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Abstract. We investigate the statistical behaviors of two-dimensional dry foam using
numerical simulations based on the immersed boundary (IB) method. We model the
liquid phase of a foam as a thin elastic boundary with surface tension and the gas
phase as a viscous incompressible fluid which can go through the liquid boundary.
We present evidence of the existence of a limiting scaling state of the dry foam dy-
namics in which the asymptotic value of µ2, the second moment of the distribution
of the numbers of cell sides, lies in the range of 1.3±0.3. We also numerically ver-
ify some well-known formulas derived in the dynamics of two-dimensional dry foam
such as von Neumann relation, Lewis law, and Aboav-Weaire law. Our simulation re-
sults are comparable to those of soap froth experiments and Potts model simulations.
Furthermore, we investigate the statistical behaviors of two-dimensional dry foam in
an oscillatory shear flow to show the applicability of our method to more general flow
conditions.
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Key words: Foam dynamics, immersed boundary method, scaling state, von Neumann relation,
Lewis law, Aboav-Weaire law.

1 Introduction

Foam or foam-like material is ubiquitous in daily life and in industry, appearing in such
forms as a pint of beer, soda water, shaving cream, dish washer solution, and fire extin-
guisher. Liquid foam is a gas-filled space divided into cells with liquid boundaries. The
thin liquid boundaries move under the influence of surface tension and allow the sur-
rounding gas to flow through the boundaries. Thus the capillarity of the cell boundaries
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and gas exchange between cells together result in the evolution of the size of the cells and
the topological structure of a foam [1]. This process is called diffusive coarsening.

The diffusive coarsening of a two-dimensional dry foam obeys a simple dynamical
law called von Neumann relation [2, 3] for the evolution of cells. Let An be the area of a
cell with n sides, its rate of change can be determined as follows

dAn

dt
=k(n−6), (1.1)

where k is the diffusion constant proportional to both the permeability and the surface
tension. The von Neumann relation simply says that the area is constant for six-sided
cells, a cell with fewer than six sides tends to shrink (and in fact reaches zero area in finite
time), and a cell with more than six sides tends to grow. If the von Neumann relation
alone governed the coarsening process of a foam, the problems related to its dynamics
would be trivial; however, when a cell shrinks and finally disappears, its neighboring
cells might increase or decrease their number of sides, resulting in topological changes in
the foam structure, and thus the rates of area change of these cells increase or decrease.

The statistics of two-dimensional foams has been widely investigated using numeri-
cal simulations and experimental studies, see [1,4–7] and the references therein. A typical
coarsening process begins with a nearly regular array of hexagonal cells and gradually
evolves into a completely disordered pattern. The principal quantity used to character-
ize such disordered cellular structure is µ2, as defined later, the second moment of the
distribution ρ(n) of the number of cells with n sides. It is known that there exists a scal-
ing state in which the distribution ρ(n) is almost time-invariant with a fixed range of the
second moment µ2 = 1.5±0.3. The topological disorder of foam structure including the
time-invariant ρ(n) has been extensively studied experimentally [8, 9] and computation-
ally [10–12], just to name a few.

There have been many numerical modelings for the evolution and scaling state of a
foam. In [1,6,13,14], the authors simulated the evolution of a two-dimensional dry foam
within the framework of the following assumptions: Laplace-Young condition, Plateau’s
rule, and the von Neumann relation (1.1). Potts model uses a quasi-microscopic metallur-
gical view of foam structure in which the interior of each cell is composed of a collection
of lattices [1]. Potts model has been widely used to simulate the cellular structure as an
extension of the Ising model, and its applicability to the coarsening process of soap froth
in a steady state has been well demonstrated in [15, 16]. There are other foam simula-
tions that take the fluid dynamics into account based on a boundary integral formula-
tion [17,18]. More numerical works on two- and three-dimensional dry or wet foams can
also be found in [19, 20] and the references therein.

In [21], the authors introduced an immersed boundary (IB) method [22] to simulate
the fluid dynamics of a two-dimensional dry foam by modeling the gas phase of the
foam as a viscous incompressible fluid and the liquid phase as a massless network of
permeable internal boundaries with surface tension. The gas diffusion through the liquid
phase of the foam was modeled by allowing the internal boundaries to slip relative to the
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fluid, at a velocity (speed and direction) proportional to the boundary force [21, 23].

When a foam evolves in time, it goes through topological changes in its structure.
The ‘T1’ process occurs when an edge of a cell gradually shrinks and is about to form
a quadruple junction. Since a quadruple junction is unstable, after some transient, this
vertex decomposes to form two triple junctions, but in a different configuration. The ‘T2’
process occurs when a three-edged cell gradually shrinks and finally disappears. Other
topological changes are also possible through the combination of these two processes.
In [24], the authors introduced the T1 and T2 processes to the IB computation for the
foam dynamics in order to produce topological changes of a cell network.

In this paper, we use the same computational approaches as introduced in [21, 24] to
investigate the statistical behaviors of two-dimensional dry foams. After we briefly de-
scribe the IB method and its numerical scheme for the two-dimensional foam dynamics
including the topological changes in Section 2, we present the numerical results on the
statistical behaviors of two-dimensional foams in Section 3. First, we show that there ex-
ists a limiting scaling state in which the distribution ρ(n) of the number of cells with n
sides is almost time-invariant with a fixed range of the second moment µ2. In addition,
we verify some well-known statistical findings on a two-dimensional dry foam; namely,
(a) the exponent of growth for average cell area over time, (b) von Neumann law which
describes the rate of change of the area of n-sided cells with respect to time, (c) Lewis law
which expresses the relation between the average area of n-sided cells and the number of
cell side n, and (d) Aboav-Weaire law which describes the change of the average number
of sides of neighbors of n-sided cells in terms of the number of cell sides. We compare
our numerical results with those of soap froth experiments and Potts model simulations.
Finally, we explore the statistical behaviors of two-dimensional dry foams under an os-
cillatory shear flow, thus requiring the full fluid dynamics treatment of the present paper.
Summary and conclusions are presented in Section 4.

The purpose of the present paper is two-fold. The first one is to show that our numer-
ical method based on the IB method can be a proper tool to deal with the foam dynamics,
which is accomplished by investigating the statistical behaviors of the foam structure in a
static flow. The second purpose is to show that the present numerical method can be ap-
plied to the foam dynamics in more general flow conditions. Since we treat the full fluid
dynamics as well as the motion of foam structure, we can easily extend our model to the
case in which non-equilibrium flows significantly occur within each cell of the foam. For
this purpose, we explore the statistical behaviors of two-dimensional dry foams under
an oscillatory shear flow.

2 Model equations and implementation

Consider a two-dimensional viscous incompressible fluid (gas) in a domain Ω that is par-
titioned into cells by the internal boundary of foam. The internal foam boundary, denoted
by X(s,t), interacts with the surrounding gas which can diffuse through the internal foam
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boundary. Then the equations of motion can be summarized as follows:

ρ(∂u

∂t
+u⋅∇u)=−∇p+µ∇2u+f, (2.1)

∇⋅u=0, (2.2)

F(s,t)= ∂

∂s
(γτ), (2.3)

f(x,t)=∫ F(s,t)δ(x−X(s,t))ds, (2.4)

∂X

∂t
(s,t)=u(X(s,t),t)+MF/∣ ∂X

∂s
∣

=∫ u(x,t)δ(x−X(s,t))dx+MF/∣ ∂X

∂s
∣. (2.5)

Eqs. (2.1) and (2.2) are the fluid equations for a viscous incompressible fluid, in which
the unknowns are the fluid velocity u(x,t), the fluid pressure p(x,t), and the force per
unit area applied by the internal foam boundary to the fluid f(x,t), where x= (x,y) are
fixed Cartesian coordinates, and t is the time. The constant parameters ρ and µ are the
fluid density and viscosity, respectively.

Eq. (2.3) determines the force density of the internal foam boundary where τ(s,t)=
∂X
∂s /∣ ∂X

∂s
∣ is the unit tangent vector of the foam boundary and the constant γ is the surface

tension. Eq. (2.4) changes Lagrangian force density F(s,t) into Eulerian one f(s,t), and
Eq. (2.5) is the equation of motion of the internal foam boundary where M is the perme-
ability constant. The first term on the right-hand side of Eq. (2.5) expresses the no-slip
condition that the internal foam boundary moves at the local fluid velocity, and the sec-
ond term describes the normal slip motion of the foam boundary relative to the fluid.
This normal slip is a consequence of the permeability of the foam boundary, see [21] for
a detailed derivation of the normal slip due to the boundary permeability. Note that
Eqs. (2.4) and (2.5) both involve the two-dimensional Dirac delta function δ(x)=δ(x)δ(y),
which expresses the local character of the interaction between the fluid and the immersed
internal foam boundary.

For the numerical implementation to solve the system (2.1)-(2.5), we use a standard
first-order IB method, generalized to take a permeable foam boundary into account [21,
23]. The step-by-step procedure of the numerical implementation used here can be sum-
marized as follows (see [21] for a greater detail):

(a) Compute the Lagrangian force density using the position of the internal foam
boundary, which is done by the discretization of Eq. (2.3).

(b) Distribute this force density defined at Lagrangian grid into the force density at
Eulerian spatial grid to be applied in the Navier-Stokes equations. This is done by a
discretization of Eq. (2.4).

(c) Solve the discretized version of the fluid equations (2.1)-(2.2) with the Eulerian
force density to update the velocity field and pressure.
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Figure 1: T1 process (a): when the length of a cell edge is smaller than the critical length Lc, we rotate the
edge by 90 degrees about its center, break the old connections, and make new ones as shown in (a). T2 process
(b): when the lengths of the edges of a 3-edged cell are all smaller than the critical length Lc, we replace the
3-edged cell by one vertex at the centroid of the cell, and connect the new vertex directly to the three edges
which previously formed triple junctions with the 3-edged cell.

(d) Update the foam boundary position which moves at the local fluid velocity of the
updated velocity field with correction for relative slip. This is done by approximating
Eq. (2.5).

At the end of each time step, we redistribute the internal foam boundary points to
maintain reasonable resolution along the boundary. A proper resolution of the internal
foam boundary is maintained by the following two processes: (1) if the distance between
two neighboring boundary points is larger than h/2 where h is the spatial meshwidth
of fluid, we add a new boundary point halfway between them; and (2) if the distance
between two neighboring boundary points is smaller than h/4, we delete both points and
create a new boundary point halfway between them.

In addition to the redistribution of the internal boundary points, we perform topo-
logical changes when they are needed at the end of each time step. Since quadruple or
higher-order junctions are unstable, they should be resolved into triple junctions, which
induces topological changes. The topological changes of a 2D foam network are com-
posed of two primary topological processes [1, 6, 24]: (1) removal of an edge between
two neighboring cells, so that they cease to be neighbors, and its replacement by an edge
between two other cells that consequently become neighbors (‘T1’ process); and (2) the
removal of a three-sided cell (‘T2’ process), see Fig. 1.

The T1 process is needed when an edge of a cell gradually shrinks and is about to
form a quadruple junction. When the length L0 of an edge is smaller than a critical length
Lc, we rotate the edge by 90 degrees about its center, break the old connections, and make
new ones by connecting the rotated edge to the other four edges which previously formed
the two triple junctions, as shown in Fig. 1(a). However, we make the actual switch only
when it lowers the total potential energy, i.e.,∑4

i=1 Li≥∑4
i=1 L′i. Otherwise, we do not make

the switch (T1 process fails).

The T2 process is the disappearance of a 3-edged cell when three vertices of the cell
become one point (vertex). When the lengths of three edges of a three-edged cell are
all smaller than the critical length Lc, we replace the three-edged cell by one vertex at
the centroid of the cell, and connect the new vertex directly to the three edges which
previously formed triple junctions with the three-edged cell, see Fig. 1(b).
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3 Statistics of foam dynamics

In this section, we introduce the physical and computational parameters used in our
numerical experiments and present the simulation results on the statistical behaviors of
two-dimensional dry foams. By comparing our computational results with those of soap
froth experiments and Potts model simulations, both of which were well reported in [5,
15, 25], we shall show that the present numerical method is a proper tool to investigate
the foam dynamics.

In our numerical simulations, we choose the computational domain Ω = [0,1]×[0,1]
cm2 with periodic boundary conditions, and construct a Voronoi network in the domain
as the initial configuration of a foam composed of 1200 cells. We first define the distribu-
tion (frequency) of the number of cells with n edges, ρ(n), as the number of the n-edged
cells over the total number of cells which compose the foam structure. Then the second
moment µ2 of the side distribution can be defined as

µ2=∑ρ(n)(n−⟨n⟩)2 , (3.1)

where ⟨n⟩ is the average number of sides of the cells, which can be shown to be 6 by
Euler’s theorem [1]. The second moment µ2 of the side distribution indicates the com-
plexity or disorder of the foam structure. In order to investigate the effect of the initial
complexity or disorder of a foam structure on the foam dynamics, we initially construct
the foam with various values of µ2, see the left panels of Fig. 2.

Throughout this paper, we use the mesh width h=∆x=∆y=1/1024 cm, which is uni-
form and fixed in time, and the time step duration ∆t=1.5625×10−4 s. The fluid density
is ρ= 10−3 g/cm3, and the viscosity is µ = 2×10−3 g/(cm s). The surface tension γ used
in Eq. (2.3) is fixed at 2.4×10−2 erg/cm, and the permeability M in Eq. (3.3) is 3.0×10−4

cm2/(dyne s). These two values determine the diffusion constant k = π
3 γM ≈ 7.54×10−6

cm2/s in Eq. (1.1) which is almost the same as the value used in previous experiments [26].

Fig. 2 shows the motion of the foams with three different values of the initial second
moment: µ2=0.6 (top), 1.2 (middle), and 1.8 (bottom). The selected times are t=0, 320 s,
and 640 s from left to right. As time goes on, the cells with fewer than six edges shrink
and disappear, and the cells with more than six edges grow in area according to the von
Neumann law (1.1). Thus, the overall result of these changes in area is the diffusive
coarsening of the foam structure. In the course of the coarsening, the foams experience
topological changes via T1 and T2 processes, reducing the total number of cells. Compare
the configurations of the foams at the initial and later times. Note that, even though the
initial complexity of the three foams are different, i.e., the foam in the panel (g) is more
disordered than the other two foams in the panels (a) and (d), the three foams seem to
be similarly disordered at later times, see the foam structures in the middle and right
columns.
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Figure 2: The motion of the foams with three different values of the initial second moment µ2 at some selected
times: t=0, 320 s, and 640 s from left to right. The initial second moments are µ2=0.6 (a,b,c), 1.2 (d,e,f), and
1.8 (g,h,i). We can observe the coarsening behavior of the foam networks. Even though the second moment
µ2, which represents the complexity of a foam structure, is initially different in the three cases, three foams
seem to be similarly disordered at later times.

3.1 Average area and side distribution

A foam goes through diffusive coarsening of its structure and topological changes to
reduce the total number of cells over time as shown in Fig. 2. To be more quantitative,
we show in Fig. 3(a) the total number of cells as functions of time for the three different
initial second moments: µ2 =0.6 (line with △), 1.2 (line with ◻), and 1.8 (line with ◯).
As expected, the total numbers of cells decrease in all three cases, which indicates the
coarsening process of the foams. As the initial µ2 gets larger, the decrement of the total
number of cells is faster initially for some time. Later after about t=500 s, however, the
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Figure 3: The total number (a) and the average area (b) of cells as functions of time. The total number of cells
decreases as time goes on, with the decrement being faster initially as the initial second moment gets larger.
Independent of the initial second moment, the average area of cells approaches a linear growth in time after
when the foams are considered to be fully disordered.

decrement gets slower for all three cases, and the total numbers of the cells in the three
foams become almost the same.

We investigate the change of average area of the cells in a foam as time evolves. Since
the total area of a foam in our model is equal to that of the computational domain which
is 1 cm2, the average area of cells ⟨A⟩ can be computed as 1 divided by the total number
of cells. Fig. 3(b) shows the average area of cells as functions of time for three different
cases: µ2=0.6 (line with △), 1.2 (line with ◻), and 1.8 (line with ◯). We also compute the
least square approximation ⟨A⟩l of the area function ⟨A⟩ which is fitted to a function of
the following form:

⟨A⟩l =C1tα
+C2, (3.2)

where C1 and α are constants to be determined, and C2 is the initial value of the average
area.

When the coarsening dynamics of a foam is governed by the von Neumann’s relation
(1.1), the exponent is known to be α = 1 at the scaling state in which the distribution
function ρ(n) is almost constant [2, 3, 27, 28]. We can see from Fig. 3(b) that, after some
transient, the average areas ⟨A⟩ of the three foams seem to be all linear in time. Compare
the three graphs of the area function ⟨A⟩ and the bold line which represents a linear
function with the exponent α=1. In fact, the exponents of the least square approximation⟨A⟩l of the area function ⟨A⟩ are α=1.0369 for the initial µ2=1.8 after t=100 s, α=1.0464 for
the initial µ2=1.2 after t=200 s, and α=1.0625 for the initial µ2=0.6 after t=400 s. At each
of these times, each of the three foams might be considered to reach a fully disordered
foam and a limiting scaling state which shall be discussed now.

Since von Neumann relation (1.1) describes the rate of change of area for each indi-
vidual cell in dry two-dimensional foam, it also bears on how the average area ⟨A⟩ of
cells changes with time. It was shown theoretically and experimentally in [29] that, once
a limiting scaling state is reached, the ratio ⟨A⟩2/⟨A2⟩ is constant, where ⟨A2⟩ is the av-
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Figure 4: The area-weighted average number of sides, ⟨⟨n⟩⟩ =∑nF(n) (a), its second moment, ν2 =∑(n−

⟨⟨n⟩⟩)2F(n) (b), the ratio ⟨A⟩2/⟨A2⟩ (c), and the comparison between
d⟨A⟩l

dt and the right-hand side of Eq. (3.3)

as functions of time for the three different initial second moments: µ2=0.6 (line with △), 1.2 (line with ◻), and
1.8 (line with ◯).

erage square area of cells, and thus the rate of change of the average area is governed by
the following formula:

d⟨A⟩
dt
=2k
⟨A⟩2
⟨A2⟩∑F(n)(n−6)

=2k
⟨A⟩2
⟨A2⟩ (⟨⟨n⟩⟩−6), (3.3)

where F(n) is the total area of the n-sided cells which represents the probability that a
randomly chosen point in space lies inside an n-sided cell. The quantity ⟨⟨n⟩⟩=∑nF(n) is
the area-weighted average number of sides which is different from the average number
of sides of the cells ⟨n⟩=∑nρ(n)=6 and, the difference of ⟨⟨n⟩⟩ from 6 plays an important
role in the evolution of the foam.

Fig. 4(a) and (b) show the area-weighted average number of sides, ⟨⟨n⟩⟩, and its sec-
ond moment, ν2=∑(n−⟨⟨n⟩⟩)2F(n), as functions of time, respectively, for the three differ-
ent initial second moments: µ2 =0.6 (line with △), 1.2 (line with ◻), and 1.8 (line with ◯).
Since the cells with a larger number of sides tend to have greater area, the area-weighted



298 Y. Seol and Y. Kim / Commun. Comput. Phys., 25 (2019), pp. 289-310

average number of side ⟨⟨n⟩⟩ is larger than 6. After t=400 s, ⟨⟨n⟩⟩=6.802±0.123, and its
second moment ν2 =1.438±0.231, which are comparable to the range of values observed
in [29].

We can see from Fig. 4(c) that the ratio ⟨A⟩2/⟨A2⟩ approaches almost the same con-
stant 1.6 after t=400 s for the three initial second moments. This is argued in [29] and used
in the derivation of Eq. (3.3). Fig. 4(d) compares the left-hand and right-hand sides of

Eq. (3.3) in which the rate of change of the average area d⟨A⟩
dt is computed using Eq. (3.2),

i.e.,
d⟨A⟩l

dt =C1αtα−1. One can see that, once the limiting scaling state is reached after about

t=400 s, the difference between
d⟨A⟩l

dt (solid line) and the left-hand side of Eq. (3.3) is small
for the three initial second moments, which confirms the formula (3.3).

Since the side distribution ρ(n) and the second moment µ2 represent the complexity
or disorder of a foam structure, they are important statistical data and thus have been
investigated by many researchers [4, 30–33]. It has long been claimed that, as a foam
evolves, it reaches a limiting scaling state in which the two statistical quantities ρ(n)
and µ2 are almost time-invariant. After Smith [4] observed a limiting scaling state with
µ2=1.296 in his experimental work with a two-dimensional disordered soap froth in 1952,
many experimental and numerical studies have been done to verify the existence of a
limiting scaling state in which the steady second moment µ2 is around either 1.2 or 1.4−1.5
[30–33].

Fig. 5(a) shows the second moment µ2 as functions of time for three different initial
second moments: µ2=0.6 (line with△), 1.2 (line with ◻), and 1.8 (line with ◯). We can see
that, after some transient, the second moment µ2 oscillates around some fixed constant
value which is about 1.3 for all three cases. We performed more computational exper-
iments with different initial second moments (data not shown here) and found similar
behaviors. That is, the second moment µ2 stays around µ2 =1.3±0.3 which is consistent
with the range of values observed in [30–33]. This observation that the second moment
µ2 stays in some fixed range confirms the existence of a limiting scaling state.

When the second moment µ2 oscillates in some fixed range, we also find that the
side distribution ρ(n) is almost time-invariant. The lower panels of Fig. 5 depict the
side distribution ρ(n) at t = 0 (b) and t = 520 s (c) for the three different initial second
moments: µ2 = 0.6 (line with △), 1.2 (line with ◻), and 1.8 (line with ◯). Even though
the side distributions ρ(n) are initially different at t= 0 (b), they behave similarly at t=
520 s (c) and at other times in the limiting scaling states. Our simulation results are
also comparable to those obtained in soap froth experiments (☆) and in the Potts model
simulations (×) [15]. Especially, the peak of the side distribution ρ(n) occurs when the
number of sides is equal to n=5 [15] or 6 [33]. Note that the side distribution ρ(n) shown
in Fig. 5 is almost time-invariant, as we plotted it at more different times (not shown
here). This observation together with the second moment µ2 staying in some fixed range
confirms that the foam approaches a limiting scaling state with asymptotic values of side
distribution ρ(n) and second moment µ2, regardless of initial complexity of the foam
structure.
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Figure 5: The upper panel shows the second moment µ2 as functions of time for the three different initial
second moments: µ2=0.6 (line with △), 1.2 (line with ◻), and 1.8 (line with ◯). The asymptotic scaling state
is reached when the second moment µ2 stays in some fixed range, 1.3± 0.3. The lower panels depict the side
distribution ρ(n) at t=0 (b) and t=520 s (c) for the three different cases. Even though the side distributions
ρ(n) are initially different (b), they become very similar at later times (c) and comparable to those obtained in
soap froth experiments (☆) and in the Potts model simulations (×).

3.2 von Neumann, Lewis, and Aboav-Weaire laws

The von Neumann law (1.1) expresses that the rate of change of the area of a given cell
is linear in time. We verified in [21] that the area change of each cell follows the von
Neumann law as long as the cell does not experience any topological change. However,
when topological changes occur in a cell, the number of edges of that cell changes and so
does the variable n in the von Neumann law. Thus, in order to verify the von Neumann
law for foam dynamics involving topological changes, it is reasonable to investigate the
change of the average area of cells with the same number of edges [27, 34].

Fig. 6(a) plots the rates of change of the average area d⟨An⟩/dt of cells with n edges in
terms of the number n of cell sides for the three different initial second moments: µ2=0.6
(△), 1.2 (◻), and 1.8 (◯). Here, we select one particular time t=520 s in the scaling state to
determine d⟨An⟩/dt. However, when we choose a data set at different instants, we obtain
almost the same graph as the one shown in Fig. 6(a). We can observe that the rates of
change of the average area d⟨An⟩/dt follow well the von Neumann law (1.1) represented
by the solid linear line with the diffusion constant k= π

3 γM≈7.54×10−6 cm2/s used in our
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Figure 6: The left panel (a) shows the rates of change of the average area d⟨An⟩/dt of the cells with n sides
in terms of the side number n for three different initial second moments: µ2 =0.6 (△), 1.2 (◻), and 1.8 (◯).

The results follow well the von Neumann law (1.1) with the constant k= π
3 γM≈7.54×10−6 cm2/s (solid line).

Error bars represent the standard deviations of the rate of area change of n-sided cells for µ2 =1.8. The right
panel (b) shows the normalized average area ⟨An⟩/⟨A6⟩ of n-sided cells in terms of the side number n. Our
numerical results are comparable to the data of soap froth experiments (☆) and Potts model simulations (×),
both in [15].

simulations. Error bars representing the standard deviations, which are shown only in
the case of µ2=1.8 for clarity since they are similar for the other two cases, are very small.

Lewis [35, 36] empirically investigated the average area of n-sided cells in two-
dimensional cellular patterns and found that the average area of n-sided cells, ⟨An⟩, is
a linear function of side number n at any fixed time, that is, ⟨An⟩= c1+c2n, where c1 and
c2 are constants. Fig. 6(b) shows the normalized average area ⟨An⟩/⟨A6⟩ of n-sided cells
in terms of the side number n for three different initial second moments: µ2=0.6 (△), 1.2
(◻), and 1.8 (◯). In the scaling state, the normalized average area ⟨An⟩/⟨A6⟩ appears to be
independent of the selected time; thus, we choose one particular time t=520 s in Fig. 6(b).
We can see that the normalized average area ⟨An⟩/⟨A6⟩ is almost linear in the side num-
ber n as predicted by Lewis. Moreover, our simulation results agree well with those of
soap froth experiments (☆) and Potts model simulations (×) in [15].

In order to understand the distribution of grains in a polycrystal, Aboav empirically
investigated the average number of sides of the neighbors, m(n), of n-sided cells and
suggested the formula m(n)=5+c/n, where c is a constant [37,38]. Many researchers have
further investigated and modified Aboav’s formula to introduce the so-called ‘Aboav-
Weaire law’ [5, 39, 40]:

m(n)=6−a+
6a+µ2

n
, (3.4)

where a is a constant close to unity, and µ2 is the second moment. This law implies that
a cell with a large number of sides has a tendency to be surrounded by cells with a small
number of sides, and vice versa.

In Fig. 7, we plot n×m(n) as functions of n at a chosen time (t=520 s) in the scaling
state for the three different initial second moments: µ2=0.6 (△), 1.2 (◻), and 1.8 (◯). Our
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Figure 7: The product of the average number of sides of the neighbors of n-sided cells, m(n), and the number
n of cell sides, i.e., n×m(n), in terms of n (△ for µ2 =0.6, ◻ for µ2=1.2, and ◯ for µ2=1.8). Our simulation
results are in good agreement with those of soap froth experiments (☆) and Potts model simulations (×). The
solid line represents the Aboav-Weaire law (3.4) with a=1.0 and µ2=1.4.

simulation results are quite comparable to those of soap froth experiments (☆) in [15,30],
Potts model simulations (×) in [15], and Aboav-Weaire law (3.4) with a=1.0 and µ2 =1.4
(solid line) in [30]. Note that no cells with three sides or with more than 10 sides are
observed in our simulations, as in other studies [29, 41].

3.3 Statistics of foams in dynamic flow

We here investigate the statistical behaviors of foams under dynamic shear flow which is
generated by forcing a rigid ceiling of the region filled with a foam network to slide left
and right. Several experimental and numerical studies have found discrepancies in the
statistics of foams in dynamic flow and in steady flow [42–44]. These studies were per-
formed with a setting of very slow flow so that the system is assumed to be quasi-static.
Since our numerical model uses the full Navier-Stokes equations, the fluid dynamics of
a foam is not necessarily restricted to the slow coarsening regime that was considered in
the previous subsections.

The rigid ceiling is near the top of the computational domain, yc =0.9 cm, and moves
in an oscillatory manner according to Xw(s,t)=(s+Asin(2πωt),yc) for 0≤s≤1.0 cm, where
t is the time. The amplitude and the frequency are fixed at A=2.5 cm and ω =0.004 Hz,
respectively. Fig. 8 shows the motion of the foams with the initial second moment µ2=1.2
at some selected times: t=0, 280 s, 360 s, 440 s, 520 s, and 600 s. We also depict the velocity
fields for the fluid which indicate that the flow depends on the oscillatory motion of the
rigid ceiling as well as the surface tension of the internal foam boundaries. One can
observe that the foam goes through both diffusive coarsening and oscillatory shearing
motion.

Fig. 9 shows the numbers of T1 processes (see Fig. 1) occurring in each of the time
intervals of 12.5 s for the foams with the initial second moments µ2 = 0.6 (left) and 1.8
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(a) t=0 (b) t=280 s (c) t=360 s

(d) t=440 s (e) t=520 s (f) t=600 s

Figure 8: The motion of the foam with the initial second moment µ2 =1.2 in an oscillatory shear flow with
frequency ω =0.004 Hz and amplitude A=2.5 cm at t=0 (a), 280 s (b), 360 s (c), 440 s (d), 520 s (e), and
600 s (f). The arrows represent the velocity fields of the background fluid. The foam experiences both diffusive
coarsening and shearing motion due to the oscillatory motion of the rigid ceiling.

(right) in the static (top) and dynamic shear (bottom) flows. We can see that the T1 pro-
cesses occur more frequently in the dynamic flow than in the static flow so that the total
numbers of T1 processes during 800 s are 1579 in the case (a), 1465 in the case (b), 7342 in
the case (c), and 5809 in the case (d). Moreover, in the dynamic flow, the numbers of T1
processes behave in the same oscillatory manner as the shear rate which is proportional
to the velocity of the ceiling, 2πωAcos(2πωt)which is drawn in the solid lines in (c) and
(d). This confirms the experimental and numerical observations that, when the shear rate
increases, the rate of T1 processes (rearrangements) increases [45, 46].

It is interesting to note that, even though the rates of T1 processes are different in the
static and dynamic shear flows, the number of T2 processes is almost the same during
the simulation time in both cases, which are approximately 1040. This results in almost
identical numbers of cells and identical average cell sizes in static and dynamic shear
flows, which might give the evidence that the shear has minimal effect on foam structure
and on the coarsening processes [43, 45].

Fig. 10 shows some statistical behaviors of the foams with three different initial second
moments (µ2 = 0.6, 1.2, and 1.8) in the dynamic flow. The total numbers of cells which
are shown in (a) decrease in time, indicating the coarsening process of the foams. The
decreasing speed of the cell number is proportional to the initial complexity for some
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Figure 9: The numbers of T1 processes occurring in each of the time interval of 12.5 s for the foams with the
initial second moments µ2=0.6 (left) and 1.8 (right) in the static (top) and dynamic shear (bottom) flows. The
T1 processes occur more frequently in the dynamic flow than in the static flow, and the number of T1 processes
is proportional to the shear strain rate indicated by the solid lines in (c) and (d).

time; however, the total numbers of cells are similar for all three cases after about t=600 s.
These coarsening behaviors are similar to those of the foams in the steady flow, compare
with Fig. 3(a).

Fig. 10(b) shows the second moment µ2 as functions of time. The second moment
µ2 starts at different values but oscillates around some fixed range 1.8±0.4 after some
transient time even in the dynamic flow considered here. The range in which the second
moment of side distribution stays is larger than those in the case of the steady flow and in
literature, compare with Fig. 5(a). Whereas a limiting scaling state exists even in dynamic
flow, the foam structures are more complex and changeable due to the background shear
flow. We also have observed that the side distribution ρ(n) varies slightly more in time
in the dynamic flow than in the steady flow; however, it generally agrees well with those
obtained by the soap froth experiments (☆) and by the Potts model simulations (×) as
shown in Fig. 10(c).

When the foams are in limiting scaling states, Fig. 10 depicts the rate of change of the
average area of the n-sided cells, d⟨An⟩/dt (d), the normalized average area of n-sided
cells, ⟨An⟩/⟨A6⟩ (e), and the product of the average number of sides of the neighbors of
n-sided cells and the side number n, n×m(n) (f), in terms of the side number n. Even
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Figure 10: The total number of cells (a) and the second moment µ2 (b) are drawn as functions of time. The side
distribution ρ(n) (c), the rate of change of the average area of the n-sided cells, d⟨An⟩/dt (d), the normalized
average area of n-sided cells, ⟨An⟩/⟨A6⟩ (e), and n×m(n) (f) where m(n) is the average number of sides of
the neighbors of n-sided cells are depicted in terms of the side number n at t=520 s. The foams have three
different initial second moments (µ2=0.6, 1,2, and 1.8) in an oscillatory shear flow. Even in the dynamic shear
flow, the statistical behaviors of the foams shown here are qualitatively similar to those in steady flow.

though the foam is now far from equilibrium, these quantities verify well von Neumann
relation (1.1) (d), Lewis law (e), and Aboav-Weaire law (3.4) (f).

It is interesting to find the reason why the von Neumann relation holds well even in a
dynamic flow which may deform the internal boundaries of a foam in some complicated
way, so that the curvature of each edge of the cells vary along the edge. In the derivation
of von Neumann relation which is given in a discretized setting in Appendix, it is crucial
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Figure 11: The average value of total exterior angles with the standard deviations as functions of the number
n of edges at t=520 s for the two cases with µ2=0.6 (a) and 1.8 (b). The slope of the total exterior angle in
the dynamic flow is linear with the slope π/3 which is assumed in theory (solid line).

that the following two conditions satisfy: (1) the background fluid is incompressible, i.e.,
∇⋅u=0, which implies that the fluid (steady or dynamic) makes no contribution to the area
change of a region enclosed by edges of a given cell, and (2) three edges meet at junction
points with the equal angle (2π/3), which makes the total exterior angle to be nπ/3 for
n-edged cell. See Appendix for the detailed derivation of von Neumann relation in a 2D
discretized setting.

Fig. 11 shows the average value of total exterior angles with the standard deviations
as functions of the number of edges n at t= 520 s for the two cases with initial µ2 = 0.6
(a) and 1.8 (b). We can see that the total exterior angles agree well with nπ/3 (solid line)
assumed in theory. Thus, together with the incompressibility of the fluid, von Neumann
relation is well satisfied even in the dynamical flow.

4 Summary and conclusions

In this paper, we have investigated the statistical behaviors of two-dimensional dry foam
using numerical simulations based on the immersed boundary method. We modeled the
liquid phase of a foam as a thin elastic boundary with surface tension and the gas phase as
a viscous incompressible fluid which can go through the liquid boundary. We have also
described an algorithm for topological change of a foam network using the combination
of T1 and T2 processes and computed statistical data in the coarsening process of the
foam.

We have shown some statistical data of foams such as the total number of cells, aver-
age area, side distribution, and second moment of the distribution of the numbers of cell
sides. These statistical data give evidence of the existence of a limiting scaling state for
the dry foam dynamics in which the asymptotic value of the second moment µ2 lies in
the range of 1.3 ± 0.3. We have also numerically verified some well-known formulas in
two-dimensional dry foam such as von Neumann relation, Lewis law, and Aboav-Weaire
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law, together with the comparison of our simulation results with those of experiments
and other simulations.

In addition, we have investigated the statistical behaviors of two-dimensional dry
foam in an oscillatory shear flow, and found that the statistical behaviors of foam coars-
ening in a dynamic flow are similar to those in the steady flow. Especially, our simulation
results show that there exists a limiting scaling state of the dry foam in a dynamic flow
in which the asymptotic value of µ2 lies in the range 1.8 ± 0.4. Even in this dynamic flow,
the von Neumann, Lewis, and Aboav-Weaire laws are well satisfied.
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Appendix: von Neumann relation in a 2D discretized setting

In this appendix, we derive a discretized version of von Neumann relation [2] for the
rate of change of area of a cell within a dry foam. We give the details to point out the
relationship to our scheme, and to highlight the various approximations that are made
along the way. The errors in these approximations should approach zero as the resolution
of the computation is refined.

For simplicity, we begin by considering an isolated cell, i.e., a soap film in the form
of a closed curve that partitions R

2 into an interior region and an exterior region, see the
left panel of Fig. 12. In a discretized setting, the isolated cell denoted as C(t) is expressed
as a polygon with its vertices being marker points, see the right panel of Fig. 12. Let Xk,
k=0,⋯,Nb, represent the vertices of the polygonal cell and Lk represent the line segment
connecting Xk and Xk+1. Since the cell is a closed curve, X0=XNb

. Then it is straightforward
to show that

dA

dt
=

Nb−1

∑
k=0

1

2
(∣Lk∣nk+∣Lk−1∣nk−1)⋅ dXk

dt
, (A.1)

where A(t) is the area of the polygonal cell, ∣Lk∣ is the length of the line segment Lk, and
nk is the unit normal to the line segment Lk pointing toward the outside of the polygon.

Our formula for dXk/dt can be given by approximating Eq. (3.3) as

dXk

dt
=Uk+M

Fk ∆s
1
2(∣Lk∣+∣Lk−1∣) , (A.2)

where Uk is the interpolated fluid velocity evaluated at Xk. Here, the force density is
derived from the relation Fk ∆s=−∂E/∂Xk, where E[X] is the discretized energy functional
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Figure 12: An isolated cell with 8 edges in a 2D discretized setting is expressed as a polygon with its vertices
being marker points Xk, k=0,⋯,Nb and with the edges being line segments Lk connecting Xk and Xk+1. There
are special vertices called junction points, at which three edges meet and there is no permeability.

of the form E[X]=γ∑Nb−1
i=1 ∣Li∣ and has the following expression:

Fk ∆s=γ(Xk+1−Xk∣Lk∣ −
Xk−Xk−1∣Lk−1∣ )

=γ(τk−τk−1), (A.3)

where τk=(Xk+1−Xk)/∣Lk∣ is the unit tangent in the direction from Xk to Xk+1.
We now substitute (A.2) and (A.3) into (A.1), but we make the following approxima-

tion
Nb−1

∑
k=1

1

2
(∣Lk∣nk+∣Lk−1∣nk−1)⋅Uk =0. (A.4)

This is a discretization of ∫C(t)u⋅ndl, which is 0 since ∇⋅u=0. With this approximation,
Eq. (A.1) becomes

dA

dt
=Mγ

Nb−1

∑
k=1

1

2
(∣Lk∣nk+∣Lk−1∣nk−1)⋅ τk−τk−1

1
2(∣Lk∣+∣Lk−1∣) . (A.5)

Let us define θk to be the angle of the vector τk from the positive x-axis, then τk =(cos(θk),sin(θk)) and nk =(sin(θk),−cos(θk)). Using the relations nk−1 ⋅τk =−sin(θk−θk−1)
and nk ⋅τk−1=sin(θk−θk−1), we can simplify Eq. (A.5) to obtain

dA

dt
=−Mγ

Nb−1

∑
k=1

sin(θk−θk−1). (A.6)

In this derivation, we have considered an isolated cell. For a cell in a foam, there are
special vertices called junction points, at which three (or possibly more) edges meet (see
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Fig. 12). In our scheme, there is no permeability at junction points, and thus it requires
to remove the contribution at the junction points to the summation in Eq. (A.6). Let J be
the set of junction points and E be the set of the other vertices, then Eq. (A.6) should be
modified to

dA

dt
=−Mγ∑

k∈E

sin(θk−θk−1). (A.7)

At the vertices in E, we can make the approximation that sin(θk−θk−1) ≈ (θk−θk−1).
This approximation improves along with the resolution of the computation, provided
that the polygonal curve approaches a smooth curve as the discretization is refined. The
von Neumann law is derived using the assumption that three edges of a foam meet at
a junction point with the equal angles, which are 2π/3. Thus, at the vertex Xk in J, the
exterior angle θk−θk−1 is π/3. With these assumption and approximation, we can derive
the 2D von Neumann relation in the discretized setting:

dA

dt
=−Mγ∑

k∈E

(θk−θk−1)
=−Mγ ∑

k∈J∪E

(θk−θk−1)+Mγ∑
k∈J

π

3

=−2πMγ+Mγ
nπ

3
, (A.8)

where n is the number of junction points of the cell. In the third equality, we use the fact
that a polygon has the total exterior angle 2π.
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[9] C. Quilliet, S. A. Talebi, D. Rabaud, J. Käfer, S.J. Cox, and F. Graner, Topological and geo-

metrical disorders correlate robustly in two-dimensional foams. Phil. Mag. Lett. 88:651-660,
2008.



Y. Seol and Y. Kim / Commun. Comput. Phys., 25 (2019), pp. 289-310 309

[10] H.J. Ruskin and Y. Feng, Scaling properties for ordered/disordered 2-D dry froths. Physica
A, 230:455-466, 1996.

[11] J.J. Chae and M. Tabor, Dynamics of foams with and without wall rupture. Phy. Rev. E,
55:598-610, 1997.
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