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Abstract. Diagonalized Chebyshev rational spectral methods for solving second-order
elliptic problems on the half/whole line are proposed. Some Sobolev bi-orthogonal
rational basis functions are constructed which lead to the diagonalization of discrete
systems. Accordingly, both the exact solutions and the approximate solutions can be
represented as infinite and truncated Fourier-like Chebyshev rational series. Numerical
results demonstrate the effectiveness of the suggested approaches.
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1. Introduction

Many science and engineering problems are set on unbounded domains, such as fluid
flows in an infinite strip, nonlinear wave equations in quantum mechanics and so on. How
to accurately and efficiently solve such problems is a very important and difficult subject,
since the unboundedness of the domain causes considerable theoretical and practical chal-
lenges. A variety of numerical approaches have been proposed and investigated for deal-
ing with such problems. For spectral methods, we usually restrict calculations to some
bounded subdomains and impose certain artificial boundary conditions. It is easy to be
performed, but it lowers the accuracy sometimes. Alternatively, we may approximate the
problems on unbounded domains directly by using some orthogonal polynomials/functions
on unbounded domains, such as the Hermite spectral method and the Laguerre method,
see, e.g., [1,2,5,8,9,12,15,16,18–20,24]. However, since the Laguerre and Hermite Gauss
points are too concentrated near zero, the approximation results are usually not ideal, es-
pecially where the points are far away from zero. Another effective spectral method to
approximate differential equations on unbounded domains is to use algebraically mapped
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Legendre, Chebyshev or Jacobi functions, i.e., the so-called Legendre, Chebyshev or Jacobi
rational spectral methods [3, 4, 6, 10, 11, 22, 23]. Compared with the first two method-
s, we prefer the last one, since the distribution of the Gauss points is much reasonable.
Accordingly, the numerical results would be better, especially for slow decay solutions.

As is well known, the utilization of Chebyshev rational functions usually leads to a
sparse algebraic system (e.g., a nine-diagonal matrix for second-order problems on the w-
hole line), the condition numbers increase as O (N2) for second-order problems. However,
in many cases, people still want to get a set of Fourier-like basis functions (see [7, 17]),
which are orthogonal or bi-orthogonal with respect to certain Sobolev inner product in-
volving derivatives, such that the corresponding algebraic system is diagonal (see [21]).

Recently, Liu et al. [13,14] constructed the Fourier-like Sobolev orthogonal basis func-
tions based on generalized Laguerre functions, and applied them to second and fourth
order elliptic equations on the half line. Motivated by [13, 14, 21], the main purpose of
this paper is to construct the Fourier-like Chebyshev rational basis functions, which are bi-
orthogonal with respect to certain Sobolev inner product. On this basis, we further propose
the diagonalized Chebyshev rational spectral methods for second-order elliptic problems
on the whole/half line.

The main advantages of the suggested algorithms include: (i). The exact solutions and
the approximate solutions can be represented as infinite and truncated Fourier-like Cheby-
shev rational series, respectively; (ii) The condition numbers for the resulting algebraic
systems are equal to 1.

This paper is organized as follows. In Section 2, we introduce the Chebyshev rational
functions on the whole/half line and their basic properties. In Section 3, we construct two
kinds of Sobolev bi-orthogonal Chebyshev rational functions corresponding to the second-
order elliptic equations on the whole/half line, and propose the diagonalized Chebyshev
rational spectral methods. Some numerical results are presented in Section 4 to demon-
strate the effectiveness and accuracy.

2. Notations and preliminaries

Let Λ be a certain interval and ω(x) be a weight function in the usual sense. For
integer r ≥ 0, we define the weighted Sobolev spaces H r

ω(Λ) as usual, with the inner
product (u, v)r,ω, the semi-norm |v|r,ω and the norm ‖v‖r,ω, respectively. We omit the
subscript r orω(x)whenever r = 0 orω(x)≡ 1. For simplicity, we denote ∂ k

x v = dkv/d x k,
v′′ = d2v/d x2 and v′ = dv/d x .

2.1. Chebyshev polynomials

We first recall the Chebyshev polynomials. Let I = (−1,1) and Tk(y) be the Chebyshev
polynomial of degree k, which is the eigenfunction of the singular Strum-Liouville problem
(cf. [20]):

p

1− y2∂y

�p

1− y2∂y Tk(y)
�

+ k2Tk(y) = 0. (2.1)



Diagonalized Chebyshev Rational Spectral Methods on Unbounded Domains 267

The set of all Chebyshev polynomials forms a complete L2
ρ(I)-orthogonal system with the

weight ρ(y) = 1p
1−y2

, namely,

∫

I

Tk(y)Tl(y)
1

p

1− y2
d y =

1

2
πckδk,l , (2.2)

where δk,l is the Kronecker symbol, c0 = 2 and ck = 1 for k ≥ 1. By virtue of (2.1) and
(2.2), we have

∫

I

∂y Tk(y)∂y Tl(y)
p

1− y2d y =
1

2
πckk2δk,l . (2.3)

Moreover, the following recurrence relations are satisfied with T0(y) = 1 and T1(y) = y

(cf. [20]),

Tk+1(y) = 2yTk(y)− Tk−1(y), k ≥ 1, (2.4a)

2Tk(y) =
1

k+ 1
∂y Tk+1(y)−

1

k− 1
∂y Tk−1(y), k ≥ 2, (2.4b)

(1− y2)∂y Tk(y) =
k

2
Tk−1(y)−

k

2
Tk+1(y), k ≥ 1, (2.4c)

∂y Tk(y) = 2k

k−1
∑

i=0, i+k odd

1

ci

Ti(y). (2.4d)

Particularly, Tk(−y) = (−1)kTk(y), Tk(±1) = (±1)k and ∂y Tk(±1) = (±1)k−1k2.

2.2. Chebyshev rational functions on the whole line

We next recall the Chebyshev rational functions on the whole line. Let Λ1 = (−∞,+∞).
The Chebyshev rational function of degree k on the whole line is defined by (cf. [22])

Rk(x) := Tk





x
p

x2+ 1



 , x ∈ Λ1, k ≥ 0. (2.5)

For convenience, let Rk(x) ≡ 0 for any integer k < 0. By (2.1), we know that Rk(x) is the
eigenfunction of the singular Sturm-Liouville problem:

(x2+ 1)∂x

�

(x2+ 1)∂xRk(x)
�

+ k2Rk(x) = 0, x ∈ Λ1. (2.6)

Due to (2.4), the Chebyshev rational functions satisfy the following recurrence relations
with R0(x) = 1, R1(x) =

xp
x2+1

(cf. [22]),

Rk+1(x) =
2x

p

x2+ 1
Rk(x)− Rk−1(x), k ≥ 1, (2.7a)

2Rk(x) = (x
2+ 1)

3
2

�

1

k+ 1
∂xRk+1(x)−

1

k− 1
∂xRk−1(x)

�

, k ≥ 1, (2.7b)

(x2+ 1)
1
2 ∂x Rk(x) =

k

2
Rk−1(x)−

k

2
Rk+1(x), k ≥ 1. (2.7c)
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Next, let

ω(x) =
1

x2+ 1
, y =

x
p

x2+ 1
. (2.8)

Then, we have

d y

d x
= (x2+ 1)−

3
2 ,

d x

d y
= (1− y2)−

3
2 , ω(x)

d x

d y
= ρ(y). (2.9)

The set of Chebyshev rational functions {Rk(x)}∞k=0 forms an orthogonal system with the
weight function ω(x) on the whole line, namely,

∫

Λ1

Rk(x)Rl(x)ω(x)d x =
1

2
πckδk,l . (2.10)

By (2.6) and (2.10), we further know that
∫

Λ1

∂xRk(x)∂xRl(x)(x
2+ 1)d x =

1

2
πckk2δk,l . (2.11)

Lemma 2.1. The following equalities hold:

∂ 2
x R1(x) = −

3

8
R1(x)+

9

16
R3(x)−

3

16
R5(x), (2.12a)

∂ 2
x R2(x) =

1

2
R0(x)−

3

2
R2(x)+

3

2
R4(x)−

1

2
R6(x), (2.12b)

∂ 2
x R3(x) =

21

16
R1(x)−

27

8
R3(x)+ 3R5(x)−

15

16
R7(x), (2.12c)

∂ 2
x Rk(x) = −

1

16
k(k− 2)Rk−4(x)+

1

4
k(k− 1)Rk−2(x)−

3

8
k2Rk(x)

+
1

4
k(k+ 1)Rk+2(x)−

1

16
k(k+ 2)Rk+4(x), ∀k ≥ 4. (2.12d)

Moreover,

∂ 2
x

�

R0(x)ω(x)
�

=
�

R2(x)− R4(x)
�

ω(x), (2.13a)

∂ 2
x

�

R1(x)ω(x)
�

=
�

− 3

8
R1(x)+

21

16
R3(x)−

15

16
R5(x)

�

ω(x), (2.13b)

∂ 2
x

�

R2(x)ω(x)
�

=
�

− 3

2
R2(x)+ 3R4(x)−

3

2
R6(x)

�

ω(x), (2.13c)

∂ 2
x

�

R3(x)ω(x)
�

=
� 9

16
R1(x)−

27

8
R3(x)+ 5R5(x)−

35

16
R7(x)

�

ω(x), (2.13d)

∂ 2
x

�

Rk(x)ω(x)
�

=
�

− 1

16
(k− 4)(k− 2)Rk−4(x)+

1

4
(k− 2)(k− 1)Rk−2(x)

− 3

8
k2Rk(x)+

1

4
(k+ 2)(k+ 1)Rk+2(x)

− 1

16
(k+ 4)(k+ 2)Rk+4(x)

�

ω(x), ∀k ≥ 4. (2.13e)
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Proof. By (2.7a), (2.7b), (2.7c) and a direct computation, we can verify easily the
results of (2.12) and (2.13) for 0 ≤ k ≤ 3. Next, by (2.7c) and (2.7b), we deduce that for
k ≥ 4,

∂xRk(x) =
k

2

�

x2+ 1
�− 1

2
�

Rk−1(x)− Rk+1(x)
�

=
k

4
(x2+ 1)

�

2

k
∂x Rk(x)−

1

k− 2
∂xRk−2(x)−

1

k+ 2
∂xRk+2(x)

�

=(x2+ 1)

�

− k

4(k− 2)
∂xRk−2(x)+

1

2
∂xRk(x)−

k

4(k+ 2)
∂x Rk+2(x)

�

. (2.14)

Similarly, by using (2.7c), (2.7a) and (2.7b) successively, we get that for l ≥ 4,

∂x

�

Rl(x)ω(x)
�

=
�

x2+ 1
�−1
∂xRl(x)− 2x

�

x2+ 1
�−2

Rl(x)

=
�

x2+ 1
�− 3

2

�

l − 2

2
Rl−1(x)−

l + 2

2
Rl+1(x)

�

=− 1

4
∂xRl−2(x)+

1

2
∂xRl(x)−

1

4
∂xRl+2(x). (2.15)

Next, assume that

∂ 2
x Rk(x) =

∞
∑

l=0

ck,lRl(x), ∂ 2
x (Rk(x)ω(x)) =

∞
∑

l=0

dk,lRl(x)ω(x). (2.16)

Then, by (2.10) and integration by parts, we obtain

ck,l =
(∂ 2

x Rk,Rl)ω

(Rl ,Rl)ω
= − (∂xRk,∂x (Rlω))

(Rl ,Rl)ω
= − 2

πcl

(∂xRk,∂x (Rlω)), (2.17a)

dk,l =
(∂ 2

x (Rkω),Rl)

(Rl ,Rl)ω
= − (∂x(Rkω),∂x Rl)

(Rl ,Rl)ω
= − 2

πcl

(∂x(Rkω),∂x Rl). (2.17b)

Moreover, by (2.14), (2.15) and (2.11), we deduce readily that

(∂xRk,∂x (Rlω)) =























































3k2π

16
, l = k,

−k(k− 1)π

8
, l = k− 2,

−k(k+ 1)π

8
, l = k+ 2,

k(k− 2)π

32
, l = k− 4,

k(k+ 2)π

32
, l = k+ 4,

0, otherwise.

(2.18)

A combination of (2.16)-(2.18) leads to the results of (2.12) and (2.13) for k ≥ 4. �
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2.3. Chebyshev rational functions on the half line

We now recall the Chebyshev rational functions on the half line. Let Λ2 = (0,+∞).
The Chebyshev rational function of degree k on the half line is defined by (cf. [11])

rk(x) := Tk

�

x − 1

x + 1

�

, x ∈ Λ2, k ≥ 0. (2.19)

For convenience, let rk(x) ≡ 0 for any integer k < 0. By (2.1) we know that rk(x) is the
eigenfunction of the singular Sturm-Liouville problem:

(x + 1)
p

x∂x ((x + 1)
p

x∂x rk(x))+ k2rk(x) = 0, x ∈ Λ2. (2.20)

Due to (2.4), the Chebyshev rational functions on the half line satisfy the following recur-
rence relations with r0(x) = 1, r1(x) =

x−1
x+1

,

rk+1(x) =
2(x − 1)

x + 1
rk(x)− rk−1(x), k ≥ 1, (2.21a)

(x + 1)2rk(x) =
1

k+ 1
∂x rk+1(x)−

1

k− 1
∂x rk−1(x), k ≥ 2, (2.21b)

2x∂x rk(x) =
k

2
rk−1(x)−

k

2
rk+1(x), k ≥ 1. (2.21c)

Next, denote by

χ(x) =
1

(x + 1)
p

x
, y =

x − 1

x + 1
. (2.22)

Then, we have

d y

d x
=

2

(x + 1)2
,

d x

d y
=

2

(1− y)2
, χ(x)

d x

d y
= ρ(y). (2.23)

The set of Chebyshev rational functions {rk(x)}∞k=0 forms an orthogonal system with the
weight function χ(x) on the half line, namely,

∫

Λ2

rk(x)rl(x)χ(x)d x =
1

2
πckδk,l . (2.24)

Moreover, by (2.20) and (2.24), we find that
∫

Λ2

∂x rk(x)∂x rl(x)χ
−1(x)d x =

1

2
πckk2δk,l . (2.25)

In order to construct the diagonalized Chebyshev rational spectral methods for problems
defined on the half line, we need to consider the following two kinds of polynomials:

pk(x) := rk(x)+ (2− δk,1)rk−1(x)+ rk−2(x), k ≥ 1, (2.26a)

qk(x) := rk(x)+ rk−1(x), k ≥ 1. (2.26b)

It is clear that pk(0) = qk(0) = 0 for any k ≥ 1.
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Lemma 2.2. For any k ≥ 1, we have

∂ 2
x pk(x) =

1

16
k(k+ 1)rk+2(x)−

3

8
k(k+ 1)rk+1+

3

16
(5k2 + 7k− 2)rk(x)

− 1

4ck−1
(5k2+ 14k− 9)rk−1(x)+

1

16
(15k2+ 111k− 96(δk,2+ 1))rk−2(x)

− 1

8ck−3
(3k2+ 81k− 78)rk−3(x)+

1

16
(k2+ 187k− 186− 288δk,4)rk−4(x)

+ 12(k− 1)
k
∑

i=5

(−1)i

ck−i

rk−i(x). (2.27)

Moreover, for k, l ≥ 1, the following results hold:

(∂ 2
x pk,ql)χ =































































































k(k+ 1)π

32
, l = k+ 3,

−5k(k+ 1)π

32
, l = k+ 2,

3(3k2+ 5k− 2)π

32
, l = k+ 1,

−5(k2+ 7k− 6)π

32
, l = k,

−5(k2− 11k+ 12)π

32
− 3π

16
δk,2, l = k− 1,

3(k− 4)(3k− 5)π

32
, l = k− 2,

−5(k− 2)(k− 3)π

32
+
π

16
δk,4, l = k− 3,

(k− 2)(k− 3)π

32
, l = k− 4,

0, otherwise.

(2.28)

Proof. We first verify the result (2.27). Clearly, by (2.21a) we know that

(x+1)−2rk(x) =
1

16
rk−2(x)−

1

4
rk−1(x)+

3

8
rk(x)−

1

4
rk+1(x)+

1

16
rk+2(x), k ≥ 2. (2.29)

Particularly,

(x + 1)−2r0(x) =
3

8
r0(x)−

1

2
r1(x)+

1

8
r2(x), (2.30a)

(x + 1)−2r1(x) = −
1

4
r0(x)+

7

16
r1(x)−

1

4
r2(x)+

1

16
r3(x). (2.30b)
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Next, by (2.4), (2.29) and (2.30) we get

∂x r0(x) = 0, ∂x r1(x) =
1

4
r2(x)− r1(x)+

3

4
r0(x), (2.31a)

∂x rk(x) =
�

2k

k−1
∑

i=0, i+k odd

1

ci

ri(x)
� 2

(x + 1)2

=
1

4
krk+1(x)− krk(x)+

7

4
krk−1(x)− 2k

k−2
∑

i=0

(−1)i

ci

ri(x), k ≥ 2. (2.31b)

From (2.31) we further deduce that

∂ 2
x rk(x) =

1

16
k(k+ 1)rk+2(x)−

1

4
k(2k+ 1)rk+1(x)+

15

8
k2rk(x)

−
�

9

4
k(2k− 1)− δk,1

�

rk−1(x)+

�

129

32
k(2k− 2)− 8δk,2

�

rk−2(x)

+ 2k

k
∑

i=3

(−1)i i(2k− i)

ck−i

rk−i(x). (2.32)

Hence

∂ 2
x pk(x) = ∂

2
x rk(x)+ 2∂ 2

x rk−1(x)+ ∂
2
x rk−2(x)

=
1

16
k(k+ 1)rk+2(x)−

3

8
k(k+ 1)rk+1+

3

16
(5k2 + 7k− 2)rk(x)

− 1

4ck−1
(5k2 + 14k− 9)rk−1(x)+

1

16
(15k2+ 111k− 96(δk,2+ 1))rk−2(x)

− 1

8ck−3
(3k2 + 81k− 78)rk−3(x)+

1

16
(k2 + 187k− 186− 288δk,4)rk−4(x)

+ 12(k− 1)
k
∑

i=5

(−1)i

ck−i

rk−i(x). (2.33)

This ends the proof of (2.27).

Next, by (2.24) and (2.33) we get that for l < k− 4,

�

∂ 2
x pk,ql

�

χ = (∂
2
x pk, rl + rl−1)χ = 12(k− 1)

k
∑

i=5

(−1)i

ck−i

(rk−i, rl + rl−1)χ = 0.

Similarly, we have (∂ 2
x pk,ql)χ = 0 for l > k+ 3. Moreover, by (2.24) and (2.33), a direct
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calculation yields

(∂ 2
x pk,qk+3)χ =

k(k+ 1)π

32
, (∂ 2

x pk,qk+2)χ = −
5k(k+ 1)π

32
, (2.34a)

(∂ 2
x pk,qk+1)χ =

3(3k2+ 5k− 2)π

32
, (∂ 2

x pk,qk)χ = −
5(k2+ 7k− 6)π

32
, (2.34b)

(∂ 2
x pk,qk−1)χ = −

5(k2− 11k+ 12)π

32
− 3π

16
δk,2, (2.34c)

(∂ 2
x pk,qk−2)χ =

3(k− 4)(3k− 5)π

32
, (2.34d)

(∂ 2
x pk,qk−3)χ = −

5(k− 2)(k− 3)π

32
+
π

16
δk,4, (2.34e)

(∂ 2
x pk,qk−4)χ =

(k− 2)(k− 3)π

32
. (2.34f)

This leads to the result of (2.28). �

3. Diagonalized Chebyshev rational spectral methods

In this section, we propose diagonalized Chebyshev rational spectral methods for solv-
ing second-order elliptic equations on unbounded domains. The main idea is to find bi-
orthogonal rational functions with respect to the coercive bilinear form, such that both the
exact solution and the approximate solution can be expressed explicitly.

3.1. Diagonalized Chebyshev rational spectral method on the whole line

Consider the second-order elliptic equation on the whole line:






−u′′(x)+µu(x) = f (x), µ≥ 0, x ∈ Λ1,

lim
|x |→∞

x−
1
2 u(x) = 0. (3.1)

A weak formulation of (3.1) is to find u ∈ H1
ω(Λ1) such that

Aµ(u, v) := (∂xu,∂x (vω))+µ(u, v)ω = ( f , v)ω, ∀v ∈ H1
ω(Λ1). (3.2)

Next, let N be any positive integer, and RN (Λ1) = span{R0(x),R1(x), · · · ,RN (x)}. The
Chebyshev rational spectral scheme for (3.2) is to find uN ∈ RN (Λ1) such that

Aµ(uN ,φ) = ( f ,φ)ω, ∀φ ∈ RN (Λ1). (3.3)

To propose a diagonalized approximation scheme for (3.3), we need to construct two kinds
of basis functions {ϕk}0≤k≤N and {ψk}0≤k≤N , which are bi-orthogonal with respect to the
bilinear operator Aµ(·, ·).
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Lemma 3.1. Let ϕk,ψk ∈ Rk(Λ1) be the bi-orthogonal Chebyshev rational functions such

that ϕk − Rk ∈ Rk−1(Λ1), ψk − Rk ∈ Rk−1(Λ1) and

Aµ(ϕk,ψl) = ηkδk,l , ∀ k, l ≥ 0. (3.4)

Then we have

ϕk(x) = Rk(x)+ akϕk−2(x)+ bkϕk−4(x), (3.5a)

ψk(x) = Rk(x)+ ckψk−2(x)+ dkψk−4(x), (3.5b)

where ϕk(x) = ψk(x) ≡ 0 for k < 0, ηk = 0 for k < 0, ak = ck = 0 for k < 2, bk = dk = 0
for k < 4, and

η0 = µπ, ηk =
π

2
(µ+

3k2

8
)− akckηk−2 − bkdkηk−4, (3.6a)

a2 =
π

2η0
, a3 =

21π

32η1
, a4 =

3π

2η2
, b4 = −

π

2η0
, (3.6b)

c2 = 0, c3 =
9π

32η1
, c4 =

3π

4η2
, d4 = 0, (3.6c)

ak =
k(k− 1)π

8ηk−2
− k(k− 2)πck−2

32ηk−2
, bk = −

k(k− 2)π

32ηk−4
, ∀k ≥ 5, (3.6d)

ck =
(k− 2)(k− 1)π

8ηk−2
− (k− 4)(k− 2)πak−2

32ηk−2
, (3.6e)

dk = −
(k− 4)(k− 2)π

32ηk−4
, ∀k ≥ 5. (3.6f)

Proof. Let

ϕk(x) = Rk(x)+

k−1
∑

i=0

ak,iϕi(x), ψk(x) = Rk(x)+

k−1
∑

i=0

ck,iψi(x). (3.7)

We first use mathematical induction to verify (3.5). By (3.7), (2.12), (2.13) and (2.10),
we deduce that

Aµ(ϕ1,ψ0) = Aµ(R1,ψ0)+ a1,0Aµ(ϕ0,ψ0) = −
�

∂ 2
x R1,R0

�

ω
+ a1,0η0 = a1,0η0,

Aµ(ϕ0,ψ1) = Aµ(ϕ0,R1) + c1,0Aµ(ϕ0,ψ0) = −
�

R0,∂ 2
x (R1ω)

�

+ c1,0η0 = c1,0η0.

On the other hand, by (3.4) we know that Aµ(ϕ1,ψ0) = Aµ(ϕ0,ψ1) = 0. This means
a1,0 = c1,0 = 0 and ϕ1(x) =ψ1(x) = R1(x). Similarly, by (3.4), (2.12), (2.13) and (2.10),
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we have

Aµ(ϕ2,ψ0) = Aµ(R2,ψ0) + a2,0Aµ(ϕ0,ψ0) + a2,1Aµ(ϕ1,ψ0)

= −(∂ 2
x R2,R0)ω+ a2,0η0 = −

π

2
+ a2,0η0 = 0,

Aµ(ϕ2,ψ1) = Aµ(R2,ψ1) + a2,0Aµ(ϕ0,ψ1) + a2,1Aµ(ϕ1,ψ1)

= −(∂ 2
x R2,R1)ω+ a2,1η1 = a2,1η1 = 0,

Aµ(ϕ0,ψ2) = Aµ(ϕ0,R2) + c2,0Aµ(ϕ0,ψ0) + c2,1Aµ(ϕ0,ψ1)

= −
�

R0,∂ 2
x (R2ω)

�

+ c2,0η0 = c2,0η0 = 0,

Aµ(ϕ1,ψ2) = Aµ(ϕ1,R2) + c2,0Aµ(ϕ1,ψ0) + c2,1Aµ(ϕ1,ψ1)

= −
�

R1,∂ 2
x (R2ω)

�

+ c2,1η1 = c2,1η1 = 0.

Thereby, a2,0 =
π

2η0
, a2,1 = c2,0 = c2,1 = 0. Accordingly,

ϕ2(x) = R2(x)+ a2,0ϕ0(x), ψ2(x) = R2(x).

In the same manner, we can verify the results of (3.5), as well as the corresponding coeffi-
cients in (3.6) for k = 3,4. Next, assume that for any 0≤ l ≤ k− 1 and k ≥ 5,

ϕl(x) = Rl(x)+ al ,l−2ϕl−2(x)+ al ,l−4ϕl−4(x),

ψl(x) = Rl(x)+ cl ,l−2ψl−2(x)+ cl ,l−4ψl−4(x).

We shall prove that for k ≥ 5,

ϕk(x) = Rk(x)+ ak,k−2ϕk−2(x)+ ak,k−4ϕk−4(x), (3.8a)

ψk(x) = Rk(x)+ ck,k−2ψk−2(x)+ ck,k−4ψk−4(x). (3.8b)

Clearly, by (3.4), (3.7) and (2.10), we get that for k > l ≥ 0,

Aµ(ϕk,ψl) = Aµ(Rk,ψl) +

k−1
∑

i=0

ak,iAµ(ϕi,ψl) = −
�

∂ 2
x Rk,ψl

�

ω + ak,lηl = 0, (3.9a)

Aµ(ϕl ,ψk) = Aµ(ϕl ,Rk) +

k−1
∑

i=0

ck,iAµ(ϕl ,ψi) = −
�

ϕl ,∂
2
x (Rkω)

�

+ ck,lηl = 0. (3.9b)

Taking l = 0,1, · · · , k− 5, l = k− 3 and l = k− 1 in (3.9) successively, and using (2.12),
(2.13), (2.10) and the induction assumption, we derive readily that for k ≥ 5,

ak,l = ck,l = 0, ∀ 0≤ l ≤ k− 5 or l = k− 3, k− 1.

This leads to (3.8). For simplicity of notations, we take ak := ak,k−2, bk := ak,k−4, ck :=
ck,k−2 and dk := ck,k−4 in (3.8), then we obtain the result (3.5).
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It remains to confirm the coefficients ak, bk, ck, dk and ηk. By using (3.9), (3.5),
(2.12), (2.13) and (2.10), we get that for k ≥ 5,

ak =
1

ηk−2
(∂ 2

x Rk,ψk−2)ω =
k(k− 1)

4ηk−2
(Rk−2,Rk−2)ω −

k(k− 2)ck−2

16ηk−2
(Rk−4,Rk−4)ω

=
k(k− 1)π

8ηk−2
− k(k− 2)πck−2

32ηk−2
,

ck =
1

ηk−2

�

ϕk−2,∂ 2
x (Rkω)

�

=
(k− 2)(k− 1)

4ηk−2
(Rk−2,Rk−2)−

(k− 4)(k− 2)ak−2

16ηk−2
(Rk−4,Rk−4)ω

=
(k− 2)(k− 1)π

8ηk−2
− (k− 4)(k− 2)πak−2

32ηk−2
,

bk =
1

ηk−4

�

∂ 2
x Rk,ψk−4

�

ω
= −k(k− 2)

16ηk−4
(Rk−4,Rk−4)ω = −

k(k− 2)π

32ηk−4
,

dk =
1

ηk−4

�

ϕk−4,∂ 2
x (Rkω)

�

= − (k− 4)(k− 2)

16ηk−4
(Rk−4,Rk−4)ω = −

(k− 4)(k− 2)π

32ηk−4
.

Next, by (3.2), (2.13) and (2.10), we derive that

η0 = Aµ(ϕ0,ψ0) = (∂xϕ0,∂x (ψ0ω)) +µ(ϕ0,ψ0)ω

= (∂xR0,∂x (R0ω)) +µ(R0,R0)ω = µπ.

By using (3.4) and (3.5), we know that for k ≥ 1,

Aµ(Rk,Rk) = Aµ(ϕk − akϕk−2− bkϕk−4,ψk − ckψk−2− dkψk−4)

= Aµ(ϕk,ψk) + akckAµ(ϕk−2,ψk−2)+ bkdkAµ(ϕk−4,ψk−4)

= ηk + akckηk−2 + bkdkηk−4.

On the other hand, by (2.12), (2.10) and the definition of Aµ(·, ·), we have

Aµ(Rk,Rk) = −
�

∂ 2
x Rk,Rk

�

ω+µ(Rk,Rk)ω

=
3k2

8
(Rk,Rk) +µ(Rk,Rk)ω =

π

2

�

µ+
3k2

8

�

.

Therefore

ηk =
π

2

�

µ+
3k2

8

�

− akckηk−2− bkdkηk−4, k ≥ 1.

This ends the proof. �

Obviously, RN (Λ1) = {ϕk(x) : 0 ≤ k ≤ N}. Thus the variational forms (3.2) and
(3.3) together with the biorthogonality of {ϕk(x)} and {ψk(x)} lead to the following main
theorem in this subsection.
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Theorem 3.1. Let u(x) and uN (x) be the solutions of (3.2) and (3.3), respectively. Then

both u(x) and uN (x) have the explicit representations in {ϕk(x)},

u(x) =

∞
∑

k=0

ûkϕk(x), uN (x) =

N
∑

k=0

ûkϕk(x),

ûk =
1

ηk

Aµ(u,ψk) =
1

ηk

( f ,ψk)ω, k ≥ 0.

Remark 3.1. Wang and Guo [22] presented the convergence of scheme (3.3): if µ > 1
4

and r ≥ 1, then

‖u− uN‖1,ω ≤ cN1−r

 

r
∑

k=0

‖(x2+ 1)r/2+k/2−1/2∂ k
x u‖2ω

!1/2

.

3.2. Diagonalized Chebyshev rational spectral method on the half line

Consider the second-order elliptic equation on the half line:

( −u′′(x)+µu(x) = f (x), µ ≥ 0, x ∈ Λ2,

u(0) = 0, lim
x→+∞ x

− 1
4 u(x) = 0. (3.10)

Let H1
0,χ(Λ2) = {v ∈ H1

χ(Λ2) : v(0) = 0}. A weak formulation of (3.10) is to find u ∈
H1

0,χ(Λ2) such that

Bµ(u, v) := (∂xu,∂x (vχ))+µ(u, v)χ = ( f , v)χ , ∀v ∈ H1
0,χ(Λ2). (3.11)

Denote R0
N (Λ2) = span{r0(x), r1(x), · · · , rN (x)} ∩ H1

0,χ(Λ2). The Chebyshev rational spec-

tral scheme for (3.11) is to find uN ∈ R0
N (Λ2) such that

Bµ(uN ,φ) = ( f ,φ)χ , ∀φ ∈ R0
N (Λ2). (3.12)

To propose a diagonalized approximation scheme for (3.12), we need to construct two
kinds of basis functions {Φk(x)}1≤k≤N and {Ψk(x)}1≤k≤N , which are bi-orthogonal with
respect to the bilinear operator Bµ(·, ·).
Lemma 3.2. Let pk(x) = qk(x)≡ 0 for any k ≤ 0, and

Φ1(x) := p1(x) = r1(x)+ r0(x) ∈ R0
1 (Λ2), Ψ1(x) := q1(x) = r1(x)+ r0(x) ∈ R0

1 (Λ2).

Assume that Φk, Ψk ∈ R0
k
(Λ2) are the bi-orthogonal Chebyshev rational functions such that

Φk − pk ∈ R0
k−1(Λ2), Ψk − qk ∈ R0

k−1(Λ2) and

Bµ(Φk,Ψl) = ρkδk,l , ∀ k, l ≥ 1. (3.13)
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Then for k ≥ 2, we have

Φk(x) = pk(x)+ ak−1Φk−1(x)+ bk−2Φk−2(x)+ ck−3Φk−3(x)+ dk−4Φk−4(x), (3.14a)

Ψk(x) = qk(x)+ ek−1Ψk−1(x)+ hk−2Ψk−2(x)+mk−3Ψk−3(x), (3.14b)

where Φk(x) = Ψk(x)≡ 0 for k ≤ 0, ρk = ak = bk = ck = dk = ek = hk = mk = 0 for k ≤ 0,
and

a1 = −
(8µ− 3)π

4ρ1
, (3.15a)

ak−1 = −
5(k2− 11k+ 12)π+ 48µπ

32ρk−1
(3.15b)

+
1

ρk−1
(bk−2ek−2ρk−2+ ck−3hk−3ρk−3+ dk−4mk−4ρk−4), k ≥ 3, (3.15c)

bk−2 =
3(k− 4)(3k− 5)π− 16µπ

32ρk−2

+
1

ρk−2
(ck−3ek−3ρk−3+ dk−4hk−4ρk−4), k ≥ 3, (3.15d)

ck−3 = −
5(k− 2)(k− 3)π

32ρk−3
+

1

16ρk−3
πδk,4+

1

ρk−3
dk−4ek−4ρk−4, k ≥ 4, (3.15e)

dk−4 =
(k− 2)(k− 3)π

32ρk−4
, k ≥ 5, (3.15f)

ek−1 =
3(3k2− k− 4)π− 16µπ

32ρk−1

+
1

ρk−1
(ak−2hk−2ρk−2+ bk−3mk−3ρk−3), k ≥ 2, (3.15g)

hk−2 =−
5k− 2(k− 1)π

32ρk−2
+

1

ρk−2
ak−3mk−3ρk−3, k ≥ 3, (3.15h)

mk−3 =
(k− 3)(k− 2)π

32ρk−3
, k ≥ 4, (3.15i)

ρk =
5(k2 + 7k− 6)π+ 48µπ

32
− ak−1ek−1ρk−1− bk−2hk−2ρk−2

− ck−3mk−3ρk−3, k ≥ 1. (3.15j)

Proof. Let

Φk(x) = pk(x)+

k−1
∑

i=1

ak,iΦi(x), Ψk(x) = qk(x)+

k−1
∑

i=1

bk,iΨi(x), k ≥ 2. (3.16)

Then, by (3.16), (2.28), (2.26) and (2.24), we deduce that for any 1≤ l ≤ k− 5,

Bµ(pk,Ψl) = (∂x pk,∂x (Ψlχ)) +µ(pk,Ψl)χ = −(∂ 2
x pk,Ψl)χ +µ(pk,Ψl)χ = 0. (3.17)
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On the other hand, by (3.16) and (3.13) we get that for 1≤ l ≤ k− 5,

Bµ(pk,Ψl) = Bµ

 

Φk −
k−1
∑

i=1

ak,iΦi, Ψl

!

= −ak,lρl . (3.18)

Hence, ak,l = 0 for 1≤ l ≤ k− 5. This means

Φk(x) = pk(x)+ ak,k−1Φk−1(x)+ ak,k−2Φk−2(x)+ ak,k−3Φk−3(x)+ ak,k−4Φk−4(x).

Similarly, we deduce that

Ψk(x) = qk(x)+ bk,k−1Ψk−1(x)+ bk,k−2Ψk−2(x)+ bk,k−3Ψk−3(x).

For simplicity of the notations, we take ak−1 := ak,k−1, bk−2 := ak,k−2, ck−3 := ak,k−3, dk−4

:= ak,k−4, ek−1 := bk,k−1, hk−2 := bk,k−2, mk−3 := bk,k−3. Then we obtain the result
(3.14).

It remains to confirm the coefficients ak−1, bk−2, ck−3, dk−4, ek−1, hk−2, mk−3 and ρk.
By (2.28), (2.26), (2.24) and (3.13) we know that

Bµ(Φ1,Ψ1) = (∂x p1,∂x (q1χ)) +µ(p1,q1)χ =
5

16
π+ 3

2
µπ,

Bµ(Φ2,Ψ1) = (∂x p2,∂x (q1χ)) +µ(p2,q1)χ + a1ρ1 = −3
4
π+ 2µπ+ a1ρ1 = 0,

Bµ(Φ1,Ψ2) = (∂x p1,∂x (q2χ)) +µ(p1,q2)χ + e1ρ1 = − 9
16
π+ 1

2
µπ+ e1ρ1 = 0.

Hence, we have

ρ1 =
(5+ 24µ)π

16
, a1 = −

(8µ− 3)π

4ρ1
, e1 =

(9− 8µ)π

16ρ1
.

In the same manner, we can derive the coefficients ak−1, bk−2, ck−3, dk−4, ek−1, hk−2, mk−3

and ρk for k ≤ 5 as shown in (3.15).
We next verify the results in (3.15) for k ≥ 6. In fact, by (2.28), (2.26) and (2.24) we

obtain

Bµ(pk,qk−4) = (∂x pk,∂x (qk−4χ)) +µ(pk,qk−4)χ = −
1

32
(k− 2)(k− 3)π. (3.19)

On the other hand, by (3.14) and (3.13) we get

Bµ(pk,qk−4) = Bµ(Φk − ak−1Φk−1− bk−2Φk−2− ck−3Φk−3 − dk−4Φk−4, (3.20a)

Ψk−4− ek−5Ψk−5− hk−6Ψk−6−mk−7Ψk−7) = −dk−4ρk−4. (3.20b)

Therefore

dk−4 =
(k− 2)(k− 3)π

32ρk−4
. (3.21)
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Similarly, we have

Bµ(pk,qk−3) = −ck−3ρk−3+ dk−4ek−4ρk−4 =
5

32
(k− 2)(k− 3)π− 1

16
πδk,4, (3.22a)

Bµ(pk,qk−2) = −bk−2ρk−2+ ck−3ek−3ρk−3+ dk−4hk−4ρk−4 (3.22b)

=
16µπ− 3(k− 4)(3k− 5)π

32
, (3.22c)

Bµ(pk,qk−1) = −ak−1ρk−1+ bk−2ek−2ρk−2+ ck−3hk−3ρk−3+ dk−4mk−4ρk−4

=
5(k2 − 11k+ 12)π+ 48µπ

32
+

3

16
πδk,2, (3.22d)

Bµ(pk,qk) = ρk + ak−1ek−1ρk−1+ bk−2hk−2ρk−2+ ck−3mk−3ρk−3

=
5(k2+ 7k− 6)π+ 48µπ

32
, (3.22e)

Bµ(pk,qk+1) = −ekρk+ ak−1hk−1ρk−1+ bk−2mk−2ρk−2

=
16µπ− 3(3k2+ 5k− 2)π

32
, (3.22f)

Bµ(pk,qk+2) = −hkρk + ak−1mk−1ρk−1 =
5k(k+ 1)π

32
, (3.22g)

Bµ(pk,qk+3) = −mkρk = −
k(k+ 1)π

32
. (3.22h)

By using (3.22) and (3.21), a direct computation leads to the desired result (3.15). �

Theorem 3.2. Let u(x) and uN (x) be the solutions of (3.11) and (3.12), respectively. Then

both u(x) and uN (x) have the explicit representations in {Φk(x)},

u(x) =

∞
∑

k=1

ûkΦk(x), uN (x) =

N
∑

k=1

ûkΦk(x),

ûk =
1

ρk

Bµ(u,Ψk) =
1

ρk

( f ,Ψk)χ , k ≥ 1.

Remark 3.2. Wang and Guo [11] presented the convergence of scheme (3.12): if µ > 14
27

and r ≥ 1, then

‖u− uN‖1,χ ≤ cN1−r

 

r
∑

k=1

‖(x + 1)r/2+k−1/2∂ k
x u‖2χ

!1/2

.

4. Numerical results

In this section, we examine the effectiveness and accuracy of the diagonalized Cheby-
shev rational spectral method for solving second-order elliptic equations on the half/whole
line.
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Figure 1: u(x) = e−x2
sin(2x).
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Figure 2: u(x) =
sin(2x)

(1+x2)2
.

We first examine the second-order elliptic problem on the whole line. We take µ = 1 in
(3.1) and consider the following four cases:

• u(x) = e−x2
sin(kx), which decays exponentially at infinity with oscillation. In Fig. 1,

we plot the log10 of the discrete L2
ω- and H1

ω- errors vs. N with k = 2. The two near
straight lines indicate an exponential convergence rate.

• u(x) = sin(kx)(1+ x2)−h, which decays algebraicly at infinity with oscillation. In
Fig. 2, we plot the log10 of the discrete L2

ω- and H1
ω- errors vs. log10 N with k = h= 2.

The two near straight lines indicate an algebraic convergence rate.

• u(x) = ln(1+ x2)(1+ x2)−h, which decays algebraicly at infinity without oscillation.
In Fig. 3, we plot the log10 of the discrete L2

ω- and H1
ω- errors vs. log10 N with h= 3.

The two near straight lines also indicate an algebraic convergence rate.

• u(x) = arctan(kx), which does not decay at infinity. In Fig. 4, we plot the log10 of
the discrete L2

ω- and H1
ω- errors vs. log10 N with k = 1. The two near straight lines

indicate again an algebraic convergence rate.

We next examine the second-order elliptic problem on the half line. We take µ = 1 in
(3.10) and consider the following four cases:

• u(x) = e−x2
sin(kx), which decays exponentially at infinity with oscillation. In Fig. 5,

we plot the log10 of the discrete L2
χ - and H1

χ - errors vs. N with k = 2. They indicate
an exponential convergence rate.

• u(x) = sin(kx)(x2 + 1)−h, which decays algebraicly at infinity with oscillation. In
Fig. 6, we plot the log10 of the discrete L2

χ - and H1
χ - errors vs. log10 N with k = h= 2.

They indicate an algebraic convergence rate.

• u(x) = ln(1+ x2)(1+ x2)−h, which decays algebraicly at infinity without oscillation.
In Fig. 7, we plot the log10 of the discrete L2

χ - and H1
χ - errors vs. log10 N with h= 2.

They also indicate an algebraic convergence rate.
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Figure 4: u(x) = arctan(x).
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Figure 5: u(x) = e−x2
sin(2x).
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.

• u(x) = arctan(kx), which does not decay at infinity. In Fig. 8, we plot the log10
of the discrete L2

χ - and H1
χ - errors vs. log10 N with k = 1. They indicate again an

algebraic convergence rate.

To demonstrate the essential superiority of our diagonalized Chebyshev rational spec-
tral method to the classic Chebyshev rational spectral method, we examine the issue on
condition numbers for the resulting algebraic systems.

The diagonalized Chebyshev rational spectral method use the Sobolev bi-orthogonal

Chebyshev rational functions
n

ϕk(x)p
ηk

, ψk(x)p
ηk

oN

k=0
and

n

Φk(x)p
ρk

, Ψk(x)p
ρk

oN

k=1
as the basis func-

tions for (3.1) and (3.10), respectively. All the condition numbers of the corresponding
total stiff matrices are equal to 1. While in the classic Chebyshev rational spectral method,
the basis functions are chosen as {Rk(x)}Nk=0 and {rk(x)+rk−1(x)}Nk=1 for (3.1) and (3.10),
respectively. The corresponding total stiff matrices have off-diagonal entries. In Table 4.1
below, we take µ = 1 and list the condition numbers of the total stiff matrices of the clas-
sic Chebyshev rational spectral method for (3.1) and (3.10). We note that the condition
numbers of the resulting systems increase asymptotically as O (N2).
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Figure 7: u=
ln(1+x2)
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Figure 8: u(x) = arctan(x).

Table 1: Condition numbers of the classic Chebyshev rational spectral method.

N = 40 N = 80 N = 120 N = 160 N = 200 N = 240
Eq. (3.1) 1.1288e+03 5.1173e+03 1.2125e+04 2.2199e+04 3.5367e+04 5.1644e+04

Eq. (3.10) 1.8147e+03 7.6508e+03 1.7578e+04 3.1615e+04 4.9769e+04 7.2045e+04
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