

2 by

ρ f

(
un+ 1

2 −un

∆t/2
+S(un)un

)
+Dpn+ 1

2 −µLun+ 1
2 = fn+ 1

2 , (2.6a)

D·un+ 1
2 =0. (2.6b)

Then we update the solution at the corrector step; i.e., solve for un+1 and pn+1, using

ρ f

(
un+1−un

∆t
+S(un+ 1

2 )un+ 1
2

)
+Dpn+1−µL

(
un+un+1

2

)
= fn+ 1

2 , (2.6c)

D·un+1=0. (2.6d)

To solve the system of equations (2.6), a Fast Fourier Transform is implemented [21].
In both the steps above, we need to solve linear systems of the form

(
1−

∆t

2

µ

ρ f
L

)
u+

∆t

2ρ f
Dp=w, (2.7a)

D·u=0, (2.7b)
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where w refers to all the known terms, and u and p refer to the unknown velocity and
pressure terms. The Discrete Fourier Transform of the above equations are given by (with
̂representing the Fourier space):

(
1−

∆t

2

µ

ρ f
L̂

)
û+

∆t

2ρ f
D̂ p̂= ŵ, (2.8a)

D̂·û=0. (2.8b)

Once solved, û and p̂ are transferred back to the physical space to obtain the solution u

and p at the given time level.

3 Structure system

We now present the structural part of the FSI problem. Although the computational
framework proposed in this paper can be applied to solid structures with various con-
stitutive laws (e.g., linear elastic, hyperelastic, and viscoelastic), we will, for illustration,
focus our attention on structures described by a linear elastic model. In what follows,
we will describe the equations of motion and numerical treatment of the structural dy-
namics. As a primary emphasis of our work is to use disciplinary algorithms and codes
to solve fluid and structural equations separately, we will employ the standard notations
in solid mechanics when presenting the structure system below. We refer to [14] for a
detailed explanation of equations and notations in solid mechanics.

3.1 Equations of motion

We consider a linear isotropic elastic beam. Since the strains on the elastic beam are small,
we use the linear strain model to describe the deformations. In such an elastic domain Ωs,
the strain-displacement equation, the stress-strain relation and the dynamic equations of
equilibrium state are given as follows:

ε=∂W, (3.1a)

σ=Deε, (3.1b)

∂Tσ+b̄=ρsẄ, (3.1c)

where ε is the strain, σ is the stress, De is the material stiffness matrix, ρs is the density
of the structure, b̄ is the body force, W is the displacement, and Ẇ and Ẅ, respectively,
denote the first and second time derivatives of W. Specifically,

σ=




σx

σy

τxy


=




σ11

σ22

σ12


, ǫ=




ǫx

ǫy

γxy


=




ǫ11

ǫ22

2ǫ12


, W=

(
W1

W2

)
, b̄=

(
b̄1

b̄2

)
,
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∂=




∂
∂x 0

0 ∂
∂y

∂
∂x

∂
∂y


, and De=

E

1−ν2




1 ν 0
ν 1 0

0 0 1−ν
2


 ,

where E and ν are Young’s modulus and Poisson’s ratio, respectively.

We write the boundary of the structure as Γs=Γd∪Γt, where Γd refers to the fixed part
of the boundary and Γt refers to the movable part. The boundary conditions are

W=W0 on Γd, (3.1d)

nσ=T0 on Γt, (3.1e)

where

n=

(
n1 0 n2

0 n2 n1

)

and (n1,n2) is the outward unit normal to the boundary. The initial displacement and
velocity are given by

W(x,0)=g1 , (3.1f)

Ẇ(x,0)=g2 . (3.1g)

These equations are then solved using the finite element method (see Appendix B for
the detailed formulation). The following matrix equation is eventually obtained:

MẄ
¯
+KW

¯
−ft−fb =0. (3.2)

The dynamic response W
¯

, the matrices M and K, and the force terms ft and fb are defined
in Appendix B.

3.2 Numerical calculation

We rewrite the dynamic equation (3.2) in the form as

MẄ
¯
+KW

¯
−fb =F(t), (3.3)

where F(t) is emphasized as the force load acting on the boundary of the structure.
Eq. (3.3) is solved based upon the modal synthesis approach in which the displacement
vector is approximated by modal superposition. That is, the dynamic response W

¯
is ex-

panded as a linear combination of eigenvectors with weighted coefficients a(t); i.e.

W
¯
=ψa(t). (3.4)
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The columns of the matrix ψ are the eigenvectors of the eigenvalue problem pertaining
to the equation of motion,

Kψ=ΛMψ, (3.5)

where the eigenvectors ψ satisfy the orthonormal conditions ψTKψ=Λ and ψT Mψ= I,
and Λ is the diagonal matrix consisting of the eigenvalues of the problem.

Substituting (3.4) in (3.3), we obtain

Mψä(t)+Kψa(t)−fb =F(t). (3.6)

Multiplying the above equation by ψT, we obtain

ψT Mψä(t)+ψTKψa(t)−ψTfb =ψTF(t). (3.7)

The dynamic equation can then be decoupled into a set of ordinary differential equations
as

ä(t)+Λa(t)−ψTfb =ψTF(t). (3.8)

In this study, a one-step implicit Newmark method [1] is used to solve equation (3.8).
It can be summarized as follows:

Assume that an−1, ȧn−1, än−1 at time tn−1 are known. The Newmark method extrap-
olates an and ȧn, at time tn = tn−1+∆t in terms of än as

ȧn = ȧn−1+∆t[(1−α)än−1+αän], (3.9a)

an =an−1+∆tȧn−1+∆t2

[(
1

2
−β

)
än−1+βän

]
. (3.9b)

The above approximation corresponds to the linear acceleration method if α= 1/2 and
β=1/6, and the constant average acceleration method if α=1/2 and β=1/4. We use the
latter one which is unconditionally stable.

At time tn , equation (3.8) becomes,

än+Λan−ψTfb,n=ψTFn. (3.10)

Substituting equations (3.9) into equation (3.10), we obtain

än=(I+Λβ∆t2)−1

[
ψT(Fn+fb,n)−Λ

(
an−1+∆tȧn−1+∆t2

(
1

2
−β

)
än−1

)]
. (3.11)

Once än is found, equations(3.9) can be used to find an and ȧn. The displacement and
velocity at the finite element nodes are then computed by

W
¯ n=ψan, (3.12a)

Ẇ
¯ n=ψȧn. (3.12b)

The stresses at each node can be calculated based on Eqs. (3.12) and (B.3) (see Appen-
dices B and C for details). The magnitude of the stresses is often used to measure the
strength of the structure, and is an important factor for structure design consideration.
The displacement W

¯ n at the boundary reveals the deformed position of the structure. The
velocity Ẇ

¯ n at the boundary; i.e., Us, is then passed to the fluid code.
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4 Fluid-structure interaction

As discussed above, our computational framework allows that the fluid and structural
motions are solved separately by their disciplinary methods, and their solutions now
need to be connected at the interface where the fluid-structure interaction takes place.
Below we describe the details of our numerical technique to link the fluid and structural
dynamics using the direct-forcing approach.

4.1 Calculation of FSI forces

The original direct-forcing technique by Mohd-Yusof was implemented in Cartesian grids
where the force was calculated directly from the Navier-Stokes equations [18]. Alterna-
tively, the force can be evaluated at the Lagrangian grid points, as suggested by Uhlmann
[29]. We adopt the latter approach in the current study. Let Un and Pn denote, respec-
tively, the fluid velocity and pressure evaluated on the Lagrangian grids. Our forcing
term Fn+1 takes the form

Fn+1=





ρ f

[
Us−Un

∆t
+((U·∇)U)n

]
+∇Pn−µ∇2Un on Γs,

0 elsewhere.
(4.1)

The force F is passed to the structure code acting as the force load on the right-hand
side of Eq. (3.3). Once Eq. (3.3) is solved, the structural displacement and velocity fields,
particularly the interfacial velocity Us, are updated. Meanwhile, the force F is interpo-
lated to the Eulerian grid so as to solve the Navier-Stokes equations and update the fluid
motion. The interpolation is done through a discrete delta function, described below.
Once the interpolation is completed, the forcing term f on the right-hand side of the fluid
momentum equations is obtained.

4.2 Interpolation functions

A 2D discrete delta function, denoted δh, is typically given by the product of two 1D
discrete delta functions,

δh=
1

h2
φ
( x

h

)
φ
(y

h

)
,

where h=∆x=∆y. Here we use the function φ introduced by Peskin [20]:

φ(x)=
1

8





3−2|x|+
√

1+4|x|−4x2 : |x|≤1,

5−2|x|−
√

−7+12|x|−4x2 : 1≤|x|≤2,

0 : |x|≥2.
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The distribution of forces from Lagrange to Euler grids and the interpolation of velocities
from Euler to Lagrange grids are then represented as follows [29]:

f(xij)=∑
l

F(Xl)·δh(xij−Xl)∆Vl , (4.2a)

U(Xl)=∑
i,j

u(xij)·δh(xij−Xl)h
2, (4.2b)

where ∆Vl is the discrete volume at each Lagrangian point. Interpolation/distribution of
other quantities can be done in a similar way.

4.3 Fluid-structure coupling

In a typical computational procedure for fluid-structure interaction based on the im-
mersed boundary approach, the fluid and structure parts are solved sequentially (see,
e.g., [20, 24]). Such an algorithm generally contains the following basic steps:

• Calculate the FSI forces at the fluid-structure interface.

• Distribute the forces from the interface to the background Eulerian grids.

• Solve the Navier-Stokes equations on the Eulerian grids with the forcing term.

• Interpolate the fluid velocity from the background Eulerian grids to the interfacial
Lagrangian grids.

• Advance the structural positions (particularly at the interface) with the updated
velocity.

Our numerical approach will integrate the immersed boundary method and the direct-
forcing technique into a new, partitioned framework, based on which well-developed
disciplinary methods can be employed to solve the fluid and structural motions and their
solution data only communicate at the fluid-solid interface. This approach will extend the
immersed boundary method to the computation of more realistic solid structures that oc-
cupy finite volumes, and will extend the direct-forcing technique toward dealing with
more general, elastic materials described by detailed constitutive laws. Key steps of our
FSI algorithm are summarized below, where the emphasis is put on the fluid-structure
coupling. We assume that at t= tn+1 , the fluid velocity un and pressure pn (defined on
the Eulerian grids) and the structural boundary position Γs,n are known. We again let Un

and Pn denote the fluid velocity and pressure evaluated on the Lagrangian grids at the
time tn .

1. Use the known information on un, pn and Γs,n to compute Un, ((U·∇)U)n, ∇2Un,
and ∇Pn on the structural boundary through interpolation from the Eulerian grids
to the Lagrangian grids.
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2. Calculate the forces Fn+1 on the Lagrangian grids using the direct-forcing approach
(see Eq. (4.1)).

3. Distribute the forces from the interface to the fluid domain to obtain fn+1.

4. Compute the Navier-Stokes equation (e.g., by the fractional-step method; see
Eq. (2.6)). Also calculate un+1, ((u·∇)u)n+1, ∇2un+1, and ∇pn+1 for the next time
step.

5. Pass the force −Fn+1 as the load to the structural solver.

6. Solve the structural system at t= tn+1; particularly, obtain the boundary displace-
ment Ws,n+1 and velocity Us,n+1.

7. Update the fluid-structure interface with the updated structural displacement ob-
tained from the structure code; e.g., Γs,n+1=Γs,n+Ws,n+1.

8. Pass the updated fluid velocity un+1 and pressure pn+1, interface location Γs,n+1

and structural velocity Us,n+1 to the next step of computation.

5 Examples

We present three examples to demonstrate our numerical algorithms. The first one is the
canonical problem of viscous flow past a rigid circular cylinder. We will compare our
numerical findings with published results. The second example is a more complex prob-
lem with viscous flow past an elastic and deformable solid beam. We will pay special
attention to the movement and deformation of the solid structure under the impact of
fluid flow. The third example, computationally most challenging, is concerned with vis-
cous flow past an elastic and deformable hallow beam, where complex interaction occurs
between the fluid flow and the thin-walled structure.

5.1 Flow past a rigid cylinder

We first verify our method for the well-known problem of 2D viscous flow past a rigid
cylinder. In this case, though, the structure solver is not needed; Γs remains unchanged
and Us = 0. Under the standard setting, we compare the drag coefficient and the length
of the eddies to those in the literature. The results are presented in Table 1. The drag
coefficient in 2D is calculated using the formula,

CD =
2Fx

ρu2D
, (5.1)

where Fx is the x component of the fluid force acting on the cylinder, and D is the diameter
of the cylinder. The Reynolds number Re is given by

Re=
ρ f uD

µ
.
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Table 1: Comparison of the wake lengths and drag coefficients.

Re=20 L CD

Fornberg [7] 0.91 2

Dennis and Chang [3] 0.94 2.05

Donna Calhoun [2] 0.94 2.05

Taira and Colonius [28] 0.97 2.07

Present 0.9 2

Re=40 L CD

Fornberg [7] 2.24 1.50

Dennis and Chang [3] 2.35 1.52

Donna Calhoun [2] 2.18 1.62

Taira and Colonius [28] 2.33 1.55

Present 2.36 1.54

(a) Re=0.1 (b) Re=30

(c) Re=40 (d) Re=100

Figure 2: Streamline visualization with different Reynolds numbers for the flow past a rigid cylinder.

We observe good agreement between our numerical measurement and published results.
Meanwhile, Fig. 2 shows the streamline plots of the flow with different Reynolds num-
bers. We clearly observe three distinct types of flow behaviors: when Re is very low, the
flow is symmetric and steady, and no wakes form in the tail region; when Re is in an
intermediate range (typically between 5 and 40), a pair of vortices in wakes are observed
and the length of the eddies increases with Re; when Re grows even larger (e.g., 100), the
motion becomes asymmetric and unsteady, and the wakes evolve into vortex streets.

5.2 Flow past an elastic solid beam

In this problem, a 30×3 (in2) elastic beam is immersed in a viscous fluid. The bottom
of the beam is fixed, whereas other parts of the beam are movable and deformable. The
parameters characterizing material properties of the beam are listed in Table 2. We con-
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Table 2: Material parameters for the elastic beam.

Young’s modulus Poisson’s ratio density thickness

3.0E+09 psi 0.3 284 lb/in3 0.125 in

Table 3: Eigenvalues and frequencies of the ten modes of the solid beam.

Mode Eigenvalue, λ Frequency

1 1.19E+03 5.5
2 4.30E+04 33
3 2.90E+05 85.8
4 2.98E+05 86.9
5 9.85E+05 158
6 2.29E+06 241
7 2.61E+06 257
8 4.34E+06 332
9 7.21E+06 427

10 7.21E+06 427

sider ten mode shapes of the elastic beam to form the eigenvector matrix ψ in Eq. (3.4);
these ten modes are visualized in Fig. 3. The corresponding eigenvalues and frequencies
of each mode are listed in Table 3. The dynamic responses of the beam is subject to the
transient force F(t) induced by the surrounding fluid.

The beam is discretized into 720 triangular elements with 427 nodes. Starting from
the lower left corner, we index the structure boundary from 1 to 127 (61 points on each
of the left and right sides and 5 on the top); see Fig. 4. These 127 nodes are used to
communicate data between the structure code and the fluid code. Initially, the structure
is at rest, and the fluid motion is set as parallel flow with a constant velocity u0 . The fluid
solver calculates F using the Direct Forcing Approach and passes F to the structure code;
the structural motion is computed using the Newmark method [1]. It then returns the
structural velocity Us at the boundary nodes(127 in total) to the fluid code.

Through the interaction with the fluid flow, the beam oscillates on the horizontal di-
rection (left and right). Note again that the bottom of the beam is fixed. In Fig. 5, we
highlight the vibration and deformation of the beam over time. The computational do-
main here is set as [0,50]×[0,50] which, we have found, is large enough so that the fluid
boundary does not play a role in the structural motion. The other parameters for the
simulation are µ=0.1, u0 =50, ρ f =1.5, ∆q/h=0.64, and ∆t=0.001. As can be naturally
expected, the beam has a larger displacement in the direction of the flow and a smaller
displacement in the opposite way.

Fig. 6 illustrates the case of larger deformations with a more flexible body, where the
Young’s modulus E is decreased by 100 times; i.e., E=3×107 psi, to make the beam softer
and more deformable.

In Fig. 7, we visualize the flow field and the structural stresses at different times.
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Figure 3: Ten mode shapes of the elastic solid beam.
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Figure 4: Fluid-structure interaction diagram of an elastic beam.

Figure 5: Movement of the solid beam.

Figure 6: Larger displacement with a more elastic body.
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(a) flow field at t=0

(b) flow field at t=0.1 (c) stress plot at t=0.1

(d) flow field at t=0.2 (e) stress plot at t=0.2

(f) flow field at t=0.3 (g) stress plot at t=0.3

Figure 7: The solid beam with fluid flow and its stress plots.
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Figure 8: Tip displacement of the solid beam in the x-direction.

The structural stresses are obtained based upon Eq. (C.2) described in Appendix C. We
observe that a vortex is formed near the fixed end of the beam shortly after the flow
starts, and another vortex is created near the other end later as the beam starts coming
back to the original position. In order to examine the dynamics more carefully, we pick
a particular tip of the beam at the free end; i.e., node 61 for the upper left corner of
the beam, and look into its detailed motion. Fig. 8 shows the displacement of this node
over a long period of time, where we clearly observe a regular oscillation with decaying
amplitude over time. Moreover, the oscillation in the positive direction (i.e., the direction
of the fluid flow) has larger amplitude than that in the negative (i.e., opposite) direction.
The fluid parameters used in this simulation are µ = 0.1, u0 = 10, and ρ f = 0.5. Fig. 9
compares the displacement of the 61st node over one cycle for different choices of ∆t, and
we observe close agreement of these curves.

As a means to verify our methods and results, we have also conducted the numer-
ical simulation using a different approach proposed by Zhang et al. [34]. This method
calculates the FSI force F based on a predictor-corrector procedure using an intermediate
fluid velocity. The method originally employs stream functions, and we have generated
a variant using the velocity-pressure formulation which seems more suitable for our sim-
ulation and comparison.

For distinction, we refer to the algorithm originated from [34] as Method 2, and the
algorithm described in Section 4.3 as Method 1. We have applied these two methods in
our numerical simulation of the elastic solid beam problem, and their results match each
other very well. In particular, Fig. 10 shows the displacement of the 61st node using the
two methods with the same parameters. We observe excellent agreement between the
two numerical solutions.
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Figure 9: Tip displacement of the solid beam with different ∆t.

Figure 10: Comparison of the two numerical methods for the solid beam.

5.3 Flow past an elastic hollow beam

In this example, we investigate the more challenging FSI problem of an immersed elastic
hollow beam interacting with a viscous fluid flow. We consider the same set-up as shown
in Fig. 4, except that the solid beam is now replaced by a hollow beam which has an
outside dimension of 30×3 (in2) and a 28×1 (in2) rectangular hole in the middle. The
material properties of the beam remain the same as those in the previous example and
the key parameters are listed in Table 2. We again consider ten mode shapes of the hollow
beam (see Fig. 11) to form ψ in Eq. (3.4). The corresponding eigenvalues and frequencies
of each mode are listed in Table 4. The inside part of the beam is hollow and the beam is
closed on all sides, so that the fluid cannot pass inside. The entire computational domain
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Figure 11: Ten Mode Shapes of the hollow beam.
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Table 4: Eigenvalues and frequencies of the ten modes of the hollow beam.

Mode Eigenvalue, λ Frequency

1 2.85E+02 2.68

2 6.17E+03 12.50

3 8.52E+03 14.69

4 4.60E+04 34.14

5 4.98E+04 35.50

6 1.66E+05 64.89

7 1.72E+05 66.07

8 2.58E+05 80.79

9 3.54E+05 94.63

10 4.57E+05 107.61

remains as [0,50]×[0,50]. The hollow beam is discretized into 496 triangular elements
with 372 nodes. We again use the 61st node in reference to the top left corner of the
hollow beam.

We have conducted similar simulation tasks as those in the previous example, and
results show that our methods are able to accurately track the fluid - hollow beam inter-
action and resolve the detailed movement and deformation of the structure. In particular,
Fig. 12 illustrates the motion of the beam at different times. Similar to the solid case, the
hollow beam exhibits a larger displacement in the direction of the flow and a smaller
displacement in the opposite direction.

Fig. 13 shows the movement of the structure and the fluid together, and the structural
stresses at different times. We observe similar pattern of vortex formation as in Exam-
ple 5.2.

Fig. 14 shows the horizontal displacement of the 61st node of the hollow beam over
a long period of time, with a regular oscillation of decaying amplitude. The material
and numerical parameters are the same as those in the previous example. Compared to

(a) (b)

Figure 12: Movement of the hollow beam.



202 A. Timalsina, G. Hou and J. Wang / Commun. Comput. Phys., 21 (2017), pp. 182-210

(a) t=0

(b) t=0.1 (c) t=0.1

(d) t=0.2 (e) t=0.2

(f) t=0.3 (g) t=0.3

Figure 13: The hollow beam with fluid flow and its stress plots.



A. Timalsina, G. Hou and J. Wang / Commun. Comput. Phys., 21 (2017), pp. 182-210 203

Figure 14: Tip displacement of the hollow beam in the x-direction.

Figure 15: Tip displacement of the hollow beam for different ∆t.

the solid case (see Fig. 8), the tip of the hollow beam exhibits larger displacements, in
both positive and negative directions, as well as larger periods (or, smaller frequencies).
Fig. 15 compares the tip displacement of the 61st node over one cycle for different ∆t,
where we see again the three curves closely match each other. Fig. 16 shows the results of
the displacement of the 61st node using the two numerical approaches described before;
again very good agreement is observed for these two results.

Finally, we compare the displacement of the 61st node between the hollow beam and
the solid beam using the same material and numerical parameters, and the result is dis-
played in Fig. 17. As is clearly shown, the solid beam vibrates faster than the hollow
beam, whereas the deformation of the hollow beam is larger than that of the solid beam.
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Figure 16: Comparison of the two numerical methods for the hollow beam.

Figure 17: Comparison of the tip displacement for the solid and hollow beams with the same material and
numerical parameters.

6 Conclusion

We have presented a new framework to compute fluid-structure interactions by integrat-
ing the immersed boundary techniques and the direct-forcing method. Through a parti-
tioned approach, our algorithms allow well-developed disciplinary methods and codes
to solve the respective fluid and structural equations, whose solutions are connected at
the fluid-structure interface by communicating forces and velocities. Unlike most of the
existing FSI methods which are restricted to relatively simple structural settings, our
framework makes it possible to explore highly challenging FSI problems that involve
complex fluid motion and sophisticated structural shapes and configurations. We have
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demonstrated our methods through careful numerical simulations that involve viscous
fluid flow interacting with rigid, elastic solid, and elastic thin-walled, structures. Results
clearly show that our numerical approach is capable of handling various structural types
and resolving the detailed movement and deformation of the structures when interact-
ing with fluid flow. Our work generalizes the original immersed boundary method to
accommodate structures that occupy finite volumes and that are represented by realistic
material constitutive laws. Meanwhile, our approach extends the conventional direct-
forcing technique to the simulation of FSI problems involving elastic structures. To our
knowledge, these represent a first-of-its-kind advance in FSI computational study.

The advantages of the partitioned approach lie in its flexibility and portability in FSI
simulation. Each of the fluid and structure systems can be handled independently with
different solvers and meshes, and details of the solution procedure for one system can
be easily modified without affecting the other party. These features make the founda-
tion to employ disciplinary solvers that have been well developed, rigorously validated,
and constantly updated, in the FSI computation for attacking the potentially most so-
phisticated problems in the field. The typical challenge in the implementation of the
partitioned approach, however, is the coupling of the fluid and structural solvers for an
accurate representation of the interaction at the fluid-structure interface. In this work,
we have applied numerical techniques originated from the immersed boundary and the
direct-forcing methods to link the fluid and structural solutions for an accurate, stable
and efficient FSI computational procedure.

FSI problems are inherently interdisciplinary, and the present paper strongly empha-
sizes interdisciplinary collaboration in advancing the study in this fast-growing scientific
field. Our work provides a platform that can naturally assemble researchers in the fluid
and structure dynamics fields to collaborate on FSI simulation and analysis. Future de-
velopment of this work would involve exploration of more accurate and efficient tech-
niques for coupling the fluid and structural solutions, and extension of the methodology
from 2D space to 3D space.
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Appendix

A Nomenclature

We list here all the symbols used throughout this paper.
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Symbol Description

Ω f fluid domain
Ωs structure domain
u fluid velocity
Us structure velocity
p pressure
µ dynamic viscosity

ρ f fluid density
ρs structural density
CD drag coefficient
T final time
h Eulerian grid size(∆x=∆y)
∆q Lagrangian grid size
W structural displacement
Γs fluid-structure interface
De elastic material stiffness matrix
σ stress components
ǫ strain components
b̄ body forces
E Young’s modulus
ν Poisson’s ratio

B Finite element approximation

The equations given in (3.1) are solved using the finite element method. The weak form
is given by ∫

Ωs
σTδεdv=

∫

Γt
TT

0 δWds+
∫

Ωs
b̄TδWdv−

∫

Ωs
ρsẄTδWdv, (B.1)

where δW and δε are arbitrary virtual displacement and strain fields respectively. The
finite element approximation estimates the displacement vector by a linear combination
of shape functions as

W(x,t)=N(x)W
¯
(t) and (B.2a)

Ẅ(x,t)=N(x)Ẅ
¯
(t). (B.2b)

Consequently, one has

ε=∂W=(∂N)W
¯
=B(x)W

¯
, (B.3a)

where B=∂N is the strain displacement matrix. And

σ=Deε=DeB(x)W
¯

. (B.3b)
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Therefore, the virtual displacement and the virtual strain field are given by

δW=NδW
¯

, (B.4a)

δε=BδW
¯

. (B.4b)

Substituting Eqs. (B.3) and (B.4) in (B.1), we obtain the discretized weak form,

0=
∫

Ωs
ρsẄTδWdv+

∫

Ωs
σTδεdv−

∫

Γt
TT

0 δWds−
∫

Ωs
b̄TδWdv

=Ẅ
¯

T
∫

Ωs
NTNδW

¯
dv+W

¯
T
∫

Ωs
BTDeBδW

¯
dv−

∫

Γt
TT

0 NδW
¯

ds−
∫

Ωs
b̄TNδW

¯
dv

=(Ẅ
¯

T
MT+W

¯
TKT−fT

t −fT
b )δW

¯
=δW

¯
T(MẄ

¯
+KW

¯
−ft−fb). (B.5)

The derivation above is done by defining its integrals in terms of the mass matrix,
the stiffness matrix, the surface force term and the body force term, M, K, ft and fb,
respectively, as

∫

Ωs
NTNdv=MT,

∫

Ωs
BTDeBdv=KT,

∫

Γt
TT

0 Nds= fT
t ,

∫

V
b̄TNdv= fT

b .

Eq. (B.5) results in a matrix equation for the motion:

MẄ
¯
+KW

¯
−ft−fb =0 (B.6)

with consistent boundary and initial conditions.

C Results of dynamic stresses

The values of the von Mises stresses are often required as an output of an analysis to
measure the capability of the structure failure to sustain the given load in engineering
design. This section briefs the procedure to calculate the required stresses in the frame-
work presented in Section 3.2.

Once the time history of the elastic displacement is obtained, we can then proceed
to compute the dynamic stresses. This can be done using the known mode shapes of
the given structure ψ and the modal coordinates a from the solution of Eq. (3.9b). The
modal superposition can be applied here to find the total stresses, σT=

(
σx σy τxy

)
. The
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combination of Eqs. (3.4) and (B.2a) describes the displacement field in the structure in
terms of modal coordinates as

W(x,t)=N(x)ψa(t).

The state of stresses at any point, x, in the structure is then obtained as, according to
Eqs. (3.1a) and (3.1b),

σ(x,t)=Deε(x)

=De∂W(x)

=De(∂N(x))ψa(t).

Since the material properties De, the differential operator ∂, the finite element interpo-
lation function and the mode shapes are known before starting the FSI solution process,
the relationship between the stresses σ and the modal coordinates can be defined as,

σ(x,t)= [De(∂N(x))ψ]a(t)

=B(x)a(t). (C.2)

Once the normal stresses σx , σy and the shear stress τxy are known, one can then use
the following equation to find the von Mises stress

σν,c=
√

σ2
x+σ2

y −σxσy+3τ2
xy.

Collection of the von Mises stresses at the centers of all elements can be used to find
the von Mises stress distribution over the entire finite element model.
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