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Abstract. We consider a scalar conservation law with zero-flux boundary conditions
imposed on the boundary of a rectangular multidimensional domain. We study mono-
tone schemes applied to this problem. For the Godunov version of the scheme, we
simply set the boundary flux equal to zero. For other monotone schemes, we addition-
ally apply a simple modification to the numerical flux. We show that the approximate
solutions produced by these schemes converge to the unique entropy solution, in the
sense of [7], of the conservation law. Our convergence result relies on a BV bound on
the approximate numerical solution. In addition, we show that a certain functional
that is closely related to the total variation is nonincreasing from one time level to the
next. We extend our scheme to handle degenerate convection-diffusion equations and
for the one-dimensional case we prove convergence to the unique entropy solution.
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1 Introduction

We are interested in an initial-boundary value problem of the form






















ut+∇· f (u) :=ut+
d

∑
i=1

fi(u)xi
=0, (x1,··· ,xd)∈Ω, t∈ (0,T),

f (u(x,t))·ν=0 a.e. on ∂Ω×(0,T),

u(x,0)=u0(x), x∈Ω.

(1.1)
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Here Ω=Πd
i=1(0,ai) is an open rectangular region in R

d and ν is the a.e. defined outward
unit normal vector to the spatial region Ω. We assume the flux functions u 7→ fi(u) are
Lipschitz-continuous and satisfy fi(0)= fi(1)=0, fi(u)≥0 for u∈ [0,1]. We assume that
the initial function u0 satisfies

u0∈L1(Ω)∩BV(Ω); u0(x)∈ [0,1], ∀x∈Ω.

The well-posedness of the Cauchy problem corresponding to (1.1) was established by
Kružkov [19]. The Dirichlet problem, where the conserved quantity u is specified on the
spatial boundary, has also been well understood for a long time [4]. On the other hand,
the study of problem (1.1), which specifies zero flux through the spatial boundary, did
not begin until more recently.

Problems like (1.1) occur in several applications, including porous media flow, sed-
imentation processes and road traffic. For example, batch or continuous sedimentation
processes are utilized in many industrial applications in which a solid-fluid suspension
is separated into its solid and fluid components under the influence of gravity. Relevant
models often give rise to hyperbolic (or degenerate parabolic) equations with the zero
flux (homogeneous Neumann) boundary condition. For examples of such applications
in the one-dimensional setting, see, e.g., [5, 8, 10].

Karlsen, Lie and Risebro [18] proposed a front tracking algorithm for producing ap-
proximate solutions to (1.1). For the one-dimensional case, they proved that the front
tracking approximations converge to a unique weak solution. Their convergence proof
relied on a total variation bound. They also proposed a front tracking algorithm for
the multidimensional version of the problem, using dimensional splitting. They did not
prove convergence of their multidimensional scheme, the main obstacle being the lack of
a total variation bound. The authors of [7] studied the multidimensional version of the
problem, allowing for a fairly general boundary (specifically, a regular deformable Lips-
chitz boundary). They also proposed a definition of L∞ entropy solution, which we have
adopted below for the special case of a rectangular boundary. Bürger, Frid and Karlsen
considered a sequence of regularized parabolic problems and proved convergence to a
unique entropy solution, using the compactness result of [20]. In both [18] and [7], the
authors mentioned the seeming lack of a BV bound in the multidimensional case. A sig-
nificant extension of the results in [7] to general boundary value problems can be found in
Andreianov and Sbihi [3]. These authors consider conservation laws with a general dis-
sipative boundary condition, which includes as particular cases the Dirichlet, Neumann
(flux), Robin and obstacle boundary conditions. Well-posedness results for degenerate
parabolic problems have been provided by Andreianov and Gazibo [1, 2].

For the Cauchy problem, the theory of monotone schemes has been well established
for a long time [11,15,21]. For the Cauchy problem again, but with a degenerate diffusion
term included, the theory of monotone schemes was addressed more recently [13].

To our knowledge, there are no previous published results on the subject of conver-
gence of finite difference schemes for the zero-flux boundary problem (1.1), even for the
important one-dimensional case. However, there is a recent convergence result for an
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implicit finite volume method for degenerate parabolic equations (with zero flux condi-
tion), due to Andreianov and Gazibo [2]. The convergence proof in [2] is rather involved,
relying on sophisticated energy (weak BV) estimates and nonlinear weak convergence
techniques. Our proof, on the other hand, is short and elementary, relying on BV esti-
mates obtained through a slight modification of the total variation functional (the only
intricate trick involved).

Compared to references [18] and [7], we have added the hypothesis fi(u)≥0, which
is crucial to our total variation bound. This is an entirely natural assumption for applica-
tions such as sedimentation in closed vessels, traffic flow and certain two-phase porous
media flow problems. We study monotone schemes as applied to (1.1). Away from the
boundary, the schemes are standard as in [11, 15, 21]. We handle the boundary condi-
tion in the obvious way, setting the numerical flux that is normal to the boundary equal
to zero. For schemes other than the Godunov version, we additionally modify the nu-
merical flux slightly, in order keep the flux nonnegative. For the Godunov version, this
modification is not required. In any case, the result is a very easily implemented class of
numerical schemes.

We prove that the schemes mentioned above produce approximate solutions that con-
verge to the unique entropy solution in the sense of [7]. As part of the convergence proof,
we establish a bound on the total variation of the approximate solutions. In fact we prove
that a certain functional, denoted TV∗, which is closely related to the total variation, is
nonincreasing from one time level to the next. Although the scheme is formally first order
accurate (as are all monotone schemes), it is potentially a starting point for higher order
schemes. In particular, a design goal would be to achieve second (or higher) order for-
mal accuracy while maintaining the property that TV∗ is nonincreasing. We extend our
scheme to handle the more general case of a degenerate convection-diffusion equation.
We obtain some partial results in that direction, namely that the total variation bound still
holds for the extended scheme and that the extended scheme satisfies a discrete entropy
inequality consistent with the ones found in [1] and [14]. For the one-dimensional version
of the extended scheme, we prove convergence to the unique entropy solution. The anal-
ogous result for the multidimensional problem remains open, the main difficulty being
the lack of an existence result for the trace of the total flux along the spatial boundary.

The remaining part of this paper is organized as follows: In Section 2 we recall the
notion of entropy solution. The difference scheme is defined in Section 3 and analyzed in
Section 4. A few one- and two-dimensional numerical examples are presented in Section
5. In Section 6 we briefly discuss how the scheme can be modified to handle degenerate
convection-diffusion equations.

2 Notion of solution

In the sequel, we mostly restrict the presentation to d = 2 and use the notation x = x1,
y = x2, f1 = f , f2 = g. The corresponding definitions and results will be clear from this
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case. Let

QT :=Ω×(0,T), Q
T

:=Ω×[0,T), ΠT :=R
d×(0,T), ΠT :=R

d×[0,T),

and denote by C∞
0 (QT) the set of all infinitely smooth functions on QT with compact

support. The space of test functions C∞
0 (ΠT) is defined analogously.

We will use the following definition of entropy solution, taken from [7] and here
adapted to the case of a two-dimensional rectangular domain:

Definition 2.1. A function u∈L∞(QT) is called an entropy solution of the initial-boundary
value problem (1.1) if the following conditions are satisfied:

(1) For all κ∈R and all φ∈C∞
0 (QT), φ≥0, the following entropy inequality holds:

∫ T

0

∫

Ω

{

|u−κ|φt+sign(u−κ)( f (u)− f (κ))φx

+sign(u−κ)(g(u)−g(κ))φy

}

dxdydt≥0. (2.1)

(2) The initial condition is satisfied as a limit in the following L1 sense:

esslim
t→0+

∫

Ω
|u(x,y,t)−u0(x,y)|dxdy=0. (2.2)

(3) The boundary condition is satisfied in the following pointwise sense:
(

f (uτ),g(uτ)
)

·ν=0 a.e. on ∂Ω×(0,T), (2.3)

where uτ is the strong trace of u.

Remark 2.1. Taking κ=0, κ=1 in the entropy inequality (2.1), the result is
∫ T

0

∫

Ω

{

uφt+ f (u)φx+g(u)φy

}

dxdydt=0,

meaning that u is a weak solution of the conservation law ut+ f (u)x+g(u)y =0 in QT.

In view of Definition 2.1, we will need to know that the strong boundary trace uτ

exist. For this purpose, we could adopt (the two-dimensional version of) the genuinely
nonlinearity condition of [20]. In the present paper, however, we will manage to con-
struct solutions u with bounded total variation and with u∈BV(QT) the strong trace uτ

is known to exist [12].
The following is an equivalent definition of entropy solutions [7].

Definition 2.2. A function u∈L∞(QT) is called an entropy solution of the initial-boundary
value problem (1.1) if the following entropy inequality holds ∀κ∈R, ∀φ∈C∞

c (ΠT), φ≥0:
∫ T

0

∫

Ω

{

|u−κ|φt+sign(u−κ)( f (u)− f (κ))φx+sign(u−κ)(g(u)−g(κ))φy

}

dxdydt

+
∫

Ω
|u0−κ|φ(x,y,0)dxdy+

∫ T

0

∫

∂Ω
sign(uτ−κ)( f (κ),g(κ))·νφdHN−1dt≥0,

where uτ is the trace of u.
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Entropy solutions are unique. More precisely,

Theorem 2.1 (see [7, Theorem 3]). Suppose that u and v are entropy solutions of (1.1) with
initial conditions u|t=0=u0(x), v|t=0=v0(x). Assume that u0,v0∈L∞(Ω). Then,

∫

Ω
|u(x,t)−v(x,t)|dx≤

∫

Ω
|u0(x)−v0(x)|dx.

In particular, there is at most one entropy solution to the zero flux problem (1.1).

3 Difference schemes

We begin by discretizing Ω. For positive integers J and K, define the spatial mesh sizes
∆x= a1/J and ∆y= a2/K. Let Z J ={1,··· , J}, ZK ={1,··· ,K}. Define the grid points

xj =(j−1/2)∆x, yk =(k−1/2)∆y, j∈Z J , k∈ZK . (3.1)

We will sometimes use the notation

xj± 1
2
= xj±∆x/2, yk± 1

2
=yk±∆y/2.

With this setup, the spatial boundaries coincide with

0= x 1
2
, a1= xJ+ 1

2
, 0=y 1

2
, a2=yK+ 1

2
.

We define intervals Ix
j = [xj− 1

2
,xj+ 1

2
), I

y
k = [yk− 1

2
,yk+ 1

2
). Similarly, we select a time in-

crement ∆t > 0 and discretize the time interval [0,T]: tn = n∆t for n = 0,··· ,N, where
N=⌊T/∆t⌋, resulting in the time strips

In =[tn,tn+1).

Let χj(x), χk(y), χn(t) be the characteristic functions for the intervals Ix
j , I

y
k , In respec-

tively. Define χn
j,k(x,y,t)=χj(x)χk(y)χ

n(t) to be the characteristic function for the rectan-

gle
Rn

j,k= Ix
j × I

y
k × In.

We will use Un
j,k to denote the finite difference approximation of u(xj,yk,tn). We dis-

cretize the initial data u0(x,y) via

U0
j,k=

1

∆x∆y

∫

Ix
j

∫

I
y
k

u0(x,y)dxdy. (3.2)

The difference solution
{

Un
j,k

}

is extended to all of QT by defining

u∆(x,t)=
N

∑
n=0

K

∑
k=1

J

∑
j=1

χn
j,k(x,y,t)Un

j,k, (x,y,t)∈QT , (3.3)
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where ∆=(∆x,∆y,∆t).

Let f̄ (v,u) and ḡ(v,u) denote two-point numerical fluxes that are consistent with f (u)
and g(u). With our notation, the first (second) argument denotes the right (left) state. Re-
call that a two point flux q̄(v,u) is consistent with q(u) if q̄(u,u)=q(u). The numerical flux
q̄(v,u) is monotone if it is nonincreasing with respect to its first argument, nondecreasing
with respect to its second argument. We will assume that the numerical fluxes f̄ (v,u) and
ḡ(v,u) are monotone and also Lipschitz continuous with respect to both variables. Some
of the most commonly encountered two-point monotone fluxes are the Godunov flux:

q̄(v,u)=

{

minw∈[u,v]q(w), u≤v,

maxw∈[v,u]q(w), u>v,

the Lax-Friedrichs flux:

q̄(v,u)=
1

2
(q(u)+q(v))− α

2λ
(v−u) , α∈ (0,1],

and the Engquist-Osher flux:

q̄(v,u)=
1

2
(q(u)+q(v))− 1

2

∫ v

u

∣

∣q′(w)
∣

∣dw.

If the flux has the form q(u)=uw(u), where u 7→w(u) is nonnegative and nonincreasing
on [0,1], the Hilleges-Weidlich flux [9, 16] is also a possibility:

q̄(v,u)=uw(v).

We will employ the following modified flux

q̂(v,u)=max(0,q(v,u)) . (3.4)

It is readily verified that q̂ is monotone, Lipschitz continuous (with Lipschitz constants
not exceeding those of q̄) and consistent with q. Note that for the special cases where q̄ is
the Godunov flux or the Hilleges-Weidlich flux, q̂= q̄.

To simplify the presentation, we use ∆x
+ and ∆x

− to designate the difference operators
in the x direction, e.g.,

∆x
+Un

j,k=Un
j+1,k−Un

j,k=∆x
−Un

j+1,k,

and ∆
y
+ and ∆

y
− are defined similarly.

With

λx(∆)=∆t/∆x, λy(∆)=∆t/∆y,
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the algorithm takes the following (conservation) form















Vn+1
j,k =Un

j,k−2λx∆x
− f̂ (Un

j+1,k,Un
j,k), 2≤ j≤ J−1, 1≤ k≤K,

Vn+1
1,k =Un

1,k−2λx f̂ (Un
2,k,Un

1,k), 1≤ k≤K,

Vn+1
J,k =Un

J,k+2λx f̂ (Un
J,k,Un

J−1,k), 71≤ k≤K,

(3.5a)















Wn+1
j,k =Un

j,k−2λy∆
y
− ĝ(Un

j,k+1,Un
j,k), 2≤ k≤K−1, 1≤ j≤ J,

Wn+1
j,1 =Un

j,k−2λy ĝ(Un
j,2,Un

j,1), 1≤ j≤ J,

Wn+1
j,K =Un

j,k+2λy ĝ(Un
j,K,Un

j,K−1), 1≤ j≤ J,

(3.5b)

Un+1
j,k =(1/2)Vn+1

j,k +(1/2)Wn+1
j,k . (3.5c)

We will refer to (3.5a) as the x portion of the scheme and (3.5b) as the y portion. It is clear
that if we fix a single k∈ZK in the x portion, or if we fix j∈Z J in the y portion, we get a
one-dimensional scheme for ut+ f (u)x=0 in the first case, or ut+g(u)y=0 in the second
case.

Remark 3.1. Instead of combining the x and y portions of the scheme via (3.5c), we could
also combine them via dimensional splitting. All of the results of this paper would remain
true and in fact the CFL condition below could be relaxed, resulting in twice the allowable
time step ∆t.

Remark 3.2. When (xj,yk) and its neighboring gridpoints are away from the boundary
of Ω, the marching formulas (3.5a), (3.5b), (3.5c) result in

Un+1
j,k =Un

j,k−λx∆x
− f̂ (Un

j+1,k,Un
j,k)−λy∆

y
− ĝ(Un

j,k+1,Un
j,k), (3.6)

as one might anticipate. In fact, we can extend (3.6) to the entire compuational grid, i.e.,
(j,k)∈Z J×ZK, if we agree that when a numerical flux involves an ”out of bounds index”
(meaning outside the range 1≤ j ≤ J, 1≤ k≤K), then we set that flux equal to zero. For
example, we define f̂ (Un

1,k,Un
0,k)=0.

Remark 3.3. In the important one-dimensional case, where the spatial domain is Ω =
[0,a1] and the conservation law is ut+ f (u)x =0, the scheme is simply















Un+1
j =Un

j −λx∆x
− f̂ (Un

j+1,Un
j ), 2≤ j≤ J−1,

Un+1
1 =Un

1 −λx f̂ (Un
2 ,Un

1 ),

Un+1
J =Un

J +λx f̂ (Un
J ,Un

J−1).

(3.7)

4 Convergence analysis

We will assume that the following CFL condition is satisfied:
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For all u,v,z,w∈ [0,1],

−λx f̂ (v,w)− f̂ (u,w)

v−u
+λx f̂ (z,v)− f̂ (z,u)

v−u
≤ 1

2
,

−λy ĝ(v,w)− ĝ(u,w)

v−u
+λy ĝ(z,v)− ĝ(z,u)

v−u
≤ 1

2
.

(4.1)

For the Godunov, Engquist-Osher and Lax-Friedrichs (with α=1) fluxes we can substitute
the somewhat simpler CFL condition below, which implies (4.1):

λx max
w∈[0,1]

∣

∣ f ′(w)
∣

∣≤1/2, λy max
w∈[0,1]

∣

∣g′(w)
∣

∣≤1/2. (4.2)

Having selected the spatial mesh sizes ∆x and ∆y, the CFL condition amounts to a re-
striction on the size of the time step ∆t. For the convergence analysis that follows, we
will assume that the mesh size ∆→0 with the CFL condition (4.1) satisfied.

Remark 4.1. For the one-dimensional scheme (3.7), the 1/2 on the right sides of the CFL
conditions (4.1) and (4.2) can be replaced by 1.

We will employ the following two measures of total variation of the numerical solu-
tion Un:

TV(Un) :=
K

∑
k=1

∆y
J−1

∑
j=1

∣

∣

∣
∆x
+Un

j,k

∣

∣

∣
+

J

∑
j=1

∆x
K−1

∑
k=1

∣

∣

∣
∆

y
+Un

j,k

∣

∣

∣
,

TV∗(Un) :=TV(Un)+
K

∑
k=1

∆y
(

Un
1,k−Un

J,k

)

+
J

∑
j=1

∆x
(

Un
j,1−Un

j,K

)

.

The functional TV is the standard total variation for a grid function defined on a rect-
angle, while TV∗ turns out to be a more convenient quantity for the zero-flux boundary
value problem of this paper. Note that if Un

j,k ∈ [0,1] for all (j,k)∈Z J×ZK (which will be

established in Lemma 4.1 below) then,

TV(Un)≤TV∗(Un)+a1+a2, (4.3a)

TV∗(Un)≤TV(Un)+a1+a2. (4.3b)

It is readily verified that each of the x and y portions of the scheme, as well as the overall
scheme, preserves total mass:

∆x∆y
J

∑
j=1

K

∑
k=1

Un+1
j,k =∆x∆y

J

∑
j=1

K

∑
k=1

Vn+1
j,k =∆x∆y

J

∑
j=1

K

∑
k=1

Wn+1
j,k =∆x∆y

J

∑
j=1

K

∑
k=1

Un
j,k. (4.4)

The one-dimensional versions of the x and y portions are also total mass preserving (in
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the one-dimensional sense):

∆x
J

∑
j=1

Vn+1
j,k =∆x

J

∑
j=1

Un
j,k, k∈ZK , (4.5a)

∆y
K

∑
k=1

Wn+1
j,k =∆y

K

∑
k=1

Un
j,k, j∈Z J . (4.5b)

Lemma 4.1. The scheme is monotone, meaning that

if Un
j,k≤ Ũn

j,k for all (j,k)∈Z J×ZK, then Un+1
j,k ≤ Ũn+1

j,k for all (j,k)∈Z J×ZK. (4.6)

In addition, the computed solution satisfies

Un
j,k∈ [0,1] for all (j,k)∈Z J×ZK, n=0,1,2,··· ,N.

Proof. Since u0(x,y) ∈ [0,1], due to (3.2) we will also have U0
j,k ∈ [0,1] and thus the CFL

condition (4.1) will be satisfied when we compute V1 and W1. Consider the first equation
in (3.5a). It follows from a standard calculation for one-dimensional monotone schemes
that for 2≤ j≤ J−1, 1≤ k≤K, V1

j,k is a nondecreasing function of U0
j−1,k, U0

j,k, U0
j+1,k. Now

consider the second and third equations of (3.5a). Using the CFL condition again, along
with the monotonicity of the numerical flux, we find that V1

1,k is a nondecreasing function

of U0
1,k and U0

2,k and that V1
J,k is a nondecreasing function of U0

J−1,k and U0
J,k. Thus the

x-portion of the scheme is monotone on the first time step, i.e.,

if U0
j,k≤ Ũ0

j,k for all (j,k)∈Z J×ZK then V1
j,k≤ Ṽ1

j,k for all (j,k)∈Z J×ZK,

and by a similar argument, the analogous monotonicity property holds for the y-portion
of the scheme. Monotonicity of the overall scheme, (4.6), at least on the first time step,
now follows from from the observation that the averaging step (3.5c) preserves mono-
tonicity.

Now let Zero (One) denote the grid function that is identically = 0 (identically = 1).
Both of these grid functions are fixed points of the scheme. The initial data satisfies

Zeroj,k≤U0
j,k≤Onej,k,

and since we have established (4.6) for the first time step, we have

Zeroj,k≤U1
j,k≤Onej,k.

Clearly, the foregoing argument can be repeated inductively, completing the proof.

Lemma 4.2. We have the following time continuity property for the computed solution:

∆x∆y
J

∑
j=1

K

∑
k=1

∣

∣

∣
Un+1

j,k −Un
j,k

∣

∣

∣
≤B·∆t,

where B is independent of ∆x, ∆y, ∆t.
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Proof. The monotonicity of the scheme, along with the total mass preserving property
(4.4), allows us to apply the Crandall-Tartar lemma [17], which yields

∆x∆y
J

∑
j=1

K

∑
k=1

∣

∣

∣
Un+1

j,k −Un
j,k

∣

∣

∣
≤∆x∆y

J

∑
j=1

K

∑
k=1

∣

∣

∣
Un

j,k−Un−1
j,k

∣

∣

∣
≤···≤∆x∆y

J

∑
j=1

K

∑
k=1

∣

∣

∣
U1

j,k−U0
j,k

∣

∣

∣
.

It remains to estimate this last sum. From (3.5a), we have, for fixed k∈ZK ,

J

∑
j=1

∣

∣

∣
V1

j,k−U0
j,,k

∣

∣

∣
≤2λx

J−1

∑
j=2

∣

∣

∣
∆x
− f̂ (U0

j+1,k,U0
j,k)
∣

∣

∣
+2λx

∣

∣

∣
f̂ (U0

2,k,U0
1,k)
∣

∣

∣
+2λx

∣

∣

∣
f̂ (U0

J,k,U0
J−1,k)

∣

∣

∣

≤4λxL f̄

J−1

∑
j=1

∣

∣

∣
∆x
+U0

j,k

∣

∣

∣
+2λx‖ f (u0)‖∞ . (4.7)

Here L f̄ is a Lipschitz constant for the numerical flux f̄ (and thus also for f̂ ).
Multiplying (4.7) by ∆x∆y and then summing over k, the result is

∆x∆y
K

∑
k=1

J

∑
j=1

∣

∣

∣
V1

j,k−U0
j,,k

∣

∣

∣
≤4∆xλx L f̄

K

∑
k=1

∆y
J−1

∑
j=1

∣

∣

∣
∆x
+U0

j,k

∣

∣

∣
+2a2∆xλx‖ f (u0)‖∞ . (4.8)

Replacing ∆xλx by ∆t and recalling that u0∈BV(Ω), u0(x,y)∈ [0,1] we have

∆x∆y
K

∑
k=1

J

∑
j=1

∣

∣

∣
V1

j,k−U0
j,,k

∣

∣

∣
≤B1 ·∆t.

A similar calculation starting from (3.5b) gives

∆x∆y
J

∑
j=1

K

∑
k=1

∣

∣

∣
W1

j,k−U0
j,,k

∣

∣

∣
≤B2 ·∆t. (4.9)

Since
∣

∣

∣
U1

j,k−U0
j,,k

∣

∣

∣
≤ (1/2)

∣

∣

∣
V1

j,k−U0
j,,k

∣

∣

∣
+(1/2)

∣

∣

∣
W1

j,k−U0
j,,k

∣

∣

∣
,

we can combine (4.8) and (4.9):

∆x∆y
K

∑
k=1

J

∑
j=1

∣

∣

∣
U1

j,k−U0
j,,k

∣

∣

∣
≤ 1

2
(B1+B2)∆t,

thus completing the proof.

Lemma 4.3. The functional TV∗ is nonincreasing:

TV∗(Un+1)≤TV∗(Un), n=0,1,2,··· ,N,

and we have the following bound on the total variation:

TV(Un)≤TV(u0)+2a1+2a2, n=1,2,··· ,N.
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Proof. Consider the x portion of the scheme (3.5a) for a fixed k∈ZK. Since the index k
is fixed for the moment, we simplify the notation by temporarily omitting it. This one-
dimensional x-portion of the scheme (3.5a) can be written in incremental form:

Vn+1
j =Un

j +Cn
j+ 1

2
∆x
+Un

j −Dn
j− 1

2
∆x
−Un

j , 2≤ j≤ J−1, (4.10a)

Vn+1
1 =Un

1 −2λx f̂ (Un
2 ,Un

1 ), (4.10b)

Vn+1
J =Un

J +2λx f̂ (Un
J ,Un

J−1), (4.10c)

where

Cn
j+ 1

2
=−2λx

f̂ (Un
j+1,Un

j )− f (Un
j )

∆x
+Un

j

, Dn
j− 1

2
=2λx

f (Un
j )− f̂ (Un

j ,Un
j−1)

∆x
−Un

j

.

Due the fact that the numerical flux f̂ is monotone and to the CFL condition (4.1), the
incremental coefficients satisfy

Cn
j+ 1

2
≥0, Dn

j+ 1
2
≥0, Cn

j+ 1
2
+Dn

j+ 1
2
≤1. (4.11)

An application of ∆x
+ to (4.10) results in

∆x
+Vn+1

j =
(

1−Cn
j+ 1

2
−Dn

j+ 1
2

)

∆x
+Un

j +Cn
j+ 3

2
∆x
+Un

j+1+Dn
j− 1

2
∆x
+Un

j−1, 2≤ j≤ J−2, (4.12a)

∆x
+Vn+1

1 =
(

1−Dn
3
2

)

∆x
+Un

1 +Cn
5
2
∆x
+Un

2 +2λx f̂ (Un
2 ,Un

1 ), (4.12b)

∆x
+Vn+1

J−1 =
(

1−Cn
J− 1

2

)

∆x
+Un

J−1+Dn
J− 3

2
∆x
+Un

J−2+2λx f̂ (Un
J ,Un

J−1). (4.12c)

Due to (4.11) and the fact that f̂ ≥0, it follows from (4.12) that

∣

∣

∣
∆x
+Vn+1

j

∣

∣

∣
≤
(

1−Cn
j+ 1

2
−Dn

j+ 1
2

)
∣

∣

∣
∆x
+Un

j

∣

∣

∣
+Cn

j+ 3
2

∣

∣

∣
∆x
+Un

j+1

∣

∣

∣
+Dn

j− 1
2

∣

∣

∣
∆x
+Un

j−1

∣

∣

∣
, 1≤ j≤ J−2,

∣

∣

∣
∆x
+Vn+1

1

∣

∣

∣
≤ (1−Dn

3
2
)|∆x

+Un
1 |+Cn

5
2
|∆x

+Un
2 |+2λx f̂ (Un

2 ,Un
1 ),

∣

∣

∣
∆x
+Vn+1

J−1

∣

∣

∣
≤ (1−Cn

J− 1
2
)
∣

∣∆x
+Un

J−1

∣

∣+Dn
J− 3

2

∣

∣∆x
+Un

J−2

∣

∣+2λx f̂ (Un
J ,Un

J−1).

Summing over 1≤ j≤ J−1 and then canceling the telescoping terms, we get

J−1

∑
j=1

∣

∣

∣
∆x
+Vn+1

j

∣

∣

∣
≤

J−1

∑
j=1

∣

∣

∣
∆x
+Un

j

∣

∣

∣
+2λx f̂ (Un

2 ,Un
1 ))+2λx f̂ (Un

J ,Un
J−1).

After substituting

2λx f̂ (Un
2 ,Un

1 ))=Un
1 −Vn+1

1 , 2λx f̂ (Un
J ,Un

J−1)=Vn+1
J −Un

J ,
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and then rearranging, the result is

J−1

∑
j=1

∣

∣

∣
∆x
+Vn+1

j

∣

∣

∣
+Vn+1

1 −Vn+1
J ≤

J−1

∑
j=1

∣

∣

∣
∆x
+Un

j

∣

∣

∣
+Un

1 −Un
J . (4.13)

At this point, we reinstate the k part of the subscript. Multiplying (4.13) by ∆y and then
summing over k, the result is

K

∑
k=1

∆y

(

J−1

∑
j=1

∣

∣

∣
∆x
+Vn+1

j,k

∣

∣

∣
+Vn+1

1,k −Vn+1
J,k

)

≤
K

∑
k=1

∆y

(

J−1

∑
j=1

∣

∣

∣
∆x
+Un

j,k

∣

∣

∣
+Un

1,k−Un
J,k

)

. (4.14)

Still focusing on the x portion of the scheme, recall the first equation of (4.5), which states
that the one-dimensional version (which results when k is fixed) preserves total mass.
Also, the proof of Lemma 4.1 reveals that the one-dimensional version of the x portion is
monotone. Thus, we can apply the Crandall-Tartar lemma [17]:

∆x
J

∑
j=1

∣

∣

∣
Vn+1

j,k+1−Vn+1
j,k

∣

∣

∣
≤∆x

J

∑
j=1

∣

∣

∣
Un

j,k+1−Un
j,k

∣

∣

∣
, k=1,··· ,K−1. (4.15)

Applying the first equation of (4.5), we find that

J

∑
j=1

∆xVn+1
j,1 =

J

∑
j=1

∆xUn
j,1,

J

∑
j=1

∆xVn+1
j,K =

J

∑
j=1

∆xUn
j,K,

which we combine as follows:

J

∑
j=1

∆x
(

Vn+1
j,1 −Vn+1

j,K

)

=
J

∑
j=1

∆x
(

Un
j,1−Un

j,K

)

. (4.16)

Summing (4.15) over k and then adding (4.16), we get

K−1

∑
k=1

∆x
J

∑
j=1

∣

∣

∣
Vn+1

j,k+1−Vn+1
j,k

∣

∣

∣
+

J

∑
j=1

∆x
(

Vn+1
j,1 −Vn+1

j,K

)

≤
K−1

∑
k=1

∆x
J

∑
j=1

∣

∣

∣
Un

j,k+1−Un
j,k

∣

∣

∣
+

J

∑
j=1

∆x
(

Un
j,1−Un

j,K

)

. (4.17)

Adding (4.14) to (4.17), we arrive at

TV∗(Vn+1)≤TV∗(Un).

The same type of calculation, this time applied to the y portion (3.5b), yields

TV∗(Wn+1)≤TV∗(Un).
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It is readily verified that the TV∗ functional is convex and so

TV∗(Un+1)=TV∗
(

(1/2)Vn+1+(1/2)Wn+1
)

≤(1/2)TV∗(Vn+1)+(1/2)TV∗(Wn+1)

≤TV∗(Un).

By induction on n, we thus have that for all n=0,1,··· ,N,

TV∗(Un)≤TV∗(U0)≤TV(U0)+a1+a2 ≤TV(u0)+a1+a2.

Here we have used the second inequality of (4.3). Using the first inequality of (4.3), we
have

TV(Un)≤TV(u0)+2a1+2a2.

Thus, we complete the proof.

Lemmas 4.1, 4.2 and 4.3 give an L∞ bound, a bound on L1 time translates and a spa-
tial variation bound. With these bounds, the following lemma results from a standard
compactness argument [11] and the Lax-Wendroff theorem.

Lemma 4.4. The sequence of approximations u∆ converges along a subsequence in L1(QT) and
boundedly a.e. to a function u∈L1(QT)∩BV(QT). The limit function u is a weak solution of the
conservation law ut+ f (u)x+g(u)y =0 in QT.

Remark 4.2. We will see below (Theorem 4.1) that the convergence of u∆ is actually not
just along a subsequence. The entire computed sequence converges.

Next, we set out to verify that the limit u of the numerical scheme is an entropy
solution in the sense of Definition 2.1. We start by extending the initial data and the
scheme, to all of R

2. The spatial grid is extended in the obvious way, taking j∈Z, k∈Z in
(3.1). The extended initial data is denoted v0(x,y) and the extended numerical solution is
denoted Vn

j,k. There are several ways of extending the initial data that are suitable for our

purposes; see Fig. 1. For the sake of concreteness, we extend u0 according to

v0(x,y)=































u0(x,y), (x,y)∈Ω,

0, x≤0,

1, x≥1,

0, y≤0, x∈ (0,a1),

1, y≥1, x∈ (0,a1).

(4.18)

Referring to Fig. 1, this corresponds to taking v0(x,y)=0 in Ωc
nw and v0(x,y)=1 in Ωc

se. The
extended scheme is then exactly formula (3.6) of Remark 3.2, except that now we ignore
the requirement to set certain numerical fluxes equal to zero if they have indices that
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Ω
c

nw

v
0
 = 0 or 1

Ω
n

c

v
0
 = 1

Ω
ne

c

v
0
 = 1

Ω
c

e

v
0
 = 1

Ω
w

c

v
0
 = 0

Ω

v
0
 = u

0

Ω
c

sw

v
0
 = 0

Ω
c

s

v
0
 = 0

Ω
se

c

v
0
 = 0 or 1

Figure 1: Extension of initial data from Ω to R
2. With the data extended in this way, the numerical fluxes

evaluate to zero outside of Ω, due to the fact that f̂ (0,0)= f̂ (0,1)= f̂ (1,1)=0 and similarly for ĝ.

are out of bounds. We define the discrete initial data V0
j,k and the approximate solution

v∆(x,y,t) by extending the formulas (3.2) and (3.3) in the obvious way. In fact, based on
(4.18), the discrete version of v0 will be

V0
j,k=































U0
j,k, (j,k)∈Z J×Zk,

0, j<1,

1, j> J,

0, k<1, 1≤ j≤ J,

1, k>K, 1≤ j≤ J.

For the type of fluxes q(u) appearing in this paper, i.e., q(0)= q(1)= 0, q(u)≥ 0, the
modified numerical flux has the following property for u,v∈ [0,1], which plays a crucial
role in what follows:

q̂(v,0)=0, q̂(1,u)=0. (4.19)

To see this, note that by monotonicity and consistency we have

q̂(v,0)≤ q̂(0,0)=0, q̂(1,u)≤ q̂(1,1)=0.

Lemma 4.5. For mesh points (xj,yk)∈Ω (equivalently (j,k)∈Z J×ZK), the extended numerical
solution agrees with the original numerical solution, i.e.,

Vn
j,k =Un

j,k, (j,k)∈Z J×ZK, n=0,1,2,··· ,N, (4.20)

and thus v∆(x,y,t)=u∆(x,y,t) for (x,y)∈Ω.
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Proof. Clearly, V0
j,k=U0

j,k for (xj,yk)∈Ω. Given a grid point (xj,yk) we define its neighbors

to be the four grid points (xj±1,yk), (xj,yk±1). Due to the stencil of the scheme, it is clear

that if (xj,yk)∈Ω and if all four of its neighbors are also in Ω then V1
j,k=U1

j,k.

We wish to show that V1
j,k =U1

j,k in the remaining cases also. Before proceeding, con-

sider a numerical flux q̂(v,u) where one or both of the arguments correspond to a point
(xj,yk) /∈Ω. Due to the way that we extended the initial data, such a flux is of the form
q̂(v,0) or q̂(1,u) where q= f or q= g. According to (4.19), each such numerical flux van-
ishes.

Now suppose that (xj,yk)∈Ω, but one or more of its neighbors lies outside of Ω. Then

U1
j,k is computed using (3.6), setting any numerical flux with an out of bounds index to

zero. But according to the observation above, the extended scheme will set those same
numerical fluxes equal to zero and so we will have V1

j,k=U1
j,k in this case also.

We claim that for gridpoints (xj,yk) /∈Ω, we will also have V1
j,k =V0

j,k. All numerical

fluxes involved in this case have at least one argument corresponding to a point (xj,yk)/∈
Ω. All such numerical fluxes vanish and so V1

j,k=V0
j,k.

We have shown (4.20) holds for n= 1. It is clear that we can repeat this argument at
the next time level, completing the proof by induction on n.

Recall the Kružkov entropy function |u−κ|, indexed by κ∈R and the associated en-
tropy fluxes

F(u)=sign(u−κ)( f (u)− f (κ)), G(u)=sign(u−κ)(g(u)−g(κ)).

Following [11], we define the numerical entropy fluxes:

F̂(v,u) := f̂ (v∨κ,u∨κ)− f̂ (v∧κ,u∧κ), (4.21a)

Ĝ(v,u) := ĝ(v∨κ,u∨κ)− ĝ(v∧κ,u∧κ). (4.21b)

Here and in what follows, we suppress the dependence on κ, in order to simplify the
notation. The numerical entropy fluxes F̂ and Ĝ are consistent with F and G, i.e., F̂(u,u)=
F(u) and Ĝ(u,u)=G(u).

Lemma 4.6. For the extended scheme, we have the following discrete entropy inequalities (one
for each κ∈R):

Vn+1
j,k ≤Vn

j,k−λx∆x
− F̂(Vn

j+1,k,Vn
j,k)−λy∆

y
−Ĝ(Vn

j,k+1,Vn
j,k), (j,k)∈Z×Z. (4.22)

Proof. With the scheme extended in this way, the proof of this lemma is standard as
in [11].

Lemma 4.7. The sequence of approximations v∆ converges along a subsequence in L1
loc(ΠT) and

boundedly a.e. to a function v∈L1
loc(ΠT)∩BVloc(ΠT). The limit function v is a weak solution of

the conservation law vt+ f (v)x+g(v)y =0 in ΠT.
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Proof. By construction, Vn
j,k∈ [0,1]. Also by construction,

∆x∆y ∑
j∈Z

∑
k∈Z

∣

∣

∣
Vn+1

j,k −Vn
j,k

∣

∣

∣
=∆x∆y

J

∑
j=1

K

∑
k=1

∣

∣

∣
Un+1

j,k −Un
j,k

∣

∣

∣
≤B·∆t,

with the same constant B appearing in the statement of Lemma 4.2.
In addition, we claim that the spatial total variation of v∆ is locally bounded. Let K

be a compact subset of R
2. Fix a time level tn. Let v∆(tn) :=v∆(·,·,tn). Then

TVK(v
∆(tn))≤TVK∩Ω(v

∆(tn))+TVK∩Ωc(v∆(tn))+2a1+2a2,

where Ωc denotes the complement of Ω. Since v∆=u∆ for (x,y)∈Ω, Lemma 4.3 provides
a uniform bound on TVK∩Ω(v

∆(tn)). By construction, the function v∆(tn) is constant in
K∩Ωc, except for unit jumps along two half-lines. Thus TVK∩Ωc(v∆(tn)) is also uniformly
bounded.

With these bounds, the proof is concluded exactly like the proof of Lemma 4.4.

By extracting further subsequences, we can assume in what follows that u∆ →u and
v∆ →v along a common subsequence, so that we will have v|QT

=u.

Lemma 4.8. The limit solution u is an entropy solution in the sense of Definition 2.1.

Proof. Starting from (4.22), by a standard Lax-Wendroff type calculation (see e.g., [11]),
we find that for any κ∈R and any test function φ∈C∞

0 (ΠT) with φ≥0,

∫ T

0

∫

R2

{

|v−κ|φt+sign(v−κ)( f (v)− f (κ))φx+sign(v−κ)(g(v)−g(κ))φy

}

dxdydt

+
∫ T

0

∫

R2
|v0(x,y)−κ|φ(x,y,0)dxdy≥0. (4.23)

With the observation that C∞
0 (QT)⊂C∞

0 (ΠT) and that v=u on QT, the inequality (4.23) im-
plies that the entropy inequality (2.1) of Definition (2.1) is satisfied for our limit solution
u. Moreover, the initial condition (2.2) follows easily from (4.23) and the BV regularity of
u.

It remains to prove the limit satisfies the boundary condition (2.3). Starting from the
extended difference scheme, again by a standard Lax-Wendroff type computation, we
conclude that for any test function φ∈C∞

0 (ΠT),

∫ T

0

∫

R2

{

vφt+ f (v)φx+g(v)φy

}

dxdydt=0. (4.24)

Since v∈BV(QT), which ensures the existence of a strong trace vτ on ∂Ω×(0,T), it follows
from (4.24) that

(

f (vτ),g(vτ)
)

·ν=0 a.e. on ∂Ω×(0,T).

Clearly, u=v on QT implies that vτ =uτ and hence the boundary condition (2.3) follows.
This completes the proof.
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Theorem 4.1. Suppose the flux functions f , g are Lipschitz-continuous and satisfy, for h= f ,g,
h(0)=h(1)=0, h≥0 on [0,1]. Moreover, suppose u0(x)∈ [0,1] and that u0∈BV(Ω). Then the
approximate solutions {u∆}∆>0, defined by (3.3), (3.5a), (3.5b) and (3.5c), converge in L1(QT)
to the unique entropy solution u of the initial-boundary value problem











ut+ f (u)x+g(u)y=0 in QT,
(

f (u),g(u)
)

·ν=0 on ∂Ω×(0,T),

u=u0 on Ω×{t=0},

(4.25)

where Ω⊂R
2 is an open rectangular region.

Proof. By Lemma 4.4, {u∆}∆>0 converges along a subsequence. Recalling Lemma 4.8,
the limit u of any such convergent subsequence is an entropy solution in the sense of
Definition 2.1. The uniqueness claim follows from Theorem 2.1. Moreover, since entropy
solutions are unique, the convergence of u∆ is not just along a subsequence, but along the
entire computed sequence.

5 Numerical examples

Example 5.1. Fig. 2 shows a one-dimensional example. The spatial domain is Ω=(0,1)
and the flux is f (u)=u(1−u). The initial data is

u0(x)=

{

1, x≤1/2,
0, x>1/2.

We apply the one-dimensional version of the scheme, using the Godunov flux and the
(modified) Lax-Friedrichs flux, with α= 1. The mesh size is (∆x,∆t)= (0.02,0.015). The
Lax-Friedrichs approximation is more diffusive than the Godunov approximation, as ex-
pected. The solution initially develops a (decreasing) rarefaction fan. When the edges
of the rarefaction reach the boundaries, the solution at the left (right) boundary begins
to decrease (increase) as a function of time and we get a pair of (increasing) shocks, one
moving right, the other moving left. These shocks are visible in panel c) of Fig. 2. Even-
tually, the two shocks meet, the rarefaction is annihilated by the shocks and only a single
steady shock remains.

This problem corresponds to a simple traffic flow model, with cars traveling from left
to right. The zero flux boundary conditions model a pair of red lights, so that cars can
neither enter nor leave this road segment. We start with all of the cars on the left half of
the road and none on the right half. With all of the cars moving to the right, we end up
with the situation reversed. The steady shock that eventually develops models a traffic
jam, with no movement of cars, as one might expect.

Example 5.2. Fig. 3 shows a two-dimensional example using the Godunov flux. The
spatial domain is Ω=(0,1)×(0,1) and we take f (u)= g(u)= u(1−u). Fig. 4 shows the
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Figure 2: The solid line is the (modified) Lax-Friedrichs solution and the dashed line is the Godunov solution.
Plot a) shows the development of a rarefaction fan. In Plot b), the edges of the rarefaction fan have reached
the boundary and shocks have formed. Plot c) shows the two shocks moving toward each other. In Plot d), a
single steady shock remains.
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Figure 3: Godunov flux. Solution shown in plot d) is essentially steady state.
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Figure 4: Lax-Friedrichs flux. Solution shown in plot d) is essentially steady state.

same problem, but using the modified Lax-Friedrichs flux. The mesh size is (∆x,∆y,∆t)=
(0.02,0.02,0.009). The initial data is

u0(x)=

{

cos(0.5πr), 0.5πr≤0.75,
0, 0.5πr>0.75,

where r=
√

1.5(x−0.25)2+0.6(y−0.25)2. We start with all of the mass concentrated near
the (0,0) corner of Ω. With increasing time the mass is convected toward the (1,1) corner,
eventually reaching a steady state. The steady state solution features an increasing jump
from u= 0 to u= 1. As expected the Lax-Friedrichs solution is more diffusive than the
Godunov solution.

6 Degenerate convection-diffusion equations

Closely related to (1.1) is the zero-flux initial boundary value problem for a degenerate
convection-diffusion equation, which we state as follows:











ut+∇· f (u)−∆A(u)=0, (x1,··· ,xd)∈Ω, t∈ (0,T),

( f (u(x,t))−∇A(u)) ·ν=0 a.e. on ∂Ω×(0,T),

u(x,0)=u0(x), x∈Ω,

(6.1)
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where the convective flux f is as before. Regarding the diffusion function A, we assume
that it belongs to Lip([0,1]), with Lipschitz constant ‖A′‖ and that the following degen-
erate parabolicity condition holds:

A(·) is nondecreasing with A(0)=0.

We allow for the situation where A degenerates (i.e., is constant) on a finite set of disjoint
intervals, that is,

A′(w)=0, ∀w∈
M
⋃

i=1

[αi,βi],

where αi < βi, i= 1,··· ,M, M≥ 1. With this condition, the problem is said to be strongly
degenerate. A significant consequence of strong degeneracy is that solutions are not gen-
erally continuous and there is no uniqueness without an additional entropy condition.
An important application where the problem (6.1) arises is pressure filtration of a floccu-
lated suspension [6].

In [1] Andreianov and Gazibo define a notion of entropy solution for (6.1) and prove
existence of entropy solutions using a vanishing viscosity approximation. They prove
uniqueness of entropy solutions in the one-dimensional case. In [14] Gazibo proposes
and analyzes an implicit finite volume scheme for (6.1). Andreianov and Gazibo prove
convergence of that scheme to an entropy solution in [2, 14].

The degenerate parabolic problem (6.1) exhibits some difficulties that are not present
in the purely hyperbolic problem (1.1). For the purely hyperbolic problem, our spatial
variation bound guarantees strong traces of u and therefore also strong traces of the nor-
mal component of the flux ( f (u),g(u))·ν. For the degenerate parabolic problem, one
would like to have strong traces of the total flux ( f (u)−A(u)x,g(u)−A(u)y)·ν. This
would follow from a spatial variation bound for A(u)x and A(u)y, but such a bound is
not available. However, by specializing to the one-dimensional problem, we obtain a
spatial variation bound for the total flux f (u)−A(u)x and so we do have the required
strong trace in this important case, see Remark 6.4 below.

In what follows, we extend our scheme to handle the problem (6.1) and discuss some
results that are straightforward extensions of those in Section 4. Due to the difficul-
ties mentioned in the previous paragraph, our results for the multidimensional problem
are less complete than for the purely hyperbolic problem. We then focus on the one-
dimensional problem and prove convergence to the unique entropy solution.

The difference scheme discussed in the previous sections is easily modified to incor-
porate the diffusion term. With µx(∆)=∆t/∆x2 , µy(∆)=∆t/∆y2 , the difference equations
(3.5a), (3.5b), (3.5c) become:















Vn+1
j,k =Un

j,k−2λx∆x
− f̂ (Un

j+1,k,Un
j,k)+2µx∆x

+∆x
−An

j,k, 2≤ j≤ J−1, 1≤ k≤K,

Vn+1
1,k =Un

1,k−2λx f̂ (Un
2,k,Un

1,k)+2µx∆x
+An

1,k, 1≤ k≤K,

Vn+1
J,k =Un

J,k+2λx f̂ (Un
J,k,Un

J−1,k)−2µx∆x
−An

J,k, 1≤ k≤K,

(6.2a)
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Wn+1
j,k =Un

j,k−2λy∆
y
− ĝ(Un

j,k+1,Un
j,k)+2µy∆

y
+∆

y
−An

j,k, 2≤ k≤K−1, 1≤ j≤ J,

Wn+1
j,1 =Un

j,k−2λy ĝ(Un
j,2,Un

j,1)+2µy∆
y
+An

j,1, 1≤ j≤ J,

Wn+1
j,K =Un

j,k+2λy ĝ(Un
j,K,Un

j,K−1)−2µy∆
y
−An

j,K, 1≤ j≤ J,

(6.2b)

Un+1
j,k =(1/2)Vn+1

j,k +(1/2)Wn+1
j,k . (6.2c)

Here we have used the notation An
j,k=A(Un

j,k). The CFL condition (4.1) must be modified.

It becomes for all u,v,z,w∈ [0,1],

−λx f̂ (v,w)− f̂ (u,w)

v−u
+λx f̂ (z,v)− f̂ (z,u)

v−u
+2µx A(v)−A(u)

v−u
≤ 1

2
, (6.3a)

−λy ĝ(v,w)− ĝ(u,w)

v−u
+λy ĝ(z,v)− ĝ(z,u)

v−u
+2µy A(v)−A(u)

v−u
≤ 1

2
. (6.3b)

Remark 6.1. The scheme (6.2a), (6.2b), (6.2c) is essentially the explicit version of the im-
plicit finite volume scheme of references [2] and [14], in the special case where the control
volumes are rectangles arranged as a Cartesian mesh. We use the word “essentially” be-
cause of our flux modification (3.4), which does not appear in [2, 14].

Proposition 6.1. Lemmas 4.1 and 4.3 remain valid for the approximate solutions Un
j,k

produced by the modified scheme (6.2a), (6.2b), (6.2c).

Proof. The proof of Lemma 4.1 requires only straightforward modifications. We simply
mention that the key new ingredients are the fact that A(·) is nondecreasing and the CFL
condition (6.3).

The proof of Lemma 4.3 is unchanged, except that one replaces the incremental coef-
ficients Cn

j+ 1
2
, Dn

j+ 1
2

by

C̃n
j+ 1

2
=Cn

j+ 1
2
+µx

∆x
+An

j

∆x
+Un

j

, D̃n
j+ 1

2
=Dn

j+ 1
2
+µx

∆x
+An

j

∆x
+Un

j

.

We must check that

C̃n
j+ 1

2
≥0, D̃n

j+ 1
2
≥0, C̃n

j+ 1
2
+D̃n

j+ 1
2
≤1,

but these inequalities follow from the assumption that A is nondecreasing, along with
the CFL condition (6.3).

Proposition 6.2. Recall the discrete entropy fluxes F̂ and Ĝ defined by (4.21). For every
κ∈R, we have the following discrete entropy inequality:

∣

∣

∣
Un+1

j,k −κ
∣

∣

∣
≤
∣

∣

∣
Un

j,k−κ
∣

∣

∣
−∆x

−Rn
j+ 1

2 ,k−∆
y
−Sn

j,k+ 1
2
, (6.4)
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where

Rn
j+ 1

2 ,k =











λx F̂(Un
j+1,k,Un

j,k)−µx∆x
+

∣

∣

∣
An

j,k−A(κ)
∣

∣

∣
, 1< j< J,

λx f (κ), j=0,
−λx f (κ), j= J,

(6.5a)

Sn
j,k+ 1

2
=











λyĜ(Un
j,k+1,Un

j,k)−µy∆
y
+

∣

∣

∣
An

j,k−A(κ)
∣

∣

∣
, 1< k<K,

λyg(κ), k=0,
−λyg(κ), k=K.

(6.5b)

Proof. For a grid point (xj,yk)∈Ω that is away from ∂Ω, i.e., (xj±1,yk),(xj,yk±1)∈Ω, the
proof is a straightforward extension to two dimensions of Lemma 3.7 of [13], the main
ingredient being monotonicity.

Now consider a boundary grid point. For example, take the case of (x1,yk)∈Ω, where
2≤ k≤K−1. Proceeding as in [13], one finds that

∣

∣

∣
Un+1

1,k −κ+λx f (κ)
∣

∣

∣
≤
∣

∣Un
1,k−κ

∣

∣−Rn
3
2 ,k
−∆

y
−Sn

1,k+ 1
2
. (6.6)

Recalling that f (κ)≥0, it is easy to check that

∣

∣

∣
Un+1

1,k −κ+λx f (κ)
∣

∣

∣
≥
∣

∣

∣
Un+1

1,k −κ
∣

∣

∣
+λxsign(Un+1

1,k −κ) f (κ)

≥
∣

∣

∣
Un+1

1,k −κ
∣

∣

∣
−λx f (κ)

=
∣

∣

∣
Un+1

1,k −κ
∣

∣

∣
−Rn

1
2 ,k

.

Inserting this last inequality into (6.6), we get the discrete entropy inequality (6.4).
The remaining boundary cases, i.e., j = J, k = 1 and k = K are handled in a similar

manner. We omit the details.

Remark 6.2. From the proof above, it is evident that we could have alternatively defined
the boundary contributions as

Rn
1
2 ,k

=−λxsign(Un+1
1,k −κ) f (κ), Rn

J+ 1
2 ,k

=λxsign(Un+1
J,k −κ) f (κ), (6.7a)

Sn
j, 1

2
=−λysign(Un+1

j,1 −κ)g(κ), Sn
j,K+ 1

2
=λysign(Un+1

j,K −κ)g(κ). (6.7b)

The boundary terms defined by (6.5a) and (6.5b) are consistent with the discrete entropy
inequality of [2], while those of (6.7) are consistent with the discrete entropy inequality
of [14]. Referring back to the purely hyperbolic problem, if we ignore the diffusion terms,
then the boundary contributions defined by (6.7) give a discrete entropy inequality sim-
ilar to the one in Definition 2.2. For our purposes the (6.5a), (6.5b) version is preferable
because it is difficult to prove that (6.7) converges to its continuous counterpart when the
mesh size approaches zero.
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At this point, we specialize to the case of one space dimension, so that the spatial
domain is an interval Ω=(0,a1). The difference scheme simplifies to















Un+1
j =Un

j −λx∆x
− f̂ (Un

j+1,Un
j )+µx∆x

+∆x
−An

j , 2≤ j≤ J−1,

Un+1
1 =Un

1 −λx f̂ (Un
2 ,Un

1 )+µx∆x
+An

1 ,

Un+1
J =Un

J +λx f̂ (Un
J ,Un

J−1)−µx∆x
−An

J ,

(6.8)

with the data initialized via

U0
j =

1

∆x

∫

Ix
j

u0(x)dx, (6.9)

and the approximate solution extended to all of QT using

u∆(x,t)=
N

∑
n=0

J

∑
j=1

χj(x)χn(t)Un
j , (x,t)∈QT , (6.10)

where ∆=(∆x,∆t). We will assume the following CFL condition: for all u,v,z,w∈ [0,1],

−λx f̂ (v,w)− f̂ (u,w)

v−u
+λx f̂ (z,v)− f̂ (z,u)

v−u
+2µx A(v)−A(u)

v−u
≤1/2. (6.11)

For the Cauchy problem associated with the one-dimensional version of the PDE of
(6.1), convergence of monotone schemes was proven in [13]. For grid points away from
the boundary, our difference scheme is essentially the same as that of [13]. Following that
reference we assume, in addition to our previous assumptions, that

| f (u0)−A(u0)x|∈BV.

We will use the following definition of entropy solution, due to Andreianov and Gaz-
ibo [1, Definition 2.3]. We have specialized it to the one-dimensional setting and used the
fact that | f (κ)·ν|= f (κ), since f (·)≥0.

Definition 6.1. A function u∈L∞(QT) taking values in [0,1] is called an entropy solution
of (the one-dimensional version of) (6.1) if A(u) ∈ L2(0,T;H1(Ω)) and if the following
entropy inequality holds ∀κ∈R, ∀φ∈C∞

c (ΠT), φ≥0:

∫ T

0

∫ a1

0
{|u−κ|φt+sign(u−κ)( f (u)− f (κ)−A(u)x)φx}dxdt

+
∫ a1

0
|u0−κ|φ(x,0)dx+

∫ T

0
f (κ)(φ(0,t)+φ(a1,t))dt≥0. (6.12)

We will rely on the uniqueness portion of the following result, due to Andreianov and
Gazibo.

Theorem 6.1 (see [1, Theorem 4.1]). The one-dimensional version of the problem (6.1) admits
a unique entropy solution in the sense of Definition 6.1.
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For a fixed mesh size ∆, let

ẑ(v,u)= f̂ (v,u)−(A(v)−A(u))/∆x

and note that ẑ is nonincreasing as a function of v, nondecreasing as a function of u. We
will use the notation ẑv (ẑu) for the partial derivative of ẑ with respect to its first (second)
argument. Define

Zn
j+ 1

2
=

{

ẑ(Un
j+1,Un

j ), j=1,··· , J−1,

0, j=0, J,
DAn

j+ 1
2
=

{

∆x
+An

j /∆x, j=1,··· , J−1,

0, j=0, J.
(6.13)

We measure the total variation of these quantities using:

TV(Zn)=
J−1

∑
j=0

∣

∣

∣
∆x
+Zn

j+ 1
2

∣

∣

∣
, TV(DAn)=

J−1

∑
j=0

∣

∣

∣
∆x
+DAn

j+ 1
2

∣

∣

∣
.

Remark 6.3. By including the terms

∣

∣

∣
∆x
+Zn

1
2

∣

∣

∣
=
∣

∣

∣
Zn

3
2

∣

∣

∣
and

∣

∣

∣
∆x
+Zn

J− 1
2

∣

∣

∣
=
∣

∣

∣
Zn

J− 1
2

∣

∣

∣

in the first definition above, TV(Zn) is nonincreasing.

Lemma 6.1. We have an L∞ bound and a spatial BV bound for Zn
j+ 1

2
and thus also DAn

j+ 1
2
:

max
0≤j≤J

∣

∣

∣
Zn

j+ 1
2

∣

∣

∣
≤ max

0≤j≤J

∣

∣

∣
Z0

j+ 1
2

∣

∣

∣
, TV(Zn)≤TV(Z0), (6.14)

and

max
0≤j≤J

∣

∣

∣
DAn

j+ 1
2

∣

∣

∣
≤C1, TV(DAn)≤C2, (6.15)

where the constants C1 and C2 are independent of the mesh size ∆.

Proof. The one-dimensional scheme (6.8) can be written

Un+1
j −Un

j =−λx∆x
−Zn

j+ 1
2
. (6.16)

We use (6.13) and (6.16) to derive an equation for the time evolution of Zn
j+ 1

2
, which is

valid for j=1,··· , J−1:

Zn+1
j+ 1

2
=ẑ(Un+1

j+1 ,Un+1
j )

=ẑ(Un
j+1,Un

j )+
∫ 1

0

d

dθ
ẑ(Un

j+1+θ(Un+1
j+1 −Un

j+1),U
n
j +θ(Un+1

j −Un
j ))dθ

=Zn
j+ 1

2
+Cn

j+ 1
2
∆x
+Zn

j+ 1
2
−Dn

j− 1
2
∆x
+Zn

j− 1
2
, (6.17)
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where

Cn
j+ 1

2
=−λ

∫ 1

0
ẑv(U

n
j+1+θ(Un+1

j+1 −Un
j+1),U

n
j +θ(Un+1

j −Un
j ))dθ≥0,

Dn
j− 1

2
=λ

∫ 1

0
ẑu(U

n
j+1+θ(Un+1

j+1 −Un
j+1),U

n
j +θ(Un+1

j −Un
j ))dθ≥0.

With the CFL condition (6.11), we have

0≤Cn
j+ 1

2
≤ 1

2
, 0≤Dn

j− 1
2
≤ 1

2
. (6.18)

This, along with the incremental form (6.17) implies that Zn+1
j+ 1

2
is a convex combination of

Zn
j+ 1

2
, Zn

j− 1
2
, Zn

j+ 3
2

, which gives the L∞ bound of (6.14) for 1≤ j≤ J−1. When j=0, J, the L∞

bound is immediate, since Zn
1
2

=Zn
J+ 1

2

=0.

Next, we take spatial differences of the incremental form (6.17):

∆x
+Zn+1

j+ 1
2
=
(

1−Cn
j+ 1

2
−Dn

j+ 1
2

)

∆x
+Zn

j+ 1
2
+Cn

j+ 3
2
∆x
+Zn

j+ 3
2
+Dn

j− 1
2
∆x
+Zn

j− 1
2
. (6.19)

This formula is valid for 1≤ j≤ J−2. For j=0, J−1 we use the fact that

Zn+1
1
2

=Zn
1
2
=0, Zn+1

J+ 1
2

=Zn
J+ 1

2
=0.

Then,

∆x
+Zn+1

1
2

=Zn+1
3
2

−Zn+1
1
2

=Zn
3
2
+Cn

3
2
∆x
+Zn

3
2
−Dn

1
2
∆x
+Zn

1
2
−Zn

1
2

=
(

1−Dn
1
2

)

∆x
+Zn

1
2
+Cn

3
2
∆x
+Zn

3
2
, (6.20a)

∆x
+Zn+1

J− 1
2

=Zn+1
J+ 1

2

−Zn+1
J− 1

2

=Zn
J+ 1

2
−
(

Zn
J− 1

2
+Cn

J− 1
2
∆x
+Zn

J− 1
2
−Dn

J− 3
2
∆x
+Zn

J− 3
2

)

=
(

1−Cn
J− 1

2

)

∆x
+Zn

J− 1
2
+Dn

J− 3
2
∆x
+Zn

J− 3
2
. (6.20b)

Taking absolute values of (6.19) and (6.20), then using (6.18), summing over j and cancel-
ing telescoping terms, we get

J−1

∑
j=0

∣

∣

∣
∆x
+Zn+1

j+ 1
2

∣

∣

∣
≤

J−1

∑
j=0

∣

∣

∣
∆x
+Zn

j+ 1
2

∣

∣

∣
≤···≤

J−1

∑
j=0

∣

∣

∣
∆x
+Z0

j+ 1
2

∣

∣

∣
,

which gives the spatial variation bound of (6.14).
For the bounds (6.15), note that DAn

j+ 1
2
= f̂ (Un

j+1,Un
j )−Zn

j+ 1
2
. Both the L∞ bound and

the total variation bound then follow from the Lipschitz continuity of f̂ , along with the
one-dimensional version of Proposition 6.1 and the bounds (6.14).

We have the following convergence theorem for our one-dimensional scheme.
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Theorem 6.2. The approximate solutions {u∆}∆>0 defined by the one-dimensional scheme (6.8),
(6.9), (6.10) converge in L1

loc(QT) and boundedly a.e. in QT to

u∈L∞(QT)∩BV(QT).

In addition,

A(u)x∈L∞(QT) and thus A(u)∈L2(0,T;H1(Ω)). (6.21)

The limit function u is the unique entropy solution to the initial boundary problem (6.1).

Proof. Using the BV bound of Lemma 6.1, we get the following discrete time continuity
bound by repeating Lemma 3.5 of [13]:

J

∑
j=1

∣

∣

∣
Um

j −Un
j

∣

∣

∣
≤TV(Z0)

∆t

∆x
|m−n|. (6.22)

Using the bounds provided by the one-dimensional version of Proposition 6.1, along
with (6.22), one gets convergence along a subsequence in L1

loc(QT) and boundedly a.e. in
QT, to some function u∈ L∞(QT)∩BV(QT). Since z 7→ A(z) is Lipschitz-continuous, for
the same subsequence we also have A(u∆)→ A(u)∈ L∞(QT)∩BV(QT). For this same
subsequential limit u, the assertion (6.21) then follows from (6.15) of Lemma 6.1.

Next, we repeat the Lax-Wendroff type calculation found on page 1855 of [13], starting
from the one-dimensional version of the discrete entropy inequality (6.4) and taking into
account the boundary contributions at j=1 and j= J. We conclude that the subsequential
limit u satisfies the entropy inequality (6.12) and therefore by Theorem 6.1 u is the unique
entropy solution of (6.1). Finally, by uniqueness we have convergence to u of the entire
computed sequence u∆, not just a subsequence.

Remark 6.4. Although strong traces of the total flux are not required for Definition 6.1,
we can prove their existence for this one-dimensional problem. In fact, by applying the
test function argument in the proof of Lemma 3.6 of [13], we get

∆x
J

∑
j=0

∣

∣

∣
Zm

j+ 1
2
−Zn

j+ 1
2

∣

∣

∣
≤C

√

(m−n)∆t. (6.23)

Using this L1 time continuity result, along with Lemma 6.1, we have convergence of {z∆}
to z= f (u)−A(u)x ∈L∞(QT)∩L∞(0,T;BV(Ω)). Thus the total flux satisfies

f (u)−A(u)x ∈L∞(QT)∩L∞(0,T;BV(Ω)).

This implies that the boundary trace of f (u)−A(u)x exists. In addition, thanks to (6.23),

‖( f (u)−A(u)x)(·,t2)−( f (u)−A(u)x)(·,t1)‖L1(Ω)≤C
√

t2−t1.
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[6] R. BÜRGER, H. FRID AND K. H. KARLSEN, On a free boundary problem for a strongly degenerate
quasi-linear parabolic equation with an application to a model of pressure filtration, SIAM J. Math.
Anal., 34(3) (2003), pp. 611–635 (electronic).
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