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Transient Diffusion in Triangular Cylinders
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Abstract. A heated triangular cylinder is suddenly cooled in a constant temperature
bath. The transient heat conduction problem is transformed to the Helmholtz equation
related to the vibration of membranes. Using the membrane analogy, exact analytic
solutions for the transient heat conduction problem for three triangular cross sections
are found.
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1 Introduction

Heat or mass diffusion is important in many diverse applications. One basic problem is
the cooling of a heated solid which is suddenly introduced into a bath of lower temper-
ature (quenching). The seminal work of Carslaw and Jaeger [1] discussed analytic solu-
tions for the cooling of cylindrical solids whose cross sections are rectangular, circular,
annular, or sectorial. Note that these geometries have boundaries that can be described
by separable coordinates, such that decoupled ordinary differential equations result. For
other cross sections numerical integrations are usually needed.

In this note we shall study the cooling of three special triangular cylinders. Since tri-
angular boundaries cannot be described by separable coordinates, analytic methods such
as separation of variables or Laplace transform described in [1] are difficult to apply. We
shall show the cooling of these triangular cross sections is related to the eigenfunctions
for the Helmholtz equation. Thus an analogy exists.
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2 Formulation

The transient heat transfer in a solid cylinder is governed by the diffusion equation

∇2T′= k
∂T′

∂t′
. (2.1)

Here, ∇2 is the Laplace operator in two dimensions, T′ is the temperature, k is the thermal
diffusivity, and t′ is the time. Let the cross section have a (convenient) characteristic
length L, original temperature T0

′ and ambient temperature Ta
′. Normalize all lengths by

L, the time and the temperature by

t=
t′

kL2 , T=
T′−Ta

′

T0
′−Ta

′ . (2.2)

Eq. (2.1) becomes

∇2T=
( ∂2

∂x2 +
∂2

∂y2

)
T=

∂T
∂t

, (2.3)

where x, y are Cartesian coordinates describing the cross section. The boundary condition
is

T=0 on S, (2.4)

where S is the boundary of the cross section, and initially inside the solid

T=1 at t=0. (2.5)

Using separation of space and time variables on Eq. (2.3), the solution can be expressed
in series form

T=∑
i

Ai φi(x,y)e−λ2
i t, (2.6)

where Ai are constant coefficients to be determined. Eq. (2.3) then yields the Helmholtz
equation

∇2 φi+λ2
i φi =0. (2.7)

Here λ2
i are the eigenvalues and φi(x,y) are the corresponding two-dimensional eigen-

functions. Completeness can be shown. From Eq. (2.7) construct (φj∇2 φi−φi∇2 φj) and
integrate over the cross section Ω∫∫

Ω
(φj∇2 φi−φi∇2 φj)dΩ=(λ2

j −λ2
i )

∫∫
Ω

φi φjdΩ. (2.8)
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Using Green’s second identity the left hand side of Eq. (2.8) becomes∮
S
(φj∇φi−φi∇φj)·dS=0. (2.9)

The boundary integral is zero because φi, φj are zero on S. Thus from Eq. (2.8) we con-
clude eigenfunctions corresponding to different eigenvalues are orthogonal.

Eqs. (2.5), (2.6) give

1=∑
i

Ai φi. (2.10)

Multiply Eq. (2.10) by φj and integrate over the area yield the coefficients

Ai =

∫∫
Ω φidΩ∫∫
Ω φ2

i dΩ
. (2.11)

The normalized total amount of heat per depth in the cylinder is

H=
∫∫

Ω
TdΩ=∑

i
Ai

∫∫
Ω

φidΩe−λ2
i t. (2.12)

As an example, consider the transient heat loss from a rectangular cylinder (Fig. 1(a)). Let

αm =(m−1/2)π, βn =(n−1/2)π/b. (2.13)

The eigenvalues and eigenfunctions are

λ2
i =α2

m+β2
n, φi =cos(αmx)cos(βny). (2.14)

From Eq. (2.11)

Ai =
4(−1)m+n

bαmβn
. (2.15)

On the other hand, the rectangular geometry is also amenable to separation of variables.
The solution T can be written as a product of two separated solutions [1]

T=X(x,t)Y(y,t), (2.16)

where

X=∑
m

2(−1)m+1

αm
cos(αmx)e−α2

mt, Y=∑
n

2(−1)n+1

bβn
cos(βnx)e−β2

nt. (2.17)

The solution Eq. (2.16) is identical to Eq. (2.6), except in Eq. (2.16) the sum is over all
positive m and n, and in Eq. (2.6) the sum is over all distinct λi, which excludes identical
eigenfunctions.

In what follows we study some specific triangular cylinders whose cross sectional
geometries are not separable. However these shapes have exact eigenvalues and eigen-
functions for the Helmholtz equation in membrane vibrations [2]. Thus exact analytic
solutions for the heat diffusion problem can be obtained.
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Figure 1: Cross sections of solid cylinders showing normalized length scale and coordinate axes. (a) rectangular,
(b) isosceles right triangular, (c) equilateral triangular, (d) 30◦−60◦−90◦ triangular.

3 The isosceles right triangular cylinder

Fig. 1(b) shows the cross section of the isosceles right triangular cylinder which has a
short side as the length scale. The eigenvalues and eigenfunctions are (e.g., [2])

λ2
i =π2(m2+n2), φi =sin(nπx)sin(mπy)−sin(mπx)sin(nπy), (3.1)

where m, n are non-equal, non-zero positive integers. Since λ2
i are distinct, m > n > 0.

Eq. (2.11) gives

Ai =
−16

(m2−n2)π2


m/n, m even, n odd,
n/m, m odd, n even,
0, m+n=even.

(3.2)

The solution is thus

T=
N

∑
i=1, (m>n>0)

Ai φi(x,y)e−λ2
i t. (3.3)
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Table 1: The convergence of H at various times t. Empty entries signify the value has converged.

t/N 2 4 6 8 10 12 14 16
0.002 0.2646 0.3216 0.3371 0.3416 0.3429 0.3432 0.3433 0.3433
0.005 0.2282 0.2614 0.2661 0.2666 0.2667 0.2667
0.01 0.1783 0.1923 0.1929 0.1929

Table 2: The total heat H and the maximum temperature for the isosceles right triangular cylinder.

t 0 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2
H 0.500 0.385 0.343 0.267 0.193 0.112 0.025 0.002 0.000
Tm 1.000 1.000 1.000 0.990 0.888 0.595 0.141 0.120 0.000

Here the infinite sum is truncated to N eigenvalues. Numerical convergence is tested by
the total amount of heat retained Eq. (2.12) in Table 1. We see that about 16 terms give a
four-digit accuracy.

Table 2 shows the total heat H and the maximum temperature (occuring on the sym-
metry line) for various times. It is seen that at about t = 0.2 the cylinder is effectively
cooled.

Fig. 2 shows typical temperature distribution for different times. Note that for very
small times the temperature has a plateau, such that the interior is not affected by by the
loss of heat from the boundary. This is also reflected in Table 2, where the maximum
temperature remains at 1.000 for a finite stretch of time.

Figure 2: Temperature distribution for the isosceles right triangular cylinder. From left, t = 0.001, t = 0.01,
t=0.03.

4 The equilateral triangular cylinder

Fig. 1(c) shows the equilateral triangle where the length scale is one third of tip to base
height. The cylinder is enclosed by the boundaries

x=1, y=±(x+2)/
√

3, (4.1)

Schelkunoff [3] gave the eigenfunctions for the Helmholtz equation inside the equilateral
triangular region

φi =cos
[ (m+2n)πy

3
√

3

]
sin

[mπ(2+x)
3

]
−cos

[ (m−n)πy
3
√

3

]
sin

[ (m+n)π(2+x)
3

]
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+cos
[ (2m+n)πy

3
√

3

]
sin

[nπ(2+x)
3

]
(4.2)

with the eigenvalues

λ2
i =

4π2

27
(
m2+mn+n2). (4.3)

Here m and n are integers which are non-zero, and do not add up to zero. Schelkunoff’s
solution is symmetric about the x-axis. The solution for heat conduction is more restrict-
ed, that it must also have three-fold rotational symmetry. A rotation of 120◦ about the
origin is given by the transform

x̄=−x/2−
√

3y/2, ȳ=
√

3x/2−y/2. (4.4)

We require

φi(x,y)= φi(x̄,ȳ). (4.5)

This yields the restriction

mcos
(2mπ

3

)
−(m+n)cos

(2(m+n)π
3

)
+ncos

(2nπ

3

)
=0. (4.6)

We also found, for m ̸=n, ∫∫
Ω

φidΩ=0. (4.7)

Thus the only admissible integers are i=m=n=1,2,3,···, from which we find∫∫
Ω

φidΩ=
9
√

3
iπ

,
∫∫

Ω
φ2

i dΩ=
9
√

3
2

. (4.8)

The eigenfunctions and eigenvalues are simplified to

φm =2cos
(mπy√

3

)
sin

(mπ(2+x)
3

)
−sin

(2mπ(2+x)
3

)
, (4.9a)

λ2
m =

4m2π2

9
. (4.9b)

The transient solution is thus

T=
N

∑
m=1

2
mπ

φm(x,y)e−λ2
mt. (4.10)

The convergence rate and temperature distribution are similar to those of the isosceles
right triangular cylinder. Table 3 shows the results.
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Table 3: The total heat H and the maximum temperature for the equilateral triangular cylinder.

t 0 0.01 0.02 0.05 0.1 0.2 0.5 1 2
H 5.196 4.093 3.676 2.921 2.181 1.338 0.353 0.039 0.000
Tm 1.000 1.000 1.000 0.995 0.924 0.663 0.184 0.021 0.000

5 The 30◦−60◦−90◦ triangular cylinder

Fig. 1(d) shows the cross section. The length scale used is the short side. The solution
to the corresponding Helmholtz equation was found by Seth [4], here modified for our
geometry. The eigenfunctions are

φi =cos
[ (3+2m+4n)π

6
(3+2x)

]
cos

[ (1+2m)π

2

(
1+

2y√
3

)]
−cos

[ (3+2n+4m)π

6
(3+2x)

]
cos

[ (1+2n)π
2

(
1+

2y√
3

)]
+sin

[ (m−n)π
3

(3+2x)
]

sin
[
(1+m+n)π

(
1+

2y√
3

)]
. (5.1)

The eigenvalues are

λ2
i =

4π2

9
[4(m2+mn+n2)+6(m+n)+3]. (5.2)

Here m>0, m ̸=n and m≥|n|. In terms of increasing eigenvalues (increasing i) the (m,n)
pairs are (1,−1), (1,0), (2,−2), (2,−1), (2,0), (3,−2), (3,−3), (3,−1), (2,1), (3,0), (4,−3),
(4,−2), (4,−4), etc.

We find
∫∫

Ω φidΩ is exact, but too complicated to be presented here. However,

∫∫
Ω

φ2
i dΩ=

3
√

3
8

, Ai =
8

3
√

3

∫∫
Ω

φidΩ. (5.3)

The transient solution is

T=
N

∑
i=1

Ai φi(x,y)e−λ2
i t. (5.4)

Table 4 shows the results.

Table 4: The total heat H and the maximum temperature Tm for the 30◦−60◦−90◦ triangular cylinder.

t 0 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2
H 0.866 0.706 0.645 0.532 0.419 0.285 0.106 0.023 0.001
Tm 1.000 1.000 1.000 0.999 0.972 0.810 0.352 0.077 0.004
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6 Discussions

The boundaries of triangular cross sections do not conform to spatially separable coor-
dinate systems, invalidating traditional analytic methods. Numerical solutions such as
finite differences and finite elements can be used, but with much more effort, especially
for a transient problem.

Using the analogy between transient heat conduction and membrane vibration, we
are able to deduce exact analytic solutions for the cooling of three triangular cylinders.
We are fortunate that these cross sections have exact eigenfunctions in membrane vibra-
tions. For other shapes not described by separable coordinates exact analytic solutions
have not been found.

In order to compare the three triangular cylinder solutions, a common length scale
should be used. Let the new length scale be the square root of the cross sectional area,
i.e.,

L̄=
√

area, t̄=
t′

kL̄2 = t
L2

L̄2 , H̄=H
L2

L̄2 . (6.1)

Fig. 3 shows a comparison of the maximum temperature and the total heat in the over-
bar length scale. Aside from the three triangular cylinders, we also included the known
solutions of the circular cylinder (length scale is the radius)

T=∑
i

2
δi J1(δi)

J0(δir)e−δ2
i t. (6.2)

Here J0, J1 are Bessel functions of the first kind, and δi is the ith zero of J0. The total heat
is

H=∑
i

4π

δ2
i

e−δ2
i t. (6.3)

The separable solution for the square cylinder, Eq. (2.16), is also plotted in Fig. 3. It is
seen that the lower the perimeter to area ratio, the slower the the diffusion of heat (cor-
responding to the lowest fundamental frequency in vibrating membrane analogy). Thus
the circular cylinder has the slowest rate of heat loss while the 30◦−60◦−90◦ triangular
cylinder has the fastest rate of heat loss. Although this sounds obvious, the actual heat
loss or temperature distribution still depend on the analytic solutions presented here.

For a triangular cylinder of finite height, we can use the above solutions for the infinite
cylinder and multiply with the parallel plate diffusion solution. Suppose the height is
2cL. The parallel plate solution in the normal z direction is

Tz =∑
l

2(−1)l+1

cγl
cos(γlz)e−γ2

l t. (6.4)

Here l=1,2,3,··· , and γl =(l−1/2)π/c. For unsteady boundary conditions, Duhamel’s
theorem can be applied.
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Figure 3: The maximum temperature Tm and the total heat H̄ as a function of time t̄ (see Eq. (6.1)). For
each bunch of curves from top: cylinders with cross section of circle, square, equilateral triangle, isosceles right
triangle and 30◦−60◦−90◦ triangle.

7 Conclusions

The present paper is a fundamental contribution to the basic problem of transient heat
diffusion. The solution of the diffusion problem is found to be related to the vibration of
a membrane of a similar shape.
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