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Abstract. A numerical method is proposed to approach the Approximate Inertial Man-
ifolds (AIMs) in unsteady incompressible Navier-Stokes equations, using multilevel fi-
nite element method with hierarchical basis functions. Following AIMS, the unknown
variables, velocity and pressure in the governing equations, are divided into two com-
ponents, namely low modes and high modes. Then, the couplings between low modes
and high modes, which are not accounted by standard Galerkin method, are consid-
ered by AIMs, to improve the accuracy of the numerical results. Further, the multilevel
finite element method with hierarchical basis functions is introduced to approach low
modes and high modes in an efficient way. As an example, the flow around airfoil
NACA0012 at different angles of attack has been simulated by the method presented,
and the comparisons show that there is a good agreement between the present method
and experimental results. In particular, the proposed method takes less computing time
than the traditional method. As a conclusion, the present method is efficient in numer-
ical analysis of fluid dynamics, especially in computing time.
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1. Introduction

In computational analysis, mathematical models which exhibit complex physical be-
havior along high fidelity and strong nonlinearity has been the focus of many researchers
recently. In engineering, nonlinear continuous dynamical systems describe the vast major-
ity of phenomena, such as complex fluid flows, fluid structure interactions. For fluid flow
problems, the motion of flow exhibits complex behavior and behind this complexity is the
fact that the dynamics of the systems may be the product of multiple different interacting
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forces. It is known that some dynamic systems with continuum mechanics, are governed
by a set of nonlinear partial differential equations, and some nonlinear behaviors, which
can be captured by numerical solution, occur in such kind of systems. Despite the com-
plexity of the flow topology, the entire behavior of most fluid flows is described by the
so-called Navier-Stokes equations. Since in most cases, these equations do not provide the
known analytical solutions, many numerical methods have been developed over the years
to solve them [1-5]. For such systems, when applying discretization methods, the cost of
computing time for the resulting equations is considerably expansive due to high number
of degrees of freedom. Normally, finite element method is applied to approach the solution
to such governing equations. Consequently, the resulting equations are mostly nonlinear
dissipative evolution equation with a lot of degrees-of-freedom. In order to analyze the
dynamics of the equations, the system is changed into phase-space. However, in finite
dimensional phase space with higher dimension, many difficulties appear from analyzing
the nonlinear dynamics both qualitatively and quantitatively. Indeed, the disadvantage
of the above mentioned numerical methods is that they require considerable computing
time with great difficulties, due to large number of degrees-of-freedom, and the long term
behaviors of the systems have great influences from the numerical computational errors [6-
7]. For such problem, there are some numerical methods. For example, the systems with
local nonlinearity have been analyzed by IRS and balanced realization methods by Friswell
et al. [8]. In structural dynamics with nonlinearities, there are some reduction methods
mostly having numerical algorithms based on component synthesis techniques which can
be efficiently used for linear dynamic systems and the solution to these problems are ob-
tained through many numerical experiments and computational analysis [9-10]. While
Slaats et al. [11] introduced a reduction method based on three modes for nonlinear dy-
namical systems using finite element discretization. Therefore, model reduction for high
dimensional or infinite dimensional fluid dynamic systems are required to overcome such
difficulties.

On the other hand, in the study of long term behaviors of dissipative nonlinear evo-
lution systems, one encounters with the global attractors, which is compact, invariant set
with finite fractal dimensions attracting all the orbits of the systems uniformly, such attrac-
tors have complicated and dynamic structures [12]. A theoretical approach was shown
that there is a approximate inertial manifold for the long term behavior of some dissipative
partial differential equations in Titi [13]. Consequently, it has been proved that infinite-
dimensional dissipative systems can be reduced to finite dimensional systems by reduction
technique. Thus, a number of methods have been applied to construct a finite system ex-
hibiting asymptotic dynamic behavior in the original dynamic system [14-15]. More, an
important feature of nonlinear dynamics is given related to model reduction, which ex-
plains the asymptotic properties based on spectral theory and decomposition process of
the dynamical systems [16]. Therefore, developing a feasible model reduction method is
very urgent as continuum dynamic systems are studied numerically.

For decades, the concept of inertial manifold is an important development in the study
of systems with complicated attractor, since it reduces an infinite dimensional problem into
a finite dimensional one without introducing errors [17]. Infinite dimensional dynamics
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sytems are converted into finite dimensional ones by applying the theory of inertial man-
ifolds. It also reduces the computing time and space keeping the topology of the systems
intact. The presence of inertial manifold has been verified and shown reducing the degree
of freedom involving in the dynamic systems. This provides a strong mathematical basis
for model reduction in fluid dynamical systems [18]. An inertial manifold is defined to
be a finite dimensional Lipschitz manifold, which is invariant for a semi-group defined on
a phase space and attracts all the orbits exponentially and uniformly for the given initial
conditions on the bounded set. In fact, the study of integral manifolds and center mani-
folds lead to methods for the construction of IMs theoretically. Since then, some model or
dimension reduction method are proposed. Among them, the approach to model reduc-
tion by the theory of Inertial Manifolds (IMs) is more powerful and has been carried out
for different periods of time [19-20].

Theoretically, the presence of IMs usually sustains by very definitive spectral gap con-
ditions. Therefore, practically the notion of Approximate Inertial Manifolds (AIMs) was
introduced by Titi [13] and Foias et al. [21]. Haller and Sten [22] developed a model
reduction method for the nonlinear mechanical systems by establishing certain conditions
which can reduce the higher degrees of freedom to lower degrees of freedom. For this
decomposition, they analyzed that there exists an exponential convergence defined on
the slow manifold for the reduced model. For interaction between low and high modes,
Schmidtmann [23] proposed a method using Approximate Inertial Manifolds by approx-
imating the solution of MHD equation examining the behaviour of incompressible fluids.
A Nonlinear Galerkin Method for coupling between lower and higher modes using proper
orthogonal decomposition approached by Approximate Inertial Manifold was used by Kang
et al. [24]. Laing et al. [25] applied AIMs for post processing calculation to lift the modes
of the solution. On the other hand, some studies have been carried out for time-dependent
second order autonomous dynamical systems which are nonlinear dissipative systems in
nature by applying IMs and AIMs.

Further, some results have obtained by using AIMs approach for partial differential
equations of second order depending upon time with delay [26]. So reduction of time-
dependent second order autonomous dynamical systems, which are nonlinear dissipative
systems with many degrees-of-freedom, has been developed for infinite dynamical systems
together with mode synthesis analysis, which are used mostly in engineering and has in-
duced effects of model reduction on long term behaviors of dynamical systems. Also, the
concept of inertial manifold with time-delay along with traditional Galerkin method ex-
hibiting the dynamic behavior of nonlinear phenomena such as buckling of shallow arches
under the load impact is introduced using AIMs [27].

Recently, AIMs approach was used for reduction of model for Navier-Stokes Equation
using multilevel finite element method, and some numerical examples are given to verify
the method by Zhang et al. [18]. For such problem, the numerical approach to the AIMs is
the main point. In finite element method, the hierarchical element or basis can describe the
addition of further nodal elements and has no effect on the preceding ones in a major way.
Particularly, hierarchical representation is the series for the approximation of a function.
The terms which are added in the series does not affect the previous ones. To attain a hier-
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archical shape function, every component is required for optimal shape function, variables,
physical description and discretization used must be organized hierarchically, this concept
has been impressively demonstrated in Whiting and Jansen [28]. Application of mesh re-
finement through adaptive finite element approximation has been applied, giving uniform
refined results in a hierarchy of approximation spaces [29]. Derivation and analysis for
solving boundary value problems using hierarchical basis multigrid method on rectangular
regions is used in Bank et al. [30]. Following that, the multilevel finite element method
with hierarchical basis can be available to approach the AIMs, and that is the main idea in
this paper.

In this study, numerical method (Euler Scheme) is used to approach the unknown
terms involved in the system of governing equations. The pressure-correction technique
is applied numerically for the time derivative. The hierarchical basis is applied to the
improvement in approaching AIMs, showing a broad set of hierarchical modes, which are
decomposed into two subspaces, a finite dimensional space spanned by low modes and
high modes. The flow dynamics is initially carried out by low modes rapidly converging
onto AIMs characterized by high modes. The hierarchical basis functions are based on
the construction for the specified variable k-order nodal meshes. Then, the finite element
mesh is defined based on topological hierarchy of mesh entities. The decomposition of the
solution space spanned by IMs is based on refinement of mesh domain by hierarchical finite
element basis. Finally, to investigate the numerical method, dynamics of flow around an
airfoil is carried out to show the accuracy and reduced computing time in comparison with
the experimental results and traditional commercial software ANSYS(Fluent), showing a
close agreement setting a benchmark for the problem.

2. Problem formulation

2.1. Governing equations

The Incompressible Navier-Stokes Equations with elementary variables are

∂ ui

∂ t
+ u j

∂ ui

∂ x j
=−

1

ρ

∂ p

∂ x i
+ ν

∂ 2ui

∂ x j∂ x j
, (2.1a)

∂ u j

∂ x j
= 0, (2.1b)

where u is the flow velocity, p is the pressure, ν is the kinemetic viscosity, ρ is the fluid
density. The characteristics of flow depends on the non-dimensional parameters. The
initial conditions u(x i , 0) = u0(x i) .

2.2. The boundary conditions

We introduce the following system defining the set of boundary conditions Γ = Γ1∪Γ2,
where Γ1 is boundary condition for velocity, Γ2 boundary condition for pressure and on



An Improved Model Reduction Method on AIMs for N-S Equations 119

boundary Γ1 and ui = ũi , i = 1, 2 on boundary Γ2. Also pi jn j = p̃i (i, j = 1,2), n j is

outward unit normal vector component and tensor pi j =−
p
ρ
δi j + v

� ∂ ui

∂ x j
+
∂ u j

∂ x i

�

.

2.3. Existence of inertial manifolds

A brief introduction to Inertial Manifolds and its existence is given in the following as
we study the dynamical system generated by the evolution equation (2.2a). To approach
inertial manifold, spectral method is normally used, and the governing equations are pro-
jected onto the space spanned by eigenfunctions of positive definite operator in terms of
two components, namely small and large components.

Let u be the solution to governing equation in an approximate Hilbert space. For model
reduction, a mapping from higher modes to lower modes in the system is constructed.

du

d t
+ Au+ E(u) = f , t > 0, (2.2a)

u(0) = u0. (2.2b)

In Eq. (2.2a), A is the space of self-adjoint linear operator H, E(u) = E(u, u) corresponds
to linear and low-order, E(u, u) is also termed as bilinear operator. The Navier-Stokes
Equations subject to boundary conditions can be written as abstract dissipative evolution
equation given by (2.2a), where A is positive definite operator. As spectral method is used
to approach Inertial Manifolds, the components involved for the projection are approached
by eigenfunctions of the definite operator of the governing equations. Now if ω j , ( j =
1, 2, · · · ), denotes the eigenfunctions of the operator for the governing equations, gives
Aω j = λω j , which leads to the construction of Inertial Manifolds in terms of components
P and Q. Since the existence of an IMs for Navier-Stokes Equations has not been proven,
therefore it is obliged to use manifolds which are close to global attractors to approximate
the permanent regime of dynamical systems. In this paper we provide AIMs approach
to NSE, where Inertial Manifold for dissipative equations is obtained by modifying the
Navier-Stokes Equations.

The subspace P is spanned by the eigenfunctions or low modes and the subspace Q is
spanned by high modes. So, if inertial manifolds exists under the spectral gap condition,
then we have a graph defined as φ : P −→Q.

Then φ : PmH −→ QmH exists, where Pm and Qm denote the orthogonal projections,
i.e.,

Pm : H −→ span{ω1,ω2, · · · ,ωm}, Qm = I − Pm. (2.3)

So the projection is obtained as

u(t) = pm(t) + qm(t), (2.4)

where pm = Pmu and qm = Qmu, pm and qm are large components and small components.
Eq. (2.2a) is projected onto the space PmH and QmH, respectively, obtaining the following
two equations,

dpm

d t
+ Apm+ PmR(pm+ qm) = Pm f , pm(0) = p0

m = Pmu0, (2.5a)
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Figure 1: The mesh of the domain.

dqm

d t
+ Aqm+QmR(pm+ qm) =Qm f , qm(0) = q0

m =Qmu0, (2.5b)

where m is large enough, the time derivative term dqm
d t
≈ 0, and

QmR(pm+ qm)≈QmR(pm).

Finally, Eq. (2.5b) becomes

Aqm+QmR(pm) =Qm f . (2.6)

Thus obtaining

qm = Φ(pm) = A−1[Qm f −QmR(pm)], pm ∈ PmH, (2.7)

Eq. (2.7) results in H the finite dimensional manifold.

2.4. Multilevel finite element method and its basis

Numerically, Inertial Manifold is implemented by using finite element method in such
a way that spannings of both subspaces are given as coarse grid element space and incre-
mental fine grid element space, which are finite. Meshing of the domain is carried out in
terms of quadrangle elements, especially for the coarse grid finite element space given by
Fig. 1. The initial element is represented as quadrangle elements having four nodes as ini-
tial mesh shown in Fig. 2, whereas the incremental refined mesh by addition of further 27
nodes in the quadrangle elements is shown in Fig. 3. Then, the fundamental finite element
space is spanned by construction of hierarchical shape functions as basis functions in the
initial element space accordingly.

The quadrangle elements with four nodes have the following shape functions,

N1 =
1

4
(1− ξ)(1−η), N2 =

1

4
(1+ ξ)(1−η),
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Figure 2: Quadrangle element with 4-nodes.

N3 =
1

4
(1+ ξ)(1+η), N4 =

1

4
(1− ξ)(1+η).

The hierarchical shape function for 27 nodes can be expressed as following with the shape
functions of first four nodes remaining the same,

H1 = N1, H2 = N2, H3 = N3, H4 = N4,

H̄5 =
9

120
(ξ2 − 1)(3ξ− 2)(η2 −η)(4η2 − 1),

H̄6 =
−9

120
(ξ2 − 1)(3ξ+ 2)(η2 −η)(4η2 − 1),

H̄7 =
−1

60
(ξ2 + ξ)(9ξ2 − 1)(9ξ2 − 4)(η3 −η)(2η− 1),

H̄8 =
1

10
(ξ+ 1)(9ξ2 − 4)(η2 − 1)(4η2 − 1),

H̄9 =
−1

60
(ξ2 + ξ)(9ξ2 − 1)(9ξ2 − 4)(η3 −η)(2η+ 1),

H̄10 =
−9

120
(3ξ+ 2)(ξ2 − 1)(η2 +η)(4η2 − 1),

H̄11 =
9

120
(ξ2 − ξ)(3ξ2 − 2)(η2 +η)(4η2 − 1),

H̄12 =
−1

60
(ξ2 − ξ)(9ξ2 − 1)(9ξ2 − 4)(η3 −η)(2η+ 1),

H̄13 =
−1

10
(ξ− 1)(9ξ2 − 4)(η2 − 1)(4η2 − 1),

H̄14 =
−1

60
(ξ2 − ξ)(9ξ2 − 1)(9ξ2 − 4)(η3 −η)(2η− 1),

H̄15 =
9

10
(ξ2 − ξ)(3ξ2 − 2)(9ξ2 − 1)(η3 −η)(2η− 1),

H̄16 =
9

32
(ξ3 − ξ)(3ξ− 1)(9ξ2 − 4)(2η− 1),

H̄17 =
1

8
(ξ2 − ξ)(9ξ2 − 1)(9ξ2 − 4)(2η− 1),
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H̄18 =
9

32
(ξ3 − ξ)(3ξ+ 1)(9ξ2 − 4)(2η− 1),

H̄19 =
9

10
(ξ2 − ξ)(3ξ+ 2)(9ξ2 − 1)(η3 −η)(2η− 1),

H̄20 =
−9

20
(ξ2 − 1)(3ξ+ 2)(η2 −η)(4η2 − 1),

H̄21 =
3

10
(ξ2 − ξ)(3ξ+ 2)(9ξ2 − 1)(η3 −η)(2η+ 1),

H̄22 =
9

32
(ξ3 − ξ)(3ξ+ 1)(9ξ2 − 4)(2η+ 1),

H̄23 =
−1

8
(ξ2 − 1)(9ξ2 − 4)(9ξ2 − 1)(2η+ 1),

H̄24 =
9

32
(ξ3 − ξ)(3ξ− 1)(9ξ2 − 4)(2η+ 1),

H̄25 =
3

10
(ξ2 − ξ)(3ξ− 2)(9ξ2 − 1)(η3 −η)(2η+ 1),

H̄26 =
−9

20
(ξ2 − ξ)(3ξ− 2)(η2 − 1)(4η2 − 1),

H̄27 =
−1

4
(ξ2 − 1)(9ξ2 − 4)(4η2 − 1).

In terms of Inertial Manifolds, the elements of velocity u(e) are decomposed into two com-
ponents y(e) and z(e), which are large component and small component, respectively, reads,

u(e) = y(e)+ z(e).

In summation notation, the above expression can be written as

u(e) =
4
∑

1

Hi y(e)i , z(e) =
27
∑

5

H̄iz
(e)
i .

3. Numerical scheme for Navier-Stokes equations

The governing equations for the incompressible flow are

∂ u j

∂ x j
= 0, (3.1a)

∂ ui

∂ t
+ u j

∂ ui

∂ x j
=−

1

ρ

∂ p

∂ x i
+ ν

∂ 2ui

∂ x j∂ x j
. (3.1b)

Euler method is used to approach the time derivative as pressure-correction technique is
implemented numerically for the governing equations, where i = 1,2; n is the step time

∂ û(n+1)
j

∂ x j
= 0, (3.2a)
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Figure 3: Quadrangle element with 27-nodes.

û(n+1)
i − u(n)i

∆t
+ u(n)j

∂ u(n)j

∂ x j
=−

1

ρ

∂ p(n+1)

∂ x i
+ ν

∂ 2u(n)i

∂ x j∂ x j
. (3.2b)

An intermediate velocity û is introduced in the implicit method, and then the momentum
equation can be rewritten as

ûi − u(n)i

∆t
+ u(n)j

∂ u(n)j

∂ x j
=−

1

ρ

∂ p(n)

∂ x i
+ ν

∂ 2u(n)i

∂ x j∂ x j
. (3.3)

Subtracting Eq. (3.2b) from Eq. (3.3) as the quantity p is explicit in the method, yields

un+1
i − ui =−

∆t

ρ

�

∂ p(n+1)

∂ x i
−
∂ p(n)

∂ x i

�

. (3.4)

Introducing

un+1
i − ui =−

∂ φ

∂ x i
, (3.5a)

−
∂ φ

∂ x i
=−
∆t

ρ

�

∂ p(n+1)

∂ x i
−
∂ p(n)

∂ x i

�

, (3.5b)

∂ φ

∂ x i
=
∆t

ρ

∂

∂ x i

�

p(n+1)− p(n)
�

, (3.5c)

ρ

∆t
φ = (p(n+1)− p(n)). (3.5d)

Finally, pressure can be obtained as

p(n+1) =
ρ

∆t
φ + p(n). (3.6)
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Also, in order to obtain φ, we take the divergence of Eq. (3.5a) and applying continuity
equation,

∇(un+1
i − ui) =∇

�

−
∂ φ

∂ x i

�

, (3.7a)

∂ û1

∂ x1
+
∂ û2

∂ x2
=
∂

∂ x1

∂ φ

∂ x1
+
∂

∂ x2

∂ φ

∂ x2
, (3.7b)

∂ û1

∂ x1
+
∂ û2

∂ x2
=
∂ 2φ

∂ x1
+
∂ 2φ

∂ x2
, (3.7c)

which is relevant to the poisson equation. So when substituting the value of φ into Eqs.
(3.6) and (3.5d), both u and p can be obtained finally.

4. Weak form of Navier-Stokes equation

Before applying Multilevel Finite Element method to the governing equations, the weak
form of governing equations should be obtained, i.e.,

∫

Ω

∂ u j

∂ x j
δp dΩ = 0, (4.1a)

∫

Ω

�

∂ ui

∂ t
+ u j

∂ ui

∂ x j
+

1

ρ

∂ p

∂ x i
− ν

∂ 2ui

∂ x j∂ x j

�

δui dΩ = 0. (4.1b)

Using Greens Formulas both Eq. (4.1a) and Eq. (4.1b) can be rewritten as
∫

Ω
u j
∂

∂ x j
(δp) dΩ =

∫

Γ1

unδp dΓ, (4.2a)

∫

Ω

¨

�∂ ui

∂ t
+ u j

∂ ui

∂ x j

�

δui +
�−p

ρ
δi j

+ν
� ∂ ui

∂ x j
+
∂ u j

∂ x i

�

�

∂

∂ x j
(δui)

«

dΩ =

∫

Γ2

p̄iδuidΓ. (4.2b)

We first solve Eq. (4.4) for i = 1, 2
∫

Ω

�

�∂ u1

∂ t
+u1

∂ u1

∂ x1
+ u2

∂ u1

∂ x2

�

δui +
�

−
p

ρ

∂

∂ x1
(δui) + ν

�

2
∂ u1

∂ x1

∂

∂ x1
(δui)

+
∂ u1

∂ x2

∂

∂ x2
(δui) +

∂ u2

∂ x1

∂

∂ x2
(δui)

�

��

dΩ =

∫

Γ2

p̄iδui dΓ, (4.3a)

∫

Ω

�

�∂ u2

∂ t
+u1

∂ u2

∂ x1
+ u2

∂ u2

∂ x2

�

δui +
�

−
p

ρ

∂

∂ x2
(δui) + ν

�

2
∂ u2

∂ x2

∂

∂ x2
(δui)

+
∂ u2

∂ x1

∂

∂ x1
(δui) +

∂ u1

∂ x2

∂

∂ x1
(δui)

���

dΩ =

∫

Γ2

p̄iδui dΓ. (4.3b)
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By Inertial Manifold, the elements of velocity and pressure are decomposed mainly into
two components, and applying the hierarchical basis functions, the above equations can be
written as,

∫

Ω

∂ ū1

∂ t
H̄i H̄ jdΩ+

∫

Ω
u1
∂ u1

∂ x1
H̄idΩ+

�
∫

Ω
u1H̄i

∂ H̄ j

∂ x1
dΩ

�

ū1+

�
∫

Ω

∂ u1

∂ x1
H̄i H̄ jdΩ

�

ū1

+

�
∫

Ω
H̄i
∂ H̄ j

∂ x1
H̄l dΩ

�

ū1ū1+

∫

Ω
u2
∂ u1

∂ x2
H̄idΩ+

�
∫

Ω
u2H̄i

∂ H̄ j

∂ x2
dΩ

�

ū1

+

�
∫

Ω

∂ u1

∂ x2
H̄i H̄ jdΩ

�

ū2+

�
∫

Ω
H̄i
∂ H̄ j

∂ x2
H̄l dΩ

�

ū2ū1−
1

ρ

∫

Ω
p
∂ H̄i

∂ x1
dΩ

+

∫

Ω
ν

�

2
∂ u1

∂ x1

∂ H̄i

∂ x1
+
∂ u1

∂ x2

∂ H̄i

∂ x2
+
∂ u1

∂ x1

∂ H̄i

∂ x2

�

dΩ+
�

∫

Ω
ν
h

2
∂ H̄i

∂ x1

∂ H̄ j

∂ x1

+
∂ H̄i

∂ x2

∂ H̄ j

∂ x2

i

dΩ
�

ū1+
�

∫

Ω
ν
∂ H̄i

∂ x2

∂ H̄ j

∂ x1
dΩ
�

ū2 =

∫

Γ2

p̄1mψmH̄idΓ, (4.4a)

∫

Ω

∂ ū2

∂ t
H̄i H̄ jdΩ+

∫

Ω
u1
∂ u2

∂ x1
H̄idΩ+

�

∫

Ω
u1H̄i

∂ H̄ j

∂ x1
dΩ
�

ū2+
�

∫

Ω

∂ u2

∂ x1
H̄i H̄ jdΩ

�

ū1

+
�

∫

Ω
H̄i
∂ H̄ j

∂ x1
H̄l dΩ

�

ū1ū2+

∫

Ω
u2
∂ u2

∂ x2
H̄idΩ+

�

∫

Ω
u2H̄i

∂ H̄ j

∂ x2
dΩ
�

ū2

+
�

∫

Ω

∂ u2

∂ x2
H̄i H̄ jdΩ

�

ū2+
�

∫

Ω
H̄i
∂ H̄ j

∂ x2
H̄l dΩ

�

ū2ū2−
1

ρ

∫

Ω
p
∂ H̄i

∂ x2
dΩ

+

∫

Ω
v
h

2
∂ u2

∂ x2

∂ H̄i

∂ x2
+
∂ u2

∂ x1

∂ H̄i

∂ x1
+
∂ u1

∂ x2

∂ H̄i

∂ x1

i

dΩ+
�

∫

Ω
ν

�

2
∂ H̄i

∂ x2

∂ H̄ j

∂ x2

+
∂ H̄i

∂ x1

∂ H̄ j

∂ x1

�

dΩ
�

ū2+
�

∫

Ω
ν
∂ H̄i

∂ x1

∂ H̄ j

∂ x2
dΩ
�

ū1 =

∫

Γ2

p̄2mψmH̄idΓ. (4.4b)

From Eq. (4.4a) and Eq. (4.4b), re-writing the terms as:

A=

∫

Ω

H̄i H̄ jdΩ, B=

∫

Ω

H̄i

∂ H̄ j

∂ x1
H̄l dΩ, C=

∫

Ω

H̄i

∂ H̄ j

∂ x2
H̄l dΩ,

F1 =

∫

Ω

u1H̄i

∂ H̄ j

∂ x1
dΩ+

∫

Ω

∂ u1

∂ x1
H̄i H̄ jdΩ+

∫

Ω

u2H̄i

∂ H̄ j

∂ x2
dΩ+

∫

Ω

ν

�

2
∂ H̄i

∂ x1

∂ H̄ j

∂ x1
+
∂ H̄i

∂ x2

∂ H̄ j

∂ x2

�

dΩ,

F2 =

∫

Ω

∂ u1

∂ x2
H̄i H̄ jdΩ+

∫

Ω

ν
∂ H̄i

∂ x1

∂ H̄ j

∂ x2
dΩ, F3 =

∫

Ω

∂ u2

∂ x1
H̄i H̄ jdΩ+

∫

Ω

ν
∂ H̄i

∂ x2

∂ H̄ j

∂ x1
dΩ,

F4 =

∫

Ω

u1H̄i

∂ H̄ j

∂ x1
dΩ+

∫

Ω

u2H̄i

∂ H̄ j

∂ x2
dΩ+

∫

Ω

∂ u1

∂ x1
H̄i barH jdΩ

+

∫

Ω

ν

�

2
∂ H̄i

∂ x2

∂ H̄ j

∂ x2
+
∂ H̄i

∂ x1

∂ H̄ j

∂ x1

�

dΩ,



126 M. N. Aslam, J. Z. Zhang, N. Dang and R. Ahmad

E1 =−
∫

Ω

u1
∂ u1

∂ x1
H̄idΩ−

∫

Ω

u2
∂ u1

∂ x2
H̄idΩ+

1

ρ

∫

Ω

p
∂ H̄i

∂ x1
dΩ−

∫

Ω

ν

�

2
∂ u1

∂ x1

∂ H̄i

∂ x1
+
∂ u1

∂ x2

∂ H̄i

∂ x2

+
∂ u1

∂ x1

∂ H̄i

∂ x2

�

dΩ+

∫

Γ2

p̄1mψmH̄idΓ,

E2 =−
∫

Ω

u1
∂ u2

∂ x1
H̄idΩ−

∫

Ω

u2
∂ u2

∂ x2
H̄idΩ+

1

ρ

∫

Ω

p
∂ H̄i

∂ x2
dΩ−

∫

Ω

ν

�

2
∂ u2

∂ x2

∂ H̄i

∂ x2
+
∂ u2

∂ x1

∂ H̄i

∂ x1

+
∂ u1

∂ x2

∂ H̄i

∂ x1

�

dΩ+

∫

Γ2

p̄2mψmH̄idΓ.

Now solving Eq. (4.2a) for i = 1,2
∫

Ω
u1
∂

∂ x1
(δp)dΩ+

∫

Ω
u2
∂

∂ x2
(δp)dΩ =

∫

Γ1

unδpdΓ,

∫

Ω

�

(u1 j + ū1 j H̄ j)
∂

∂ x1
ψk + (u2 j + ū2 j H̄ j)

∂

∂ x2
ψk

�

H̄ jdΩ =

∫

Γ1

ūniHiψkdΓ,

∫

Ω
u1H̄i

∂

∂ x1
ψkdΩ+

�

∫

Ω
H̄i H̄ j

∂

∂ x1
ψkdΩ

�

ū1+

∫

Ω
u2H̄i

∂

∂ x2
ψkdΩ

+
�

∫

Ω
H̄i H̄ j

∂

∂ x1
ψkdΩ

�

ū2 =

∫

Γ1

ūniHiψkdΓ.

Re-writing the above equations as:

M1 =

∫

Ω
H̄i H̄ j

∂

∂ x1
ψkdΩ, M2 =

∫

Ω
H̄i H̄ j

∂

∂ x2
ψkdΩ,

G=

∫

Γ
ūniHiψkdΓ−

∫

Ω
u1H̄i

∂

∂ x1
ψkdΩ−

∫

Ω
u2H̄i

∂

∂ x2
ψkdΩ.

Since the relationship between small and large components of the velocity in element can
be expressed as

u(e) = y(e)+ z(e) =
4
∑

1

Hi y(e)i +
27
∑

5

H̄iz
(e)
i .

Also the pressure in the element is given as,

P(e) =
4
∑

1

ψi P
(e)
i +

27
∑

5

ψ̄i P
(e)
i .

We choose the weight function in Eq. (4.2b) as δui = H̄m(m = 5, 6, · · · , 27), and for E-
q. (4.2a) we set δp = ψ̄n(n = 5,6, · · · , 27) . So Eqs. (4.2a) and (4.2b) can be rewritten
as

A˙̄u1+Bū1ū1+Cū2ū1+D1p+ F1ū1+ F2ū2 = E1, (4.5a)
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A˙̄u2+Bū1ū2+Cū2ū2+D2p+ F3ū1+ F4ū2 = E2, (4.5b)

M1ū1+M2ū2 = G. (4.5c)

The relationship between yi and zi is clearly expressed by Eqs. (4.5a) and (4.5b). We can
get the values of yi since zi is known by the relationship. To approach the time derivative,
Euler method is used,

u̇k =
u(i+1)

k − u(i)k

∆t
(k = 1,2).

For expressing explicitly at t = t i+1, we establish the following equations,

Au(i+1)
1 +∆t

�

Bu(i+1)
1 u(i+1)

1 +Cu(i+1)
2 u(i+1)

1 +D1 p̄(i+1)

+F1u(i+1)
1 + F2u(i+1)

2

�

=∆tE1+Au(i)1 , (4.6a)

Au(i+1)
2 +∆t

�

Bu(i+1)
1 u(i+1)

2 +Cu(i+1)
2 u(i+1)

2 +D2 p̄(i+1)

+F3u(i+1)
1 + F4u(i+1)

2

�

=∆tE2+Au(i)2 . (4.6b)

Newtons iterative formula is used for the u(i+1) step, since u(i) is known at the ith step,

J (i+1),(k)v(i+1),(k+1) = J (i+1),(k)v(i+1),(k)− R(i+1),(k),

where J is Jacobean Matrix, R= [R1 R2 R3]T is the residual matrix and v = [u1 u2 p]T .

4.1. Verification of numerical method

The flow around NACA 0012 airfoil, which is a typical problem in computational fluid
dynamics, is studied numerically. Verification of the above method will be analyzed by
simulating flow over NACA 0012 airfoil at various angles with Re = 7×104. The angles of
attack were ranged α = 0◦− 7◦, obtaining lift coefficients. Fig. 4 shows a good agreement
of the lift coefficients calculated with present method to the experimental data available
in literature [31]. So we can conclude that the method used is suitable for studying the
dynamics of flow over an airfoil. Fig. 5 presents the drag coefficients, computed at similar
angles of attack as for lift coefficients, and compared with the experimental results [31]. It
is observed that for laminar flow, skin friction drag is dominant as flow remains attached
to the airfoil upto certain angles of attack showing less skin drag friction as compared to
turbulent flow from experimental results shown in literature [31]. At high angle of attack,
boundary layer separation starts when pressure drag becomes dominant and is considered
less for turbulent flows in comparison with laminar flows. So, from Fig. 5, we can observe
a sharp rise of curve at an angle of 6◦ as separation starts for laminar flow. In many
lift generating methods, the important quantity is the ratio of lift to drag presented in
terms of Cl/Cd verses angle of attack. Fig. 6 shows the most efficient angle of attack at
5◦ for attaining maximum efficiency of NACA 0012 airfoil. After that the lift to drag ratio
decreases rapidly as we reach separation.
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Figure 4: Comparisons between experiments and numerical results for Lift Coefficients.

Figure 5: Comparisons between turbulent model and numerical results for Drag Coefficients.

Figure 6: Ratio of Cl/Cd for various angles of attack.

5. Numerical results and discussion

For numerical example, we have analyzed the flow around NACA 0012 airfoil with
various angles of attack at Re = 7×104. The contours of pressure distribution and pressure
coefficients using present numerical method have been discussed showing good results. At
higher angles of attack, the flow is stimulated and studied numerically using commercial
software ANSYS(Fluent) and present numerical method, and comparisons are given in
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Figure 7: Pressure Distribution Contour at 0◦.

Figure 8: Pressure Distribution Contour at 2◦.

order to show the efficiency of the scheme, especially the saving of computer time.

5.1. Pressure distribution contours of NACA 0012 airfoil

The distribution of pressure magnitude obtained by various angles of attack from sim-
ulations results by the present method are shown in the following Figs. 7-10. We can see
there is a region of high pressure at the stagnation point (leading edge) since the airfoil is
symmetrical. As the flow accelerates with increase in angle of attack we observe the pres-
sure on the upper surface is less and the stagnation point changes its position where the
pressure increases thus creating lift since velocity on the upper surface increases rapidly.
Similar effects can be observed as the pressure profile increase on the lower surface of the
airfoil upon increasing angles of attack until stall occurs. The distribution of flow created
on the upper surface show the boundary layer separation with a smooth transition of flow
on the upper surface of the airfoil.

5.2. Distributions of pressure coefficients of NACA 0012 airfoil

The distribution of pressure coefficient of NACA 0012 airfoil under different angles of
attack is shown in the following Figs. 11-14. When α = 0◦, the pressure coefficient at the
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Figure 9: Pressure Distribution Contour at 4◦.

Figure 10: Pressure Distribution Contour at 6◦.

Figure 11: Pressure coefficient at 0◦ angle of attack.

leading edge of the airfoil is maximum giving symmetrical variation of distribution with
net zero velocity. When α = 2◦, the pressure coefficient on the lower surface increases as
compared with the upper surface. When α= 4◦ pressure coefficient increase rapidly on the
lower surface and low pressure on the upper surface contribute to increase in lift. When
α = 6◦, the pressure coefficient at the trailing edge increase subsequently while on the
upper surface low pressure induces smooth boundary layer separation before stall occurs at
high angles of attack. With increase in angle of attack, greater is the difference of pressure
coefficient between the lower and upper surface. We can also see that the coefficient of
pressure difference is much larger on the front edge as compared with pressure on the rear
edge of airfoil.
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Figure 12: Pressure coefficient at 2◦ angle of attack.

Figure 13: Pressure coefficient at 4◦ angle of attack.

Figure 14: Pressure coefficient at 6◦ angle of attack.

Table 1: Computational Coefficients of lift and drag at 10◦ angle of attack-NACA0012.

Lift Coefficient Drag Coefficient Max.Pressure CPU-time
(Cl) (Cd) Coefficient (sec)

ANSYS(Fluent) 0.815 0.013 0.777 16280
Present Method 0.891 0.002 0.734 12816

Table 2: Computational Coefficients of lift and drag at 12◦ angle of attack-NACA0012.

Lift Coefficient Drag Coefficient Max.Pressure CPU-time
(Cl) (Cd) Coefficient (sec)

ANSYS(Fluent) 0.913 0.054 0.892 13656
Present Method 0.999 0.012 0.834 9594

5.3. Comparisons of computational time

Computational time to be reduced, as for the initial step of attaining better simulations,
the influence of mesh size is important and accurate numerical results are obtained as more
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nodes are added. Tables 1 and 2 shows the comparison of lift and drag coefficients with
CPU-time obtained by the present method and ANSYS(Fluent)at higher angles of attack,
i.e., 10◦ and 12◦, respectively. By the comparison, we conclude that the present method is
more efficient in terms of computing cost, as we can see that the time taken by the present
method is considerably less then ANSYS(Fluent).

6. Conclusions

Following Inertial Manifold, a dimension reduction method, based on multilevel fi-
nite element method with hierarchical basis, is presented for the Navier-Stokes Equation.
The couplings between low modes and high modes have been considered and included
by refining mesh domain using hierarchical finite element basis functions. The numerical
simulation results indicate that the present method is feasible and efficient for the numer-
ical analysis of complex flows with less computational time. The current work gives an
efficient contribution towards model reduction method for the nonlinear dynamic systems
with continuum mechanics, and reduces the original system to a system with less degrees-
of-freedom. As for further work, this method could be applied to flow with complicated
domains.
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