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Abstract. It is well known that the approximation of eigenvalues and associated eigen-
functions of a linear operator under constraint is a difficult problem. One of the diffi-
culties is to propose methods of approximation which satisfy in a stable and accurate
way the eigenvalues equations, the constraint one and the boundary conditions. Using
any non-stable method leads to the presence of non-physical eigenvalues: a multiple
zero one called spurious modes and non-zero one called pollution modes. One way to
eliminate these two families is to favor the constraint equations by satisfying it exactly
and to verify the equations of the eigenvalues equations in weak ways. To illustrate
our contribution in this field we consider in this paper the case of Stokes operator.
We describe several methods that produce the correct number of eigenvalues. We
numerically prove how these methods are adequate to correctly solve the 2D Stokes
eigenvalue problem.

AMS subject classifications: 76D07, 65N35, 34L16
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1 Introduction

The 2D Stokes eigenvalue problem on a square domain is considered in this paper as
model example with a conservation law of the type ∇·u = 0. With this test example it
is possible to discuss the various numerical problems that appear when flux conserva-
tion has to be satisfied in the incompressible Navier-Stokes. If these constraint condition
cannot be satisfied precisely, so-called spectral pollution [9] appears and the numerical
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approach does not stably converge to the physical solution. The reason is that due to reg-
ularity constraints imposed by standard numerical approximation methods, the energy
cannot reach the minimum required by the physics. In fact, current numerical methods
satisfy the boundary conditions strongly, the operator equations and the constraints only
weakly.

In Section 2, we propose a non-exhaustive list of methods to deal with the 2D Stokes
eigenvalue problem. Specifically, if the constraint ∇·u=0 is satisfied by a u=∇×ψ ansatz,
the number of degrees of freedom remains the same as in the unconstrained Laplacian
problem. As a consequence, besides the Stokes modes, one finds a whole spectrum of
additional unphysical modes, corresponding to those of the heat equation. Thus, the ini-
tial physical problem has fundamentally been changed. This approach has been applied
to compute the full Stokes spectrum [1] by the first time. Due to the choice of a unit
square domain, the authors were able to separate the Stokes modes from those belonging
to the heat equation. An other strategy consists in applying a penalty method to solve
the Stokes problem. In this case, the number of degrees of freedom still remains the same
as those in the unconstrained Laplacian problem.

In Section 3, we focus on the two formulations considering only the velocity as vari-
able: the penalty method and the divergence-free Galerkin approach. In the framework
of spectral element approximation schemes, a stable spectral element is proposed for
each method. For the penalty method, a COOL approach [2, 3] is made and the unphysi-
cal modes can be pushed towards λ=0. For the divergence-free Galerkin approach, two
strategies christened “explicit” and “implicit” are detailed. The explicit strategy consists
in using the properties of the kernel of the grad(div) operator to construct a divergence-
free basis. Such a basis has the right number of degrees of freedom, thus delivering the
exact number of Stokes eigenfunctions with high precision. The implicit strategy is a
direct algebraic elimination process of the ∇·u=0 constraint. This leads to a sparse ma-
trix elimination process, described in detail in [2]. It delivers the right number of highly
precise Stokes modes.

Finally, in Section 4, some numerical experiments are performed to prove the effi-
ciency of the proposed methods and a comparison between the different approaches is
given.

2 The Stokes eigenvalue problem: continuous version

Let Ω ⊂ IRd, d = 2,3, be a Lipschitz domain, the generic point of Ω is denoted x. The
symbol L2(Ω) stands for the usual Lebesgue space and H1(Ω), the Sobolev space that
involves all the functions that are, together with their gradient, in L2(Ω). C(Ω) denotes
the space of continuous functions defined in Ω.

The continuous Stokes eigenvalue problem reads: Find a vector u and λ2 ∈ IR+ such
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that

−∆u = λ2
u, for x ∈ Ω,

∇·u=0, for x ∈ Ω,

u=0, for x ∈ ∂Ω, (2.1)

where IR+ denotes the set of positive real numbers, including zero. For the sake of sim-
plicity we assume here that Ω is the reference domain (−1,+1)2.

Problem (2.1) is often solved using different strategies that we briefly recall here after.

Velocity-Pressure formulation

−∆u+∇p= λ2
u, for x ∈ Ω,

∇·u=0, for x ∈ Ω,

u=0, for x ∈ ∂Ω. (2.2)

Its weak formulation writes: Find u∈ (H1
0(Ω))2, p∈L2

0(Ω) and λ2∈ IR+ such that

∫

Ω
∇u·∇vdx−

∫

Ω
p∇·vdx = λ2

∫

Ω
u·vdx, ∀v∈ (H1

0(Ω))2,
∫

Ω
∇·u qdx = 0, ∀q∈L2

0(Ω). (2.3)

Stream function approach We introduce a stream function ψ ∈ H2(Ω)d [1]. Problem
(2.1) can be reformulated as:

(ux,uy)=

(

∂ψ

∂y
,−

∂ψ

∂x

)

, for x ∈ Ω,

(λ2−∆)∆ψ=0, for x ∈ Ω,

ψ=
∂ψ

∂n
=0, for x ∈ ∂Ω. (2.4)

However, in this paper we prefer to focus on methods involving only u as unknown.
The first one is called Penalty method.

Penalty method This method consists in taking into account the divergence free con-
straint by adding a term of penalty to control the level of divergence when solving the
eigenvalue problem.

The penalty formulation, called also regularization method (see [8]), reads: Find u∈
(H1

0(Ω))2 and λ2∈ IR+ such that

−∆u−α∇(∇·u)=λ2
u, for x ∈ Ω. (2.5)
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Its variational formulation writes: Find u∈ (H1
0(Ω))2 and λ2∈ IR+ such that

∫

Ω
∇u·∇vdx+α

∫

Ω
∇·u∇·vdx = λ2

∫

Ω
u·vdx, ∀v∈ (H1

0(Ω))2. (2.6)

In practice, the infinite dimensional problem (2.6) is replaced by a finite dimensional one
using a stable spectral element taking into account the constraint by an adequate choice
of α (see [3]).

Divergence-free Galerkin approach The second method is called ”divergence-free Galerkin
approach” and starts from the fact that the system (2.6) can reduce to: Find u ∈ X and
λ2∈ IR+ such that

S(u,v) :=
∫

Ω
∇u·∇vdx= λ2

∫

Ω
u·vdx, ∀v∈X, (2.7)

where X is in the space defined by

X=
{

v∈ (H1
0(Ω))2, such that ∇·v=0

}

. (2.8)

Again the infinite dimensional problem (2.7) is replaced by a finite dimensional one using
a stable spectral element that will be developed later in this paper.

3 The Stokes eigenvalue problem: discrete version

We firstly introduce some notations and reminders. Let ΣGLL = {(ξi,ρi); 0≤ i ≤ p} and
ΣGL = {(ζi,ωi); 1 ≤ i ≤ p} respectively denote the sets of Gauss-Lobatto-Legendre and
Gauss-Legendre quadrature nodes and weights associated to polynomials of degree p.
These quantities are such that on Λ :=]−1,+1[

∀Φ∈ IP2p−1(Λ),
∫ +1

−1
Φ(ξ)dξ =

p

∑
j=0

Φ(ξ j)ρj, (3.1)

∀Φ∈ IP2p−1(Λ),
∫ +1

−1
Φ(ζ)dζ =

p

∑
j=1

Φ(ζ j)ωj, (3.2)

where IPp(Λ) denotes the space of polynomials with degree ≤p. We recall that the nodes
ξi (0≤ i≤ p) are solution to (1−x2)L′

p(x)=0 where Lp denotes the Legendre polynomial
of degree p, whereas ζi (1≤ i≤ p) are solution to Lp(x)=0 (see [4]).

The canonical polynomial interpolation basis hi(x)∈ IPp(Λ) built on ΣGLL is given by
the relationships:

hi(x) =−
1

p(p+1)

1

Lp(ξi)

(1−x2)L′
p(x)

(x−ξi)
, −1≤ x≤+1, 0≤ i≤ p, (3.3)



E. Ahusborde, M. Azaı̈ez and R. Gruber / J. Math. Study, 51 (2018), pp. 1-14 5

with the elementary cardinality property

hi(ξ j) = δij, 0≤ i, j≤ p, (3.4)

where δij is Kronecker’s delta symbol.

We also introduce a new family of polynomials functions gi(x) associated to the
canonical basis (3.3) through the relationships:

gi(x) = hi(x)−βiLp(x), 0≤ i≤ p, (3.5)

where the constants βi are such that all gi(x)∈ IPp−1(]−1,+1[) [2, 3]. The functions gi(x)
have the following properties:

1. Their moments up to order (p−1) are equal to those of their corresponding element
in the Gauss-Lobatto-Legendre canonical basis, i.e.: For 0≤ i≤ p,

∫ +1

−1
(gi(x)−hi(x))xj dx = 0, ∀ j, 0≤ j≤ (p−1). (3.6)

The difference (gi(x)−hi(x)) being proportional to Lp(x) is orthogonal to all poly-
nomials of degree less or equal to (p−1).

2. Interpolation of their corresponding element in the canonical basis at the Gauss-
Legendre nodes, i.e.: For 0≤ i≤ p,

gi(ζ j) = hi(ζ j), ∀ j, 1≤ j≤ p. (3.7)

3. The constants βi can be obtained through a series expansion of (3.3) and one gets:

βi =
1

(p+1)Lp(ξi)
, 0≤ i≤ p. (3.8)

In [3] one can read more informations concerning these polynomial functions.

3.1 Penalty method: SEM approximation

The discrete version of problem (2.6) writes: Find up∈Y p and λ2∈ IR+ such that

Ap(up,vp)+αBp(up,vp) = λ2(up,vp)p, ∀vp∈Y p, (3.9)

where:

Ap(up,vp)=(∇up,∇vp)p, (3.10)

Bp(up,vp)=(∇·up,∇·vp)p. (3.11)



6 E. Ahusborde, M. Azaı̈ez and R. Gruber / J. Math. Study, 51 (2018), pp. 1-14

Here (·,···)p is discrete scalar product based on Gauss Lobatto quadrature formula. Y p is
the space of polynomial functions of degree lower or equal to p vanishing on ∂Ω. It is as-
sumed to ensure a stable approximation for grad(div) operator to avoid the phenomenon
of spurious pollution [3]. Since up is equal to zero on the boundary, the solution up∈Yp is

approximated by u
(0)
r p (x,y), u

(1)
r p (x,y) or u

(2)
r p (x,y) according to the functional dependence

and the regularity required (r= x or y).

u
(0)
r p (x,y) =

p−1

∑
i=1

p−1

∑
j=1

ur p(ξi,ξ j)gi(x)gj(y), (3.12a)

u
(1)
r p (x,y) =

p

∑
i=1

p−1

∑
j=1

ur p(ξi,ξ j)hi(x)gj(y), (3.12b)

u
(2)
r p (x,y) =

p

∑
i=1

p−1

∑
j=1

ur p(ξi,ξ j)gi(x)hj(y). (3.12c)

The superscript (1) is used to represent quantities derived in direction x while superscript
(2) is used to represent quantities derived in direction y. The coefficients in the previous
three expansions are the same thanks to (3.7).
Replacing up by the previous development in (3.9), the penalty discrete form writes

(∂xu
(1)
x p ,∂xv

(1)
x p )p+(∂yu

(2)
y p ,∂yv

(2)
y p )p+α(∂xu

(1)
x p +∂yu

(2)
y p ,∂xv

(1)
x p +∂yv

(2)
y p )p

= λ2(u
(0)
p ,v

(0)
p )p, ∀vp∈Y p. (3.13)

3.2 Divergence-free Galerkin approach

The keystone of the divergence-free Galerkin approach is the construction of a discrete
version X p of the divergence free space X defined in equation (2.8).

According to [2,5], we need the divergence to be a polynomial of degree less or equal
to p−1. Consequently, we want to build a space:

Xp ={up∈ (IPp(Ω))2 |∇·up∈ IPp−1(Ω)}∩X.

Expanding up according to (3.12b) and (3.12c) its divergence is a polynomials of degree
p−1. Consequently, if the divergence is orthogonal to all polynomial of IPp−1(Ω), it is
necessarily equal to 0. This point gives a new characterization for Xp:

Xp =

{

up∈ (IP0
p(Ω))2

∣

∣

∣

∣

∫

Ω

(

∂u
(1)
x p

∂x
+

∂u
(2)
y p

∂y

)

q dx=0, ∀q∈ IPp−1(Ω)

}

.

We want to build a basis of Xp. The first step consists in determining the size of this space.

dim Xp=dim (IP0
p(Ω))2−p2,
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where p2 is the number of necessary and sufficient equations to ensure ∇·up≡0.
∇·up∈ IPp−1(Ω) therefore p2 ≤ p2.

There are 2 dependent equations in 2D (see [6] for details) since:
∫

Ω
∇·up L0(x)L0(y)dx=0, ∀up∈ (IP0

p(Ω))2,
∫

Ω
∇·up L′

p(x)L′
p(y)dx=0, ∀up∈ (IP0

p(Ω))2.

Polynomials L0(x)L0(y) and L′
p(x)L′

p(y) are spurious modes and reduce the number of

independent equations from p2 to p2−2. Consequently, we require p2 = p2−2 test func-
tions q to ensure

∫

Ω
∇·up q dx=0.

dimXp=dim (IP0
p(Ω))2−p2=2(p−1)2−(p2−2)=(p−2)2.

After the computation of the size of Xp (denoted p1 =(p−2)2 in the sequel), we propose
two strategies to compute a divergence-free basis.

3.2.1 Divergence-free Galerkin explicit approach

We consider the following eigenvalue problem:

−∇(∇·u)=λ2
u, for x ∈ Ω,

u=0, for x ∈ ∂Ω. (3.14)

The kernel of the grad(div) operator includes all the modes u
k
s,p associated to λ2 = 0

and ∇·uk
s,p = 0. It constitutes a basis for the subspace Xp. Its size is (p−2)2 and then

up∈Xp can be decomposed according to the following form:

up=
(p−2)2

∑
k=1

βk u
k
s,p.

Replacing up by the previous development in (2.7), the discrete variational formulation
writes: Find up∈Xp and λ2∈ IR+∗ such that

(p−2)2

∑
k=1

(∇u
k
s,p,∇u

i
s,p)pβk =λ2

(p−2)2

∑
k=1

(uk
s,p,ui

s,p)p βk,∀u
i
s,p∈Xp.

This can be written:

S e β=λ2Me β.

The stiff matrix S e and mass matrix Me are symmetric and positive definite and are
defined by:

S e
ik = (∇u

k
s,p,∇u

i
s,p)p, Me

ik = (uk
s,p,ui

s,p)p,

for (1≤ i, k≤ (p−2)2).
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3.2.2 Divergence-free Galerkin implicit approach

As highlighted before, the main difficulty of the problem (2.1) consists in satisfying the
incompressibility constraint ∇·u=0. Classical approaches usually satisfy operator equa-
tions strongly with as many equations as degrees of freedom for the velocity while in-
compressibility constraint is only satisfied weakly with fewer equations than degrees of
freedom for the divergence. Contrary to the classical approaches, our objective is to favor
the incompressibility constraint in comparison with the other equations. Our strategy,
firstly introduced in [2], consists in sharing the degrees of freedom of u in a relevant way
to satisfy:

• The incompressibility constraint in strong sense.

• The other equations in weak sense.

Let up be in Xp. The divergence of up is orthogonal to p2−2 polynomials of degree
p−1. It is equivalent to saying that the divergence of up ∈ Xp nullifies in p2−2 Gauss
points. The algebraic divergence equation writes Dup=0 (see Figure (1)).

D up = 0

2(p−1)2

p2
−2

Figure 1: Algebraic system.

D1 D2

u
1
p

u
2
p

= 0

p1 p2

p2

D
Figure 2: Decomposition of D.

D is a rectangular matrix with p2= p2−2 rows and 2(p−1)2 columns.
Then, one splits D into D1⊕D2 and up into u1 p⊕u2 p (see Figure (2)).
Since, the p2−2 lines of D are independent, there is at least one choice of matrix D2

invertible. Equation Dup=0 becomes:

D1u1 p+D2u2 p =0.

For instance, u1 contains the p1 first values of up and consequently u2 p contains the
p2 remaining values. Figure 3 displays the sizes of the matrices D2 and D1.

Since D2 is invertible, the system leads to a relation between u1 p and u2 p:

u2 p=−D−1
2 D1u1 p. (3.15)

Eq. (3.15) is crucial since it means that if we have any part u1 p of up, we can build
the complementary u2 p such that divergence of up equals 0. This argument allows us to
build a basis of Xp.
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D1 u
1
p + D2 u

2
p = 0

p1 p2

p2

D u D u 0

Figure 3: Algebraic system D1u1p+D2u2p=0.

We consider vp∈ (IP0
p(Ω))2. Our strategy consists in combining implicitly:

• A reduction from vp to v1 p,

• An extension from v1 p to wp=(v1 p,v2 p) such that ∇·wp=0 ensured by the multi-
plication of v1 p by the matrix

M=

[

Ip1

−D−1
2 D1

]

.

The matrix M is a two blocks matrix. The first block is a matrix of order p1 equal to
identity. The second block contains p2 rows and p1 columns. It ensures the passage from
v1 p to v2 p.

• For each vp∈ (IP0
p(Ω))2, one associates a vector wp of Xp.

By consequent, our strategy for the construction of a basis of Xp consists in:

• Choosing p1 = (p−2)2 vectors (vk
p)k=1,...,p1

of the basis of (IP0
p(Ω))2 (for instance,

the (p−2)2 first vectors),

• For each one of these p1 vectors, we consider its p1-size reduced part denoted v
k
1 p,

• We carry out the divergence-free extension (wk
p)k=1,...,p1

=(Mv
k
1 p)k=1,...,p1

.

The (wk
p)k=1,...,p1

family is a basis of Xp and every up∈Xp can be decomposed accord-
ing to the following form:

up=
p1

∑
k=1

γk w
k
p.

Replacing up by the previous development, the discrete variational formulation writes:
Find up∈Xp and λ2∈ IR+∗ such that

p1

∑
k=1

(∇w
k
p,∇w

i
p)pγk =λ2

p1

∑
k=1

(wk
p,wi

p)p γk, ∀w
i
p∈Xp.
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Table 1: Maximum and minimum of the L2(Ω)-norm of the divergence of all the Stokes eigenmodes as a
function of p.

p 4 8 12 16 20

min ||∇·up||L2(Ω) 8.1×10−7 8.97×10−7 8.97×10−7 8.97×10−7 8.97×10−7

max ||∇·up||L2(Ω) 8.92×10−6 7.66×10−5 2.54×10−5 5.95×10−4 1.15×10−3

This can be written:

S i γ=λ2Mi γ,

with for (1≤ i,k≤ p1),

S i
ik = (∇w

k
p,∇w

i
p)p, Mi

ik = (wk
p,wi

p)p.

S i and Mi refer respectively to the Laplace operator and mass matrices expressed on
the basis wp.

Finally, this system is equivalent to:

MT AMup1=λ2MT B Mup1,

where A and B refer respectively to the classical Laplacian and mass matrices.

4 Numerical results

This section discusses some numerical results. We will apply each of the three approaches
to compute the Stokes eigenvalues and associated eigenfunctions.

Penalty approach Figure 4 displays the convergence for the lowest eigenvalue of prob-
lem (2.5) for several values of α.

One can see that the choice of α leads to slightly different convergence behaviors. For
double precision arithmetic, α=107 appears to give the best convergence results. With an
increasing polynomial degree to represent the eigenfunction, the eigenvalue converges
exponentially as expected for p≤ 9. Increasing p further does not improve the accuracy
of the eigenvalue, with the precision limited to 10−6. Table 1 shows the limit in precision
for the incompressibility condition for α=107 as a function of p.

The eigenvalue problem (3.9) gives 2(p−1)2 eigenvalues and associated eigenvec-
tors corresponding to the degrees of freedom in Y p. Among these eigenvalues, there
are the Stokes eigenvalues and the non-zero eigenvalues of the grad(div) operator mul-
tiplied by α. The number of Stokes eigenvalues NS corresponds to the size of the kernel
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2 4 6 8 10 12 14 16 18 20
p

1e-08

1e-06

1e-04

1e-02

1e+00

 ε

 α = 10
5

 α = 10
6

 α = 10
7

 α = 10
8

Figure 4: Convergence plots obtained using the penalty method for the first Stokes mode (λ2=13.086172791)
as a function of the polynomial order p for several values of α.

of the discretized grad(div) operator, i.e. to the number of zero eigenvalues. As said
in Section (3.2.1), it can be proved that this number is equal to (p−2)2. Consequently,
the resolution of the problem (3.9) leads to NS =(p−2)2 Stokes eigenmodes. The p2−2
remaining eigenmodes are those of the class of non-zero eigenvalues of the grad(div)
operator multiplied by α.

Figure 5 illustrates the convergence of the difference ǫ between the four lowest Stokes
eigenvalues as a function of p computed by our method with those produced in [1] for
α=107 on a semi-logarithmic scale. The error is exponentially decreasing as expected for
p≤11 and then stagnates.

Divergence-free Galerkin explicit approach Figure 6 illustrates the convergence of the
difference ǫ between the four lowest Stokes eigenvalues as a function of p computed
by the divergence-free Galerkin explicit approach with those produced in [1] on a semi-
logarithmic scale. The error is exponentially decreasing as expected.

Divergence-free Galerkin implicit approach To validate our divergence-free Galerkin
implicit approach, we have computed the Stokes eigenvalues and compared with those
obtained in [1]. Figure 7 shows the convergence for the four lowest eigenvalues as a
function of p on a semi-logarithmic scale. The calculation of the eigenvalues converges
exponentially as expected.

It has been shown theoretically that the eigenmodes have a global structure with an
infinite series of Moffat corner vortices [7] of increasingly smaller amplitude. The right
part of the Figure 8 represents the upx component of the thirteenth eigenmode. The am-
plitude is 0.852. In the center of the figure, we can see the first Moffat vortex in the left
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2 4 6 8 10 12 14 16 18 20
p

1e-06

1e-04

1e-02

1e+00

1e+02

 ε 

 λ
1

2

 λ
2

2

 λ
3

2

 λ
4

2

Figure 5: Convergence plots obtained using the penalty method for the four lowest divergence-free modes as a
function of p. Again, α=107.

4 6 8 10 12 14 16 18 20 22 24
p

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

 ε 

 λ
1

2

 λ
2

2

 λ
3

2

 λ
4

2

Figure 6: Convergence plots obtained using the divergence-free Galerkin explicit approach method for the four
lowest divergence-free modes as a function of p.

upper corner of the geometry with an amplitude of 1×10−3. At last, in the left side of
the figure, the second Moffat vortex has an amplitude of 2×10−6. These results are in
accordance with the theoretical ones.

Comparison between the different approaches The three strategies described in this
paper give the expected number of Stokes eigenvalues with a high precision. Nonethe-
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Figure 7: Relative error ǫ for the for the four lowest Stokes eigenvalues as a function of p on a semi-logarithmic
scale with the divergence-free Galerkin implicit approach.

Figure 8: upx component of 13th Stokes eigenvector: Moffatt vortices in the corners.

less, Figure 5 compared with Figure 6 and Figure 7 indicates that the penalty approach
is less accurate that the two other ones. Moreover, the divergence of the eigenvectors
computed by the penalty approach is not identically null and its level can depend on the
tricky choice of the values of α. On the contrary, the divergence-free Galerkin approaches
computed eigenvectors that are perfectly divergence-free. As drawback of the explicit
version, we can mention that an initial computation of the kernel of the discretized
grad(div) operator has to be performed leading to the resolution of two eigenvalue prob-
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lems. Consequently, due to the reasons mentioned above, in our opinion, among the
three strategies studied in this paper, the best one is the divergence-free Galerkin implicit
approach.
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