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Abstract. We propose a new two-phase method for reconstruction of blurred im-

ages corrupted by impulse noise. In the first phase, we use a noise detector to iden-

tify the pixels that are contaminated by noise, and then, in the second phase, we
reconstruct the noisy pixels by solving an equality constrained total variation mini-

mization problem that preserves the exact values of the noise-free pixels. For images

that are only corrupted by impulse noise (i.e., not blurred) we apply the semismooth
Newton’s method to a reduced problem, and if the images are also blurred, we solve

the equality constrained reconstruction problem using a first-order primal-dual algo-
rithm. The proposed model improves the computational efficiency (in the denoising

case) and has the advantage of being regularization parameter-free. Our numerical

results suggest that the method is competitive in terms of its restoration capabilities
with respect to the other two-phase methods.
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1. Introduction

During the image acquisition and transmission, observed images are inevitably de-

graded by blur and noise. In the literature, many kinds of noise have been widely

considered, Gaussian noise [14,20,36], impulse noise [7,11,28,29,31], multiplicative

noise [3, 19, 35], Poisson noise [21, 26, 37] or mixed noise [8, 27, 38]. In this pa-

per, we focus on blurred image with impulse noise, which is a common type of image

degradation due to, e.g., malfunctioning pixel elements in the camera sensors, errors

in analog-to-digital conversion, faulty memory locations in hardware, or transmission

errors [5]. A characteristic property of impulse noise is that a certain number of pixels
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are uncorrupted and the noise-corrupted pixels contain no information about the true

pixel value.

Over the years, many nonlinear digital filters methods have been proposed, see [2].

The most common filters used to remove impulse noise are the median-type filters:

median filter [34], weighted median filter [6], adaptive median filter [24], multistate

median filter [15], center weighted median filter [25] and adaptive center-weighted

median filter [16]. Although these filters are efficient and easy to implement, they

cannot achieve good results in general, in particular they are not able to restore a

blurred image and they do not preserve the image edges well.

In order to preserve the edges, in 2004, Nikolova [31] proposed a variational model

which combines an ℓ1-data fidelity term with total variation (TV), which has been in

shown in [30,31] to work better than the classical ℓ2-term, [36].

Later, other approaches based on the ℓ1-TV have been proposed to handle the

deblurring problem and the non-differentiability of the ℓ1-norm, for instance: Bar et

al. [4] introduce a model using the Mumford-Shah regularizer and the ℓ1-data fidelity

term; Yang et al. [39] suggested an efficient algorithm to solve the ℓ1-TV model; Dong

et al. [17] solved the ℓ1-TV model using a primal-dual approach.

However, since the ℓ1-TV minimization method negatively affects the noisy-free

pixels, in 2005, Chan, Ho, and Nikolova [12] proposed the so-called two-phase method.

The basic idea behind this method, which we will refer to as the CHN method, is to

separate noise detection and image reconstruction. In the first phase, the method uses

a noise detector to identify which pixels are corrupted, and in the second phase, it

reconstructs only the noisy pixels based on an objective function with an ℓ1-data fidelity

term and with TV as a regularization term. The two-phase model has also been studied

for other applications, for instance in [8], the authors apply the two-phase method to

restore blurred images with impulse and Gaussian noise; in [23], a two-phase method

is used for recovering images corrupted by multiplicative noise; in [7] and [11], a two-

phase method is used to simultaneously deblur and denoise an image with impulse

noise. Different from [12], in the second phase of [7] and [11] the authors reconstruct

the image based on a modified ℓ1-TV model where only noise-free pixels are kept in the

ℓ1-data fidelity term, due to no useful information contained in impulse noise. We will

focus only on the method in [11] (the CDH method in short), since it outperforms the

one in [7] and [12] with respect to both image restoration capability and computational

efficiency.

While the CDH method has been shown to perform well on many test problems,

the inclusion of noise-free pixels in the data-fidelity term is somewhat at odds with

the assumption that their true values are known. If the pixels are indeed noise-free,

then they can either be treated as constants or eliminated from the problem. In this

work, we investigate such an approach and propose a modified two-phase method. In

particular, as suggested in [11], in the first phase we distinguish noisy pixels from the

noise-free pixels by the adaptive median (AM) filter [24] for detecting salt-and-pepper

noise, and the adaptive center-weighted median (ACWM) filter [16] for random-valued

impulse noise. The detector for salt-and-pepper noise is able to detect almost all noisy
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pixels even for noise level around 90%, while for random-valued impulse noise, the

ACWM works quite well until a noise level of 40%, since in this case the noisy pixels

can be confused as clean ones and vice-versa. In case of higher noise for random-

valued impulse noise, we suggest to use other filters, e.g. [1] and [18], which have the

capability to detect noisy pixels in images with noise percentage up to 60%. The study

of a good detector for random-valued impulse nose is outside the scope of this paper.

In the second phase, we compute the reconstruction by solving a reduced TV mini-

mization problem that involves only the corrupted pixels. For solving the problem, we

employ the semismooth Newton method, [32]. Furthermore, if the noise level is below

30%, we speed up the process by preprocessing the independent noisy pixels. The main

difference between our method and the CDH method is that we reconstruct only the

pixels that are identified as corrupted by noise instead of all pixels. For this reason, our

method often leads to computational savings, and it can be viewed as an exact method

in the sense that the reconstruction model matches the information about the noise-free

pixels. Moreover, a notable advantage of our model is that the reconstruction results

do not rely on the adjustment of any regularization parameters.

In addition to the impulse noise denoising problem, we also consider simultaneous

deblurring and denoising. Instead of including the noise-free pixels in a data-fidelity

term, we propose a regularization parameter-free model based on a constrained mini-

mization problem. We solve this problem numerically using a primal-dual first-order

algorithm [10].

This study focuses on the second phase of the two-phase method, and the main

contributions regard the introduction of a regularization parameter-free model to re-

construct the corrupted image and, for the denoising case, the computational efficiency

compared to the latest two-phase method, especially given by the preprocessing part.

The paper is organized as follows. In Section 2, we review the impulse noise model

and propose a two-phase methods for denoising and also deblurring images. In Section

3, we present the implementation details, and in Section 4, we show some numerical

results. We conclude the paper in Section 5.

2. The regularization parameter-free two-phase models

We start this section by introducing two impulse noise models, namely salt-and-

pepper noise and random-valued impulse noise. Then, inspired by the existing denois-

ing models in the literature [11], we propose (i) a two-phase method for denoising,

and (ii) a two-phase method for simultaneous denoising and deblurring.

Given a discrete image of size m1 × m2, we define a vector u ∈ R
m with the

m = m1m2 pixels. We shall use the following notation uk = ui,j , where k = (i−1)m2+j
for i = 1, . . . ,m1 and j = 1, . . . ,m2, to identify the pixel at position (i, j) with the kth

element of u, and we define a set Ω = {1, 2, . . . ,m} that contains all pixel indices.
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2.1. Impulse noise models

Impulse noise can be described as a stochastic degradation process of the form

zk = Nr(ũk) =

{

ηk with probability r,

ũk with probability 1− r,
k ∈ Ω,

where ũ ∈ R
m is the original image, z ∈ R

m is the corrupted image, and η ∈ R
m is the

noise, which is independent from the original image ũ. Both images are assumed to be

obtained from a two-dimensional pixel-array by means of columnwise concatenation.

We refer to the parameter r ∈ [0, 1] as the noise level since it can be interpreted as the

probability that a pixel is corrupted. Notice that some pixels remain unchanged, and

the pixels that are corrupted by noise carry no information about the noise-free image.

Two main types of impulse noise are the salt-and-pepper noise when, for each k,

the noise ηk is a discrete random variable with values drawn from the set {dmin, dmax}
with equal probability (with dmin = mink ũk and dmax = maxk ũk), and the random-

valued impulse noise when, for each k, the noise ηk is a uniformly distributed random

variable with values in the gray-level range [dmin, dmax]. For salt-and-pepper noise cor-

rupted pixels take the lowest or the highest pixel value (i.e., dmin or dmax), whereas

for random-valued impulse noise, the noisy pixels have values anywhere in the interval

from dmin to dmax. Then, the random-valued impulse noise is more general and more

difficult to detect than the salt-and-pepper noise.

2.2. Denoising models

The ℓ1-TV model for impulse noise denoising proposed by Nikolova [30, 31] com-

bines the TV regularization term with an ℓ1 data-fidelity term. The resulting recon-

struction problem is convex and takes the following form

min
u∈Rm

‖u− z‖1 + αTV(u), (2.1)

where ‖u − z‖1 =
∑

k∈Ω |uk − zk| is the data-fidelity term, TV(u) is a regularization

term, and α > 0 is a regularization parameter. The (discrete) TV is defined as

TV(u) :=
∑

k∈Ω

|(∇u)k|2 =
∑

k∈Ω

√

|(∇xu)k|2 + |(∇yu)k|2,

where the discrete gradient operator ∇ ∈ R
2m×m is given by

(∇u)k =

(

(∇xu)k
(∇yu)k

)

,

and ∇xu and ∇yu denote the horizontal and vertical first order differences, i.e., using

the symmetric boundary conditions, we have

(∇xu)k =

{

ui+1,j − ui,j if i < m1,

0 if i = m1,
and (∇yu)k =

{

ui,j+1 − ui,j if j < m2,

0 if j = m2,
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for k = (i− 1)m2 + j with i = 1, . . . ,m1 and j = 1, . . . ,m2.

The ℓ1-TV model has some nice properties, such as contrast preservation, multiscale

decomposition and morphological invariance [13, 30, 40]. However, as mentioned in

the introduction, the main disadvantage of this approach is that we have to reconstruct

all the pixels of the image, including the ones that are noise-free. Furthermore, includ-

ing the noisy pixels in the data-fidelity term introduces errors since the noise-corrupted

pixels contain no information about the true image. To address this issue, Chan et

al. [11] studied a two-phase method (the CDH method) in which they first detect the

noisy pixels (phase 1) and then exclude these pixels from the data-fidelity term when

computing a reconstruction (phase 2). Thus, in the first phase, they use a detector (an

AM filter for salt-and-pepper and an ACWM filter for random-valued impulse noise) to

split the domain Ω into two sets: N that includes all indices of the corrupted pixels

and U that includes the indices of the noise-free pixels. We will henceforth assume that

there are |N | = n noisy pixels and |U| = m− n noise-free pixels. In the second phase,

for the denoising case (here, instead of the blurring operator we consider the identity),

they reconstruct the image based on the following model

min
u∈Rm

∑

k∈U

|uk − zk|+ αTV(u). (2.2)

The main advantage of the CDH method is that the noise detector improves the data-

fidelity term in ℓ1-TV model (2.1), and this often yields a great improvement in terms

of restoration capabilities. Furthermore, the ℓ1-norm in the data-fidelity term allows

many noisy-free pixels to maintain their exact values. However, the presence of a

regularization parameter in the model necessitates multiple reconstructions or tests in

order to find a good choice for the parameter. Moreover, the problem (2.2) includes

all pixels of the image as variables, including the ones that are assumed to be free of

noise. To overcome these disadvantages of the CDH method, we propose to alter the

second phase of the method such that the noise-free pixels are required to be equal to

their known values, i.e., we consider the following constrained optimization problem

min
u∈Rm

TV(u)

s.t. uk = zk k ∈ U .
(2.3)

In other words, instead of looking at the unconstrained minimization problem in (2.2),

we are considering the constrained version of it. The equality constraints in this model

reflect the exact prior that some pixels are known, assuming that all pixels were cor-

rectly identified as either noise-free or corrupted in the first phase. For this reason, the

reconstruction model (2.2) can be seen as an approximation model since it allows the

noise-free pixels to deviate from their known value.

Although the model (2.3) does not require the determination of any regularization

parameters, it can be shown to be equivalent to (2.2) if the regularization parameter α
is chosen sufficiently small. Specifically, we refer the reader to [32, Thm. 17.3] (note

that, this theorem holds in the continuous case).
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Unlike the model (2.2), which includes all pixels as variables, the constrained prob-

lem (2.3) allows us to eliminate the variables that correspond to noise-free pixels from

the problem formulation. To write (2.3) as an unconstrained optimization problem, we

define a vector uN ∈ R
n that corresponds to the corrupted pixels. With this notation,

u can be expressed as

u = ΛNuN +ΛUu, (2.4)

where ΛU ∈ R
m×m is a diagonal matrix defined as

(ΛU )i,i =

{

1 if i ∈ U

0 if i ∈ N

and ΛN ∈ R
m×n is a matrix with n unit vectors ej ∈ R

m, j ∈ N , as columns. Note

that ΛUΛN = 0 by construction. Since ΛUu represents the intensity of the noise-free

pixels, based on the constraint in (2.3), we can substitute ΛUz into (2.4) and express

the image u as follows

u = ΛNuN + ΛUz. (2.5)

The problem (2.3) can therefore be expressed in terms of uN as follows

min
uN∈Rn

TV(ΛNuN + ΛUz). (2.6)

Comparing this model with (2.2), we see that both are unconstrained minimization

problems, but (2.6) has some advantages. Firstly, the minimization problem involves

only n variables instead of m variables, and if the noise level is relatively low (i.e.

n ≪ m) the reduction in the number of variables is quite substantial. Secondly, it does

not require the determination of the regularization parameter.

Before we discuss how to solve (2.6), we first consider an extension of our denoising

approach to simultaneous deblurring and denoising.

2.3. Deblurring and denoising models

Suppose the observed image z is not only corrupted by impulse noise but also

blurred by a known linear blur operator K ∈ R
m×m, i.e., we define z = Nr(Ku).

To solve the deblurring and denoising problem, we consider the two-phase method

in [11], which extends the CHN method for the general case. In the first phase, the au-

thors of [11] identify the corrupted pixels, and then, in the second phase, they compute

a reconstruction by solving the following problem

min
u∈Rm

∑

k∈U

|(Ku)k − zk|+ αTV(u). (2.7)

Note that only the noise-free pixels are included in the data-fidelity term. As in the

denoising problem (2.3), we can formulate a constrained minimization problem

min
u∈Rm

TV(u)

s.t. (Ku)k = zk k ∈ U
(2.8)
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which implies that the value of noise-free pixels in the blurred image are treated as

known constants. However, unlike in the denoising case, the blur operator K intro-

duces coupling and makes it difficult to eliminate the equality constraints. In the next

section, we address how to solve the problem numerically.

3. The algorithms

We now present methods for solving the denoising problem (2.6) as well as the

deblurring and denoising problem (2.8).

3.1. Solving the denoising problem

Since the objective function in (2.6) is not differentiable everywhere, we introduce

the following smooth approximation of TV,

TVγ(u) =
∑

k∈Ω

Φγ(|(∇u)k|2),

where the function Φγ is the Huber function which is defined as

Φγ(t) =

{

|t| − γ
2

if |t| ≥ γ
1
2γ
|t|2 else,

with parameter γ > 0. Other smooth approximations may be used instead, such as e.g.
√

t2 + γ2. The gradient of TVγ(ΛNuN + ΛUz) can be expressed as

F γ(uN ) = −Λ⊤
NdivDγ(uN )−1∇(ΛNuN + ΛUz),

where div ∈ R
m×2m represents the divergence, Dγ(uN ) ∈ R

2m×2m is defined as

Dγ(uN ) =

(

Nγ(uN ) 0
0 Nγ(uN )

)

,

and Nγ(uN ) ∈ R
m×m is a diagonal matrix with diagonal max

(

|∇(ΛNuN +ΛUz)|2, γ
)

.

The divergence satisfies the equation div = −∇⊤, where ∇⊤ is the transpose of the

gradient operator. Hence, the explicit formula of the divergence can be found using the

definition of transpose

〈−divp,v〉Rm = 〈p,∇v〉R2m ,

for every p ∈ R
2m and v ∈ R

m, where 〈·, ·〉Rm and 〈·, ·〉R2m denote the standard scalar

products in R
m and R

2m, respectively.

It follows from the first-order optimality condition associated with (2.6) that the

solution to the smooth approximation should satisfy the following equation

Λ⊤
NdivDγ(uN )−1∇(ΛNuN + ΛUz) = 0. (3.1)
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The nonlinear equation in (3.1) can be solved by the semismooth Newton method.

Before describing the algorithm, we give the definition of generalized differentiability

of a mapping F : R
s → R

t with s, t ∈ N. The mapping F is called generalized

differentiable in an open set V ⊂ R
s if there exists GF : Rs → R

s×t such that

lim
‖δv‖→0

1

‖δv‖
‖F (v + δv)− F (v)−GF (v + δv)δv‖ = 0,

for every v ∈ V; see e.g. [22]. This definition is equivalent to the semismoothness of

locally Lipschitz maps F in [33]. Thus, we can define the semismooth Newton’s method

as the generalized version of Newton’s method for semismooth maps. In particular,

given the current iterate ul
N , the semismooth Newton iteration is

GF (u
l
N )δu,l = −F γ(ul

N ), (3.2)

with δu,l = ul+1
N − ul

N .

The generalized derivative of F γ is given by

GF (uN ) = Λ⊤
Ndiv(Dγ(uN ))−1∇ΛN +

1

2
h(uN )w⊤ +

1

2
w(h(uN ))⊤,

where h(uN ) = Λ⊤
Ndiv∇(ΛNuN +ΛUz) and w ∈ ∂((Dγ(uN ))−1), with ∂((Dγ(uN ))−1)

indicates the generalized derivative of (Dγ(uN ))−1, [22]. Thus, w is given by w =
Λ⊤
N w̃ where

w̃ =

{

−div(Dγ(uN ))−3∇(ΛNuN + ΛUz) if m(uN ) > γ

0 otherwise

and m(uN ) = |∇(ΛNuN + ΛUz)|2.

A solution δu,l in (3.2) may not exist or may not be unique, since it is not ensured

that GF is positive definite. For this reason, we add a small multiple of the identity

matrix to GF ,

Gε
F = GF + εI, (3.3)

where ε is a small positive constant. Thus, substituting GF with Gε
F in (3.2), the

semismooth Newton iteration is given by

Gε
F (u

l
N )δu,l = −F γ(ul

N ), (3.4)

with δu,l = ul+1
N −ul

N . Since the regularized matrix is positive definite and symmetric,

we can solve (3.4) using the conjugate gradient method, [32].

In our numerical experiments, we have tested our implementation of the algorithm

with different values of ε ∈ [10−3, 1], and we always obtained good reconstructions

which suggests that our method is robust with respect to the choice of ε. In the numer-

ical experiments reported in Section 4, we fix ε = 0.1.
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3.1.1. Preprocessing

The problem (2.6) is very structured and partially separable. It follows from the defi-

nition of the discrete gradient operator ∇ that a noisy pixel with a noise-free neighbor-

hood as shown in Fig. 1 is completely independent of other noisy pixels and hence can

be computed independently.

i− 1

i

i+ 1

j − 1 j j + 1

Figure 1: Neighborhood of a noisy pixel ui,j (black) containing six noise-free pixels (white).

Specifically, if we regard u as a matrix instead of a vector and consider a noisy pixel

ui,j with six noise-free neighboring pixels

{ui,j−1, ui+1,j−1, ui−1,j , ui+1,j, ui−1,j+1, ui,j+1},

then it follows from (2.6) that ui,j can be obtained by solving an unconstrained uni-

variate optimization problem

ui,j = argmin
v

Hi,j(v) (3.5)

where

Hi,j(v) =

∥

∥

∥

∥

(

ui+1,j − v
ui,j+1 − v

)
∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

ui+1,j−1 − ui,j−1

v − ui,j−1

)
∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

v − ui−1,j

ui−1,j+1 − ui−1,j

)
∥

∥

∥

∥

2

.

The function Hi,j(v) is clearly convex, and hence the minimization problem (3.5) can

be solved using e.g. the golden section search method. To this end, it is worth noticing

that each of the three terms of Hi,j(v) is coercive, and hence we can easily derive a

lower bound and an upper bound on ui,j . Indeed, the three terms of Hi,j(v) have

minimizers (ui+1,j + ui,j+1)/2, ui,j−1, and ui−1,j, so the interval [a, b] with

a = min{(ui+1,j + ui,j+1)/2, ui,j−1, ui−1,j}

and

b = max{(ui+1,j + ui,j+1)/2, ui,j−1, ui−1,j}

must contain a solution.

When the noise-level is high, there may not be many pixels with a noise-free neigh-

borhood as shown in Fig. 1. However, it may still be possible to separate the problem
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(2.6) into a number of independent subproblems. Extraction of such subproblems can

easily be automated using morphological image processing and image analysis, but in

this paper, we will only consider corrupted pixels with a neighborhood as in Fig. 1 and

solve for these independently.

3.1.2. Algorithm

Our denoising algorithm is summarized in Algorithm 3.1.

Algorithm 3.1. Impulse noise denoising

Detect the noise-free pixels using a noise detector.

If the estimated noise level r ≤ 30%, do preprocessing:

• find pixels with noise-free neighborhood;

• solve (3.5) to find optimal pixel value.

Initialize u0
N ∈ R

n as the value obtained from the previous steps and set l = 0.

Compute δu,l, by solving the equation (3.4), and update ul+1
N = ul

N + δu,l. (Note

that, with preprocessing, a part of noisy pixels have been restored in step 2. In this

case, the size of uN in (3.4) is further reduced.)

Stop if stopping criteria are satisfied; otherwise set l = l + 1 and go to step 4.

3.2. Solving the deblurring and denoising problem

A saddle-point formulation of the problem (2.8) is given by

max
b∈B

min
u∈C

b⊤∇u, (3.6)

where b ∈ R
2m is a dual variable, and the sets C and B are defined as

C = {u ∈ R
m |ΛUKu = ΛUz},

B = {b ∈ R
2m | ‖b‖∞ ≤ 1}.

The norm ‖b‖∞ denotes the discrete maximum norm, defined as

‖b‖∞ = max
k

|bk|2 = max
k

√

|(bx)k|2 + |(by)k|2,

with

b =

(

bx
by

)

and bx, by ∈ R
m.

The Chambolle–Pock algorithm [10] for solving the convex–concave saddle-point

problem (3.6) is summarized in Algorithm 3.2.
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Algorithm 3.2. Chambolle–Pock algorithm for deblurring and denoising

Detect the noise-free pixels using a noise detector.

Initialize u0 with image from step 1 and b0 = 0 and set l = 0.

Set θ ∈ [0, 1] and τ, σ > 0 such that τσ‖∇‖22 < 1.

Compute ul+1:

ul+1 = PC(u
l + τdivbl). (3.7)

Compute ūl+1:

ūl+1 = ul+1 + θ(ul+1 − ul). (3.8)

Compute bl+1:

bl+1 = PB(b
l + σ∇ūl+1). (3.9)

Stop if stopping criteria are satisfied; otherwise set l = l + 1 and go to step 4.

The projection operator PC in (3.7) can be evaluated by solving the following least-

norm problem

min
u

‖u−wl‖22

s.t. ΛUKu = ΛUz,
(3.10)

where wl = ul + τdivbl. This problem has the closed-form solution

ul+1 = wl −K⊤Λ⊤
U (ΛUKK⊤Λ⊤

U )
−1ΛU (Kwl − z).

In order to compute the above quantity, we use the conjugate gradient method, [32].

Due to the singularity of the matrix ΛU , to guarantee the stability of the conjugate

gradient algorithm, we add a small multiple of the identity matrix to ΛUKK⊤Λ⊤
U .

Furthermore, the projection PB in (3.9) is a pointwise Euclidean projection onto L2

balls, i.e.

bl+1 =
bl + σ∇ūl+1

max(1, |bl + σ∇ūl+1|2)
.

The Chambolle-Pock primal-dual algorithm ensures convergence if θ = 1 and

τσ‖∇‖22 < 1. (3.11)

For more details we refer the reader to [10]. From [9], we know that the bound on the

norm of the linear operator ∇ is

‖∇‖22 = ‖div‖22 < 8,

and hence the algorithm converges if 8τσ < 1. In our numerical experiments, we use

τ =
β

3
and σ =

1

3β
,
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Table 1: PSNR values for restored images with different levels of salt-and-pepper noise given by different
approaches.

20% noise 40% noise 60% noise 80% noise

AM CDH Ours AM CDH Ours AM CDH Ours AM CDH Ours

Boat 30.27 34.81 34.82 26.85 30.25 30.32 24.14 27.07 27.18 20.87 24.03 24.19

Bridge 28.41 32.01 32.06 25.11 28.17 28.25 22.44 25.09 25.18 19.47 22.11 22.26

Cameraman 28.66 33.60 33.59 25.27 29.14 29.13 22.59 26.23 26.29 19.97 23.07 23.14

Goldhill 29.91 34.07 34.12 27.46 30.64 30.70 24.80 27.76 27.84 22.15 25.06 25.22

Lena 32.05 36.71 36.72 28.13 32.15 32.16 24.82 28.96 28.95 21.10 25.07 25.21

Parrot 29.03 34.43 34.44 25.23 29.52 29.53 22.03 25.90 26.01 18.73 21.20 21.29

Peppers 25.47 25.58 25.60 24.44 25.26 25.27 23.02 24.67 24.68 20.25 22.91 22.96

with β > 0. In this way, the convergence of the algorithm is ensured. In our experi-

ments described in the next section, we fixed β = 0.01 which worked well. Thus, the

proposed model for deblurring and denoising is also regularization parameter-free.

4. Numerical results

In this section, we show some reconstructions obtained by applying the proposed

methods to sharp and blurred images corrupted by impulse noise. For the illustrations,

we use the 256 × 256 gray-level images: “Boat”,“Cameraman” and “Parrot”; see Fig. 2.

The quality of the images is compared in terms of the peak signal to noise ratio (PSNR)

which is defined as

PSNR(u⋆) = 20 log10
m|ũmax − ũmin|

‖ũ− u⋆‖2
,

where ũ and u⋆ represent respectively the original image and the reconstructed image

with values in the gray-level range [ũmin, ũmax]. Our reconstructions are compared

with the ones given by the detector (AM or ACWM) and the latest two-phase method,

i.e. the one proposed in [11]. As suggested in [11], we set the parameters λ = 0.0005
and γ = 0.01 and we tune α to get the highest value of PSNR (for more details about

the parameters we refer the reader to [11]). Concerning our reconstruction, based

on numerical experiment, we set ε = 0.1 and γ = 0.01, as in the CDH method. In

our simulations, we stop our algorithm as soon as there are not big changes in the

iterations, i.e.,
‖ul − ul−1‖2

‖ul‖2
< 10−5.

In our first experiment, we consider denoising without blurring. Recall that in the

first phase of our algorithm, we detect the noisy pixels using the adaptive median

(AM) filter [24] for salt-and-pepper noise and the adaptive center-weighted median

(ACWM) filter [16] for random-valued impulse noise. In the second phase, we solve

the minimization problem (2.6) to denoise the corrupted pixels.

In Fig. 3, we show the restored images from salt-and-pepper noise using (i) the

adaptive median filter [24], (ii) the CDH method [11], and (iii) our method. For
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Table 2: Comparison of CPU time (in seconds) for “Pirate” corrupted by salt-and-pepper noise.

Noise CDH method Our method

No preprocessing Preprocessing

10% 177.9 54.7 33.7

20% 202.1 83.4 69.6

30% 199.9 110.3 101.3

40% 284.0 142.8 -

50% 293.9 195.2 -

60% 353.3 245.1 -

70% 359.3 313.0 -

80% 425.8 375.5 -

Figure 2: Original images: “Parrot”, “Cameraman” and “Boat”.

the CDH method, we adjusted the regularization parameter through numerical tests

and show the best results. Comparing the PSNRs listed in Table 1, we see that the

proposed method outperforms the AM filter and is competitive when compared to the

CDH method. Taking into account that the proposed model is regularization parameter-

free and only restores the noisy pixels, it is more practical and more efficient than the

CDH method.

To compare the computational cost, we list the CPU time of the CDH method and

the proposed method in Table 2. All of the numerical experiments were carried out in

MATLAB R2014a on a PC equipped with a 3.20GHz CPU and 8GB memory. The results

are based on the 1024×1024 test image “Pirate” and represent the average computation

time based on ten noise realizations. Note that since the first phase of the CDH method

and our method is same and the main computational load is in the second phase, we

only give the CPU time associated with the second phase in Table 2. To show the effect

of the preprocessing step in our method, we report the CPU times for restoration with

and without the preprocessing when the noise level is at most 30%. Based on the results

in Table 2, we find that the CDH method is slower than our method, especially when

the noise-level is low. Moreover, the results verify that preprocessing is beneficial when

the noise-level is low. Furthermore, the computation times for the CDH method do not

include the overhead of tuning the regularization parameter, and hence the results do
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Figure 3: First row: noisy images “Parrot” with salt-and-pepper noise with noise level 20%, 40%, 60%, and
80% (left to right). Second row: results obtained with AM filter. Third row: results obtained with CDH
method (α = 0.16, α = 0.18, α = 0.2 and α = 0.25). Fourth row: results obtained with proposed method.

not reflect the added advantage of our model being regularization parameter-free.

In Fig. 4, we show the results when restoring the image “Parrot” corrupted by

30% random-valued impulse noise. In the first phase, we use the ACWM filter [16]

as noise detector. In case of higher noise level, others filter (see for instance [1] and

[18]), which have the capability to detect noisy pixels up to 60% noise level, might be

employed. From the Table 3, it is clear that our method still provides results similar to

those obtained with the CDH method, and both methods outperform the ACWM filter.

As for salt-and-pepper case, the main advantages are that the proposed model does not

require the adjustment of the regularization parameter and, since it reconstructs only
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Table 3: PSNR values for restored images with different levels of random valued impulse noise given by
different approaches.

30% noise 40% noise

ACWM CDH Ours ACWM CDH Ours

Boat 25.85 26.08 26.09 24.27 24.74 24.75

Bridge 24.17 24.61 24.61 22.57 23.18 23.19

Cameraman 24.17 24.19 24.20 22.75 23.15 23.14

Goldhill 26.68 27.04 27.02 25.02 25.73 25.75

Lena 27.13 27.01 27.03 25.01 26.16 26.16

Parrot 23.62 23.83 23.82 21.72 22.05 22.04

Peppers 26.33 26.88 26.83 24.37 25.26 25.25

Figure 4: From left to right: noisy image “Parrot” corrupted by 30% random-valued impulse noise, image
restored with ACWM filter, image restored with CDH method (α = 0.15), and image restored with proposed
method.

the noisy pixels, it is faster than the CDH method.

As a final experiment, we compare the CDH method [11] and the method proposed

in Section 3.2 for restoring blurred images with salt-and-pepper noise. In our simu-

lation, we consider Gaussian blur with window size 7 × 7 and standard deviation 5.

Fig. 5 shows the degraded images and the restored images obtained with the AM fil-

ter, the CDH method and our method. In addition, in Table 4 we list the PSNRs for

different images restored with different methods. Moreover, to see how the amount

of blur affects the quality of the reconstructions we test our model with Gaussian blur

with window size 11 × 11 and standard deviation 7. The results for the image “Boat”

are shown in Fig. 6. From Figs. 5 and 6, we see that the results given by the AM

filter are still blurred, since there is no deblurring step in the filter. Comparing the

results of the two TV-based methods, i.e. CDH and ours, we have that both methods

yield good restorations. However, like the proposed denoising model, our denoising

and deblurring model does not require any regularization parameters adjustment.

In Fig. 7, we compare the PSNR values for the CDH method, using different regu-

larization parameters α in (2.1), and our method. For this purpose, we use the blurred

image “Cameraman” with 40% and 60% salt-and-pepper noise (see Fig. 5 second and

third column, respectively). Note that, only in the continuous case the constrained mi-

nimization problem in (2.8) is equivalent to the unconstrained minimization problem

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1613
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:57, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1613
https://www.cambridge.org/core


TV Based Parameter-Free Model for Impulse Noise Removal 201

Figure 5: First row: Corrupted image “Cameraman” with salt-and-pepper noise with noise level 20%, 40%,
60%, and 80% and Gaussian blur with window size 7 × 7 and standard deviation 5. Second row: results
obtained with the AM filter. Third row: results obtained with the CDH method (α = 0.0008, α = 0.0011,
α = 0.0018 and α = 0.0033). Fourth row: results obtained with our method.

in (2.7), if the regularization parameter is sufficiently small (see for more details [32,

Thm. 17.3]). While, in the discrete case, we can see that due to numerical issues the

theorem does not hold. From the figure, it is clear that the performance of the CDH

method strongly depends on the selection of α. With a value of α that differs only

slightly from the best choice, the restoration results can be much worse. Hence, being

regularization parameter-free, our method is much more practical and always provides

comparable restored images with the CDH method.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1613
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:57, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1613
https://www.cambridge.org/core


202 F. Sciacchitano, Y. Dong and M. S. Andersen

Table 4: PSNR values for restored blurred images with different levels of salt-and-pepper noise given by
different approaches.

20% noise 40% noise 60% noise 80% noise

AM CDH Ours AM CDH Ours AM CDH Ours AM CDH Ours

Boat 23.00 38.85 39.00 22.90 35.78 36.02 22.68 32.13 32.09 21.88 27.74 27.79

Bridge 21.55 33.74 33.62 21.46 31.09 31.08 21.19 28.34 28.32 20.49 25.47 25.46

Cameraman 21.87 38.09 38.16 21.79 34.63 35.05 21.55 31.07 31.33 20.77 26.62 26.65

Goldhill 24.31 35.73 35.56 24.21 33.31 33.36 23.94 30.70 30.69 23.20 27.94 27.85

Lena 24.03 38.15 38.19 23.80 35.38 35.60 23.32 32.17 32.38 22.00 29.16 29.14

Parrot 21.02 37.16 37.24 20.88 33.95 34.08 20.55 30.18 30.43 19.41 26.47 26.48

Peppers 22.96 41.04 40.83 22.81 38.74 38.57 22.38 35.09 35.32 21.24 30.31 30.27

Figure 6: From the left to the right: corrupted image “Boat” with salt-and-pepper noise with noise level
40% and Gaussian blur with window size 11 × 11 and standard deviation 7; recovered image by using the
AM filter (PSNR=21.55); recovered image by using the CDH method with α = 0.0013 (PSNR=33.76);
recovered image by using our method (PSNR=33.92).
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Figure 7: Comparison of the performance for the CDH method, with different values of α, and for our
method for the blurred “Cameraman” with 40% and 60% salt-and-pepper noise (see Fig. 5 second and
third column, respectively).

5. Conclusion

We have introduced a total-variation based regularization parameter-free model

for restoring images corrupted by impulse noise. Since impulse noise only partly cor-

rupts images, we start with a constrained minimization problem for which the CDH

model [11] can be viewed as an ℓ1-approximation of our model. In the denoising case,

by separating the noisy pixels and the noise-free ones, our formulation yields an un-
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constrained problem with only the noisy pixels as variables. This reduces the size of

the problem, especially for low noise-levels. We also extend our method to the simulta-

neous deblurring and denoising case. The main advantage of our model is that it does

not require the tuning of the regularization parameter, and we have demonstrated nu-

merically that, for the denoising case, our method provides competitive results in less

time when compared to the CDH method.
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