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Abstract. The p-Laplace problems in topology optimization eventually lead to a de-
generate convex minimization problem E(v) :=

´
ΩW(∇v)dx−

´
Ω f vdx for v∈W1,p

0 (Ω)
with unique minimizer u and stress σ := DW(∇u). This paper proposes the discrete
Raviart-Thomas mixed finite element method (dRT-MFEM) and establishes its equiva-
lence with the Crouzeix-Raviart nonconforming finite element method (CR-NCFEM).
The sharper quasi-norm a priori and a posteriori error estimates of this two methods
are presented. Numerical experiments are provided to verify the analysis.
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1 Introduction

We consider the following nonlinear p-Laplace problem (2≤ p<∞) in the bounded Lip-
schitz domain Ω⊂R2 with the given f ∈Lq(Ω) (q conjugate of p),{

−div(|∇u|p−2∇u)= f in Ω,
u=0 on ∂Ω.

(1.1)

This type of equation appears in many mathematical models of physical process, nonlin-
ear diffusion and filtration, power-law materials, and viscoelastic materials, see [18, 27]
for example. Most of these mathematical modeling are equivalent to the convex mini-
mization problem [15] with energy

E(v) :=
ˆ

Ω
W(∇v)dx−F(v) for v∈V :=W1,p

0 (Ω)={v∈W1,p(Ω) : v|∂Ω =0}. (1.2)
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Here and throughout this paper, F(v):=
´

Ω f vdx and the energy density function W :R2→
R reads W(A) := |A|p/p with the derivative DW(A)= |A|p−2A for all A∈R2\{0} and
the dual function

W∗(A) :=
|A|q

q

( 1
p
+

1
q
=1
)

. (1.3)

Finite element approximation for (1.1) has been extensively studied by many authors,
the previous works on a priori and a posteriori error estimations in the conventional
W1,p(Ω)-norm can be found, for example, in [15, 16, 18, 25, 28]. Sharper a priori error
estimates were derived in [4, 17, 20] by developing the quasi-norm techniques, and these
techniques were extended to establish improved a posteriori error estimators of residual
type for the P1 conforming finite element methods (CFEM) and nonconforming finite
element methods (NCFEM) [12, 14, 21, 22]. In [19], Kim applied quasinorm techniques to
a mixed finite volume method. Nevertheless, the NCFEM analysis of flux σ :=DW(∇u),
which is important in physical process and also the topic here, is almost not covered in
the above references.

This paper focuses on (1.2) and the analysis of flux σ, proposes some simplified mixed
finite element method (MFEM) with one-point numerical quadrature and explores some
surprising advantages of the novel discrete Raviart-Thomas mixed finite element method
(dRT-MFEM). First, the dRT-MFEM is equivalent to the Crouzeix-Raviart nonconforming
first-order finite element method (CR-NCFEM). This generalizes the Marini representa-
tion [3, 24] and Arbogast [2] from linear and general variable coefficients elliptic PDEs
to nonlinear p-Laplace problems. Second, the quasi-norm convergence analysis of dRT-
MFEM (CR-NCFEM) leads to some optimal convergence rates with effective a posteriori
error control.

The remaining parts of this paper are organized as follows. Section 2 introduces the
precise notation and states the CR-NCFEM and dRT-MFEM for the p-Laplace problem.
Section 3 establishes the equivalence result of dRT-MFEM and CR-NCFEM. The quasi-
norm a priori and a posteriori error estimates of CR-NCFEM and dRT-MFEM follow in
Section 4 and Section 5. Some numerical experiments conclude the paper in Section 6
with empirical evidence of the superiority of the new NCFEM also for adaptive mesh-
refinement.

Standard notation applies throughout this paper to Lebesgue and Sobolev spaces
Lp(Ω), Hs(Ω), and H(div,Ω), as well as to the associated norms ‖·‖p,Ω := ‖·‖Lp(Ω),
|||·|||p,Ω :=‖∇·‖Lp(Ω), and |||·|||

NC,p,Ω
:=‖∇NC ·‖Lp(Ω) with the piecewise gradient ∇NC ·|T :=

∇(·|T) for all T in a regular triangulation T of the polygonal Lipschitz domain Ω. Here
and throughout, ”:” denotes the scalar product in Rm×n and the expression ”.” abbrevi-
ates an inequality up to some multiplicative generic constant, i.e., A.B means A≤CB
with some generic constant 0≤C<∞, which depends on the interior angles of the trian-
gles but not their sizes.



D. J. Liu, A. Q. Li and Z. R. Chen / Adv. Appl. Math. Mech., 10 (2018), pp. 1365-1383 1367

2 Nonconforming FEMs for p-Laplace problem

2.1 Triangulations

Let T be a regular triangulation of the simply-connected bounded Lipschitz domain
Ω⊆R2 with polygonal boundary ∂Ω into closed triangles. That is, the intersection of
two distinct and non-disjoint triangles is either a common node or a common edge.
Let E denote the set of all edges and E(Ω) (resp. E(∂Ω)) denote the set of all interior
(resp. boundary) edges,N denote the set of vertices andN (Ω) (resp.N (∂Ω)) denote the
interior (resp. boundary) nodes. For any triangle T∈T , set hT :=diam(T) and let E(T)
denote the set of three edges of T, write hE :=diam(E) for an edge E∈E(T). Let

Pk(T )={vk : Ω→R | ∀T∈T , vk|T is a polynomial of total degree≤ k}

denote the set of piecewise polynomials and let hT ∈P0(T ) denote the T -piecewise con-
stant mesh size function with hT |T = hT for all T∈T and the maximum hmax := ‖hT ‖∞.
Assume that T is shape-regular so that hT ≈hE≈ |T|1/2 for all E∈E(T) and T∈T .

Let [·]E := ·|T+−·|T− denote the jump across the common edge E = ∂T+∩∂T− with
T+,T− ∈ T and unit normal νE pointing into T−. Let Π0 : Lq(Ω)→P0(T ) denote the Lq

projection onto T piecewise constant, i.e., (Π0 f )|T =
ffl

T f dx for all T∈T (the same notation
Π0 is also used for vectors and understood componentwise), and let osc( f ,T ) :=‖hT ( f−
Π0 f )‖q,Ω.

2.2 Crouzeix-Raviart nonconforming FEM

The Crouzeix-Raviart finite element space is defined as

CR1
0(T ) :={vh∈P1(T ) |vh is continuous at midpoints of interior

edges and vanishes at midpoints of boundary edges}.

The nonconforming FEM is based on CR1
0(T ) and the nonconforming energy ENC with

Fh(·) :=F◦Π0(·)=
´

Ω(Π0 f )·dx and

ENC(vCR) :=
ˆ

Ω
W(∇NC vCR)dx−Fh(vCR) for vCR ∈CR1

0(T ). (2.1)

The Crouzeix-Raviart finite element approximation uCR to (1.2) minimizes the energy ENC

in CR1
0(T ), written

uCR ∈argminENC(CR1
0(T )). (2.2)

The discrete stress σCR :=DW(∇NC uCR) is unique, which will be proven in Section 3, while
an a priori and a posteriori error analysis follows in Section 4.
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2.3 Discrete Raviart-Thomas mixed FEM

The dual energy E∗ is defined as

E∗(τ) :=−
ˆ

Ω
W∗(τ)dx for τ∈Lq(Ω;R2).

Here and throughout this paper, W∗(A) := supB∈R2(A·B−W(B)) denotes the dual of
W [26] and reads as (1.3). The dual problem of (1.2) maximizes the energy E∗ in Q( f ) :=
{τ∈H(div,Ω) | f +div(τ)=0 a.e. in Ω}, written

σ=argmaxE∗(Q( f )).

The maximizer σ is unique [18] and σ :=DW(∇u) for minimizer u of E in W1,p
0 (Ω).

Define the Raviart-Thomas finite element space

RT0(T ) :=
{

p∈H(div,Ω) | ∀T∈T , ∃a∈R2, b∈R, ∀x∈T, p= a+bx
}

and Q( f ,T ) :={τRT ∈RT0(T ) |Π0 f +div(τRT )=0 a.e. in Ω}. The discrete Raviart-Thomas
mixed finite element scheme is based on the one-point numerical quadrature with respect
to the center of each triangle and the resulting discrete dual energy E∗d :=E∗◦Π0,

E∗d(τRT )=−
ˆ

Ω
W∗(Π0τRT )dx for τRT ∈Q( f ,T ).

The discrete Raviart-Thomas mixed finite element approximation σdRT to the dual solution
σ maximizes the energy E∗d in Q( f ,T ), written

σdRT =argmaxE∗d(Q( f ,T )). (2.3)

The strong convexity of W∗ (see Lemma 3.3 below) shows that the maximizer σdRT is
unique in Q( f ,T ). An a priori and a posteriori error analysis follows in Section 5.

3 CR-NCFEM is equal to dRT-MFEM

This section is devoted to the equivalence of CR-NCFEM from Subsection 2.2 with dRT-
MFEM from Subsection 2.3 as a generalization of the Marini representation from the lin-
ear equations [2, 3, 24] to nonlinear convex minimization problems. The equivalence is
expressed by the equivalence of σdRT with some post-processing σ∗

CR
of σCR , namely

σ∗
CR

:=σCR−
Π0 f

2
(·−mid(T ))∈P1(T ;R2).

Here and throughout this paper, the piecewise affine function ·−mid(T )∈P1(T ) equals
x−mid(T) at x∈T∈T with barycenter mid(T).
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Theorem 3.1 (CR-NCFEM = dRT-MFEM with no discrete duality gap). It holds σ∗
CR
=σdRT

and maxE∗d(Q( f ,T ))=minENC(CR1
0(T )).

The remaining parts of this section are devoted to the proof of Theorem 3.1 which
is based on the following lemmas and the Crouzeix-Raviart interpolation operator INC :
W1,p

0 (Ω)→CR1
0(T ), (2≤ p≤∞),

(INC v)(mid(E)) :=
 

E
vds for all E∈E .

Lemma 3.1 (Property of the Crouzeix-Raviart interpolant, see [9,10,15]). Any v∈W1,p(Ω)
with its interpolation INC v and the constant κ satisfy ∇NC(INC v)=Π0∇v and

‖v− INC v‖p,Ω≤κ‖hT (I−Π0)∇v‖p,Ω≤κ‖hT ∇v‖p,Ω.

Lemma 3.2 (Conforming P3 companion, see [13]). Given any vCR ∈ CR1
0(T ), there exists

some v3∈P3(T )∩W1,p
0 (Ω) with vCR = INC v3, Π0vCR =Π0v3, and

‖h−1
T (vCR−v3)‖p,Ω+|||vCR−v3|||NC,p,Ω

.min
v∈V
|||v−vCR |||NC,p,Ω

.

The subdifferential ∂W∗ of W∗ [26] is uniformly convex.

Lemma 3.3. Given 2≤ p<∞ and the conjugate q, there exists a positive constant c(p) such that
for any a,b∈R2\{0}, α :=DW(a), β :=DW(b) satisfy

1
(|α|2−q+|β|2−q)

|α−β|2≤ c(p)(W(b)−W(a)−α·(b−a)). (3.1)

Any α,β∈R2\{0} and any b∈∂W∗(β) satisfy

1
(|α|2−q+|β|2−q)

|α−β|2≤ c(p)(W∗(α)−W∗(β)−b·(α−β)). (3.2)

Proof. Given a,b∈R2\{0} with a 6= b, set t := |b|/|a| and g := a : b/(|a|·|b|) (−1≤ g≤ 1),
the paper [6, Lemma3.1] shows

1
(|a|p−2+|b|p−2)(W(b)−W(a)−α·(b−a))

|α−β|2

=
1+t2(p−1)−2gtp−1

(1+tp−2)(tp/p+1/q−gt)
:= f (t,g). (3.3)

The formula DW(a)= |a|p−2a implies that |α|= |a|p−1 and |β|= |b|p−1. The combination
with conjugate property leads to |a|p−2= |α|2−q and |b|p−2= |β|2−q (0≤2−q<1), and the
left side of (3.3) is rewritten as

1
(|α|2−q+|β|2−q)(W(b)−W(a)−α·(b−a))

|α−β|2.
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A direct calculation verifies that ∂ f /∂g as a function of g has one sign (which depends on
t and p), hence it is monotone increasing or decreasing. Therefore for all 0< t<∞, there
exists a constant c(p) satisfies

min{ f (t,1), f (t,−1)}≤ c(p) :=max{ f (t,1), f (t,−1)}<∞.

The case g=1 is the crucial one because tp/p+1/q−t vanishes for t=1,

f (t,1)=
(1−tp−1)2

(1+tp−2)(tp/p+1/q−t)
.

L’Hospital rule yields f (1,1)=p−1>0. The monotone decreasing and monotone increas-
ing of tp/p+1/q−t on (0,1) and (1,∞) show that tp/p+1/q−t>0, that is f (t,1)>0. The
analysis of f (t,−1)>0 is simpler and hence omitted, hence c(p)>0. The (3.1) is proved,
which is also known as convexity control of W.

The duality in convex analysis shows that the relation α = DW(a) is equivalent to
W∗(α)+W(a)= a·α [26, Theorem 23.5]. This implies

W∗(α)+W(a)= a·α and W∗(β)+W(b)=b·β.

The combination with (3.1) concludes the proof of (3.2).

Remark 3.1. The basic calculation can prove that 0< c(p)<2p.

Define the weighed norm

|〈α,β〉|q :=

√ˆ
Ω

1
(|α|2−q+|β|2−q)

|α−β|2dx. (3.4)

The following lemma shows that the defined norm (3.4) is a quasi-norm

Lemma 3.4. It holds that
(i) |〈α,β〉|q≥0, and |〈α,β〉|q =0 if and only if α=β.
(ii) ∀a1,a2,b1,b2∈R2\{0}, α1 :=DW(a1), β1 :=DW(b1), α2 :=DW(a2), β2 :=DW(b2),
|〈α1+α2,β1+β2〉|q≤2

q−1
2 (|〈α1,β1〉|q+|〈α2,β2〉|q).

Proof. (i) According to the expression, it is easy to prove that |〈α,β〉|q≥0. |〈α,β〉|q=0, that
is (ˆ

Ω

|α−β|2
|α|2−q+|β|2−q dx

) 1
2
=0,

if and only if α=β.
(ii) For ∀x,y∈R2\{0}, define

f (x,y)=
|x−y|2
|x|m+|y|m , (0≤m<1). (3.5)
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A direct calculation shows that

fxx =
2m2x2|x|2m−4(x−y)2

(|x|m+|y|m)3 +
2

|x|m+|y|m−
2mx|x|m−2(2x−2y)

(|x|m+|y|m)2

−m(m−1)x2|x|m−4(x−y)2

(|x|m+|y|m)2 ,

fxy =
mx|x|m−2(2x−2y)

(|x|m+|y|m)2 − 2
|x|m+|y|m−

my|y|m−2(2x−2y)
(|x|m+|y|m)2

+
2m2x|x|m−2y|y|m−2(x−y)2

(|x|m+|y|m)3 ,

fyy =
2m2y2|y|2m−4(x−y)2

(|x|m+|y|m)3 +
2

|x|m+|y|m +
2my|y|m−2(2x−2y)

(|x|m+|y|m)2

−m(m−1)y2|y|m−4(x−y)2

(|x|m+|y|m)2 .

We can rewrite fxx and fxx · fyy− f 2
xy as

fxx =
1

((|x|m+|y|m))3

{
2
[
mx|x|m−2(x−y)−(|x|m+|y|m)

]2

−m(m−1)x2|x|m−4(x−y)2(|x|m+|y|m)
}

and

fxx · fyy− f 2
xy

=
1

(|x|m+|y|m)6

{
m2(m−1)2x2|x|m−4y2|y|m−4(x−y)4

−2m(m−1)x2|x|m−4(|x|m+|y|m)(x−y)2[my|y|m−2(x−y)+(|x|m+|y|m)
]2

−2m(m−1)y2|y|m−4(|x|m+|y|m)(x−y)2[mx|x|m−2(x−y)−(|x|m+|y|m)
]2
}

.

Since 0≤m< 1 and −m(m−1)> 0, hence fxx > 0, fxx · fyy− f 2
xy > 0, which imply that the

f (x,y) is a convex function.
Take x :=α, y :=β in (3.5) and the Jensen’s inequality shows that

ˆ
Ω

1

| α1+α2
2 |m+|

β1+β2
2 |m

∣∣∣α1+α2

2
− β1+β2

2

∣∣∣2dx

≤1
2

[ˆ
Ω

|α1−β1|2
|α1|m+|β1|m

dx+
ˆ

Ω

|α2−β2|2
|α2|m+|β2|m

dx
]
.
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That is ˆ
Ω

1
|α1+α2|m+|β1+β2|m

|(α1+α2)−(β1+β2)|2dx

≤ 1
2m−1

[ˆ
Ω

|α1−β1|2
|α1|m+|β1|m

dx+
ˆ

Ω

|α2−β2|2
|α2|m+|β2|m

dx
]
. (3.6)

The combination of (3.4) and m :=2−q in (3.6) concludes the proof.

Lemma 3.5 (Uniqueness of σCR ). The discrete stress σCR is unique and satisfies the discrete
Euler-Lagrange equation in the sense that

ˆ
Ω

σCR ·∇NC vCR dx=
ˆ

Ω
(Π0 f ) vCR dx for vCR ∈CR1

0(T ).

Proof. For any 0< ε<1 and any vCR ∈CR1
0(T ), let

δε(x) :=
W(∇NC uCR(x)+ε∇NC vCR(x))−W(∇NC uCR(x))

ε
for all x∈Ω.

Since uCR is a minimizer,

0≤ ENC(uCR +εvCR)−ENC(uCR)

ε
=

ˆ
Ω

δε(x)dx−Fh(vCR). (3.7)

Since W is smooth, it follows for almost every x∈Ω, that

|δε(x)|=
∣∣∣1

ε

ˆ 1

0

DW(∇NC uCR(x)+εs∇NC vCR(x))
∂s

ds
∣∣∣

≤
ˆ 1

0
|DW(∇NC uCR(x)+εs∇NC vCR(x))·∇NC vCR(x)|ds.

The formula |DW(A)|= ||A|p−2A|= |A|p−1 and the Young inequality imply that

|δε(x)|≤
ˆ 1

0
|∇NC uCR(x)+εs∇NC vCR(x)|p−1 |∇NC vCR(x)|ds

.|∇NC vCR(x)|p+|∇NC uCR(x)|p.

The Lemma 3.2 imply that
´

Ω(|∇NC vCR(x)|p+|∇NC uCR(x)|p) dx exists, hence the Lebesgue
dominate convergence theorem guarantees

lim
ε→0

ˆ
Ω

δε(x)dx=
ˆ

Ω
DW(∇NC uCR)·∇NC vCR dx.

This and (3.7) imply

0≤
ˆ

Ω
DW(∇NC uCR)·∇NC vCR dx−Fh(vCR).
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Since vCR is arbitrary in CR1
0(T ), this proves the asserted discrete Euler-Lagrange equa-

tion.
The uniqueness of uCR leads to the uniqueness of the stress σCR =DW(∇NC uCR). This

concludes the proof.

Lemma 3.6 (see [13]). It holds σ∗
CR
∈Q( f ,T )⊆H(div,Ω).

Proof of Theorem 3.1. For minimizer uCR of (2.2), the duality relation σCR =DW(∇NC uCR)
implies that∇NC uCR ∈∂W∗(σCR). The choice of α :=Π0σdRT |T =σdRT (mid(T)), β :=Π0σ∗

CR
=

σCR , and b :=∇NC uCR in Lemma 3.3 leads to

|〈Π0σdRT ,Π0σ∗
CR
〉|2q

≤c(p)
ˆ

Ω
W∗(Π0σdRT )−W∗(Π0σ∗

CR
)−∇NC uCR ·(σdRT−σCR)dx

≤c(p)
(
E∗(Π0σ∗

CR
)−E∗(Π0σdRT )−

ˆ
Ω
∇NC uCR ·(σdRT−σCR)dx

)
.

An integration by parts and Lemma 3.5 with σdRT ∈Q( f ,T ) show that the last term van-
ishes. This and E∗d :=E∗◦Π0 prove

|〈Π0σdRT ,Π0σ∗
CR
〉|2q≤ c(p)(E∗d(σ

∗
CR
)−E∗d(σdRT )).

Since c(p)>0 for all p≥2, σdRT ∈argmaxE∗d(Q( f ,T )) and σ∗
CR
∈Q( f ,T ), the upper bound

is non-positive. Hence, Π0σdRT =σCR and E∗d(σ
∗
CR
)=E∗d(σdRT ).

The duality relation σCR =DW(∇NC uCR) with the minimizer uCR of (2.2) is equivalent
to

W∗(σCR)+W(∇NC uCR)=σCR ·∇NC uCR .

An integration of this reads
ˆ

Ω
W(∇NC uCR)dx−

ˆ
Ω

σCR ·∇NC uCR dx=−
ˆ

Ω
W∗(σCR)dx.

The definition of ENC and Lemma 3.5 shows that the left-hand side equals ENC(uCR). More-
over,

−
ˆ

Ω
W∗(σCR)dx=−

ˆ
Ω

W∗(Π0σdRT )dx=E∗d(σdRT ).

Hence, E∗(σCR)=E∗d(σdRT )=ENC(uCR). This concludes the proof. �

4 Error analysis of Crouzeix-Raviart NCFEM

This section analyzes the error estimates of the Crouzeix-Raviart NCFEM.
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4.1 A priori error analysis

The following Theorem 4.1 guarantees the convergence estimates of the Crouzeix-Raviart
NCFEM.

Theorem 4.1. (A priori error estimate). The discrete stress σCR satisfies

|〈σ,σCR〉|2q

≤c(p)max

{
osc( f ,T )‖u‖p,Ω ,

(
κ ·osc( f ,T )

+sup
x∈Ω

(|σ|1−q/2+|Π0σ|1−q/2)|〈σ,Π0σ〉|q
)
|||u−uCR |||NC,p,Ω

}
.

Proof. The choice a :=∇NC uCR , b :=∇u, and α :=σCR in Lemma 3.3 leads to

|〈σ,σCR〉|2q≤ c(p)
(

E(u)−ENC(uCR)+F(u−uCR)−
ˆ

Ω
σCR ·∇NC(u−uCR)dx

)
.

Since σCR ∈P0(T ;R2) and
ˆ

Ω
σCR ·∇udx=

ˆ
Ω

σCR ·∇NC INC udx=Fh(INC u).

The combination with the previous estimate verifies

|〈σ,σCR〉|2q+c(p)
(

ENC(uCR)−E(u)
)
≤ c(p)(F(u)−Fh(INC u)). (4.1)

The choice a :=∇u, b :=∇NC uCR , and α :=σ in Lemma 3.3 leads to

|〈σ,σCR〉|2q+c(p)
(

E(u)−ENC(uCR)

)
≤ c(p)

(
F(uCR)−

ˆ
Ω

σ·∇NC uCR dx
)

.

The conforming P3 companion u3∈P3(T )∩V with uCR = INC u3 shows

−
ˆ

Ω
σ·∇NC uCR dx=−

ˆ
Ω

σ·∇u3dx+
ˆ

Ω
σ·∇NC(u3− INC u3)dx

=−F(u3)+

ˆ
Ω
(I−Π0)σ·(I−Π0)∇u3dx.

The combination of the preceding estimates results in

|〈σ,σCR〉|2q+c(p)
(

E(u)−ENC(uCR)

)
≤c(p)

(
F(INC u3−u3)+

ˆ
Ω
(I−Π0)σ·(I−Π0)∇u3dx

)
. (4.2)
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The (4.1)-(4.2) imply that

|〈σ,σCR〉|2q+c(p)|E(u)−ENC(uCR)|

≤c(p)max
{

F(u)−Fh(INC u), F(INC u3−u3)+

ˆ
Ω
(I−Π0)σ·(I−Π0)∇u3dx

}
. (4.3)

The Hölder inequality and Lemma 3.1 prove

F(INC u3−u3)=

ˆ
Ω
( f−Π0 f )(INC u3−u3)dx≤κ osc( f ,T ) |||u3− INC u3|||NC,p,Ω

,

F(u)−Fh(INC u)=
ˆ

Ω
f (u− INC u)dx+

ˆ
Ω
( f−Π0 f )INC udx

=

ˆ
Ω
( f−Π0 f )(u− INC u)dx+

ˆ
Ω
( f−Π0 f )INC udx

≤osc( f ,T ) ‖u‖p,Ω ,ˆ
Ω
(I−Π0)σ·(I−Π0)∇u3dx

≤|<σ,Π0σ> |q ·
(ˆ

Ω
(|σ|2−q+|Π0σ|2−q)|(I−Π0)∇u3|2dx

)1/2
.

This and Lemma 3.2 prove the assertion.

4.2 A posteriori error analysis

This subsection is devoted to an a posteriori error analysis of the CR-NCFEM. The error
analysis is based on the boundness of minimizers. Recall that any v∈W1,p

0 (Ω) satisfies
the Friedrichs inequality

‖v‖p,Ω≤CF|||v|||p,Ω

with CF ≤width(Ω)/π. Any vCR ∈ CR1
0(T ) satisfies the discrete Friedrichs inequality

(see [5, pp. 301]) with some constant CdF≈1

‖vCR‖p,Ω≤CdF|||vCR |||NC,p,Ω
.

Theorem 4.2 (A posteriori error estimate). The discrete stress σCR and the constants C1 :=

2c(p)Cp−2
P ‖ f ‖

p−2
p−1
q,Ω and C2 :=CFCP‖ f ‖

1
p−1
q,Ω satisfy

1
2
|〈σ,σCR〉|2q≤ c(p)max

{
F(uCR−u3)+C1|||uCR−u3|||2NC,2,Ω

, C2 ·osc( f ,T )
}

, (4.4)

where CP :=(p·CF)
1

p−1 .
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Proof. The energy density W(A)= |A|
p

p and the Friedrichs inequality shows that

1
p
|||u|||pp,Ω−CF‖ f ‖q,Ω|||u|||p,Ω≤E(u).

Since E(u)≤E(0)=0, this implies

|||u|||p,Ω≤ (pCF‖ f ‖q,Ω)
1

p−1 . (4.5)

Recall that |∇u|p−2= |σ|2−q, The estimate (4.3) and the Hölder inequality imply

|〈σ,σCR〉|2q

≤c(p)max

{
CF ·osc( f ,T )|||u|||p,Ω,F(uCR−u3)

+2sup
x∈Ω
|∇u|p/2−1|〈σ,Π0σ〉|q|||uCR−u3|||NC,2,Ω

}
.

The Young inequality shows

2c(p)sup
x∈Ω
|∇u|p/2−1|〈σ,Π0σ〉|q|||uCR−u3|||NC,2,Ω

≤1
2
|〈σ,Π0σ〉|2q+2c2(p)sup

x∈Ω
|∇u|p−2|||uCR−u3|||2NC,2,Ω

.

The combination of preceding displayed inequalities concludes the proof.

5 Error analysis of dRT MFEM

This section analyzes the error of the discrete Raviart-Thomas MFEM.

5.1 A priori error analysis

Theorem 3.1 and Theorem 4.1 allow an immediate a priori error estimate.

Theorem 5.1 (A priori error estimate). The discrete stress σdRT satisfies

|〈σ,σdRT 〉|2q

≤ 1
21−q ‖hT (Π0 f )‖q

q,Ω+
c(p)
21−q max

{
osc( f ,T ) ‖u‖p,Ω ,

(
κ ·osc( f ,T )

+2sup
x∈Ω
|∇u|p/2−1|〈σ,Π0σ〉|q

)
|||u−uCR |||NC,p,Ω

}
.
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Proof. The Lemma 3.4 and Theorem 3.1 lead to

|〈σ,σdRT 〉|2q≤
1

21−q

(
|〈σ,σCR〉|2q+

∣∣∣〈Π0 f
2

(·−mid(T )),0
〉∣∣∣2

q

)
≤ 1

21−q (|〈σ,σCR〉|2q+‖hT (Π0 f )‖q
q,Ω). (5.1)

This and Theorem 4.1 conclude the proof.

The further a posteriori error analysis requires that the arising subgradients are the
piecewise gradients of minimizers of ENC in CR1

0(T ), that is Π0(−∂E∗d(σdRT)) =∇NC uCR

(refer to [13]).

5.2 A posteriori error analysis

This subsection is devoted to an a posteriori error analysis of the dRT-MFEM.

Theorem 5.2 (A posteriori error estimate). The discrete stress σdRT and the constants C2 :=

CFCP‖ f ‖
1

p−1
q,Ω and M :=Cp−2

P ‖ f ‖
p−2
p−1
q,Ω +Cp−2

dP ‖ f ‖
p−2
p−1
q,Ω satisfy

1
2
|〈σ,σdRT 〉|2q≤

1
21−q ‖hT f ‖q

q,Ω+
c(p)
21−q max

{ |||u3|||p,Ω

j1,1
osc( f ,T )

+
c(p)
22−q M|||INC u3−u3|||2NC,2,Ω

,C2 ·osc( f ,T )
}

. (5.2)

Proof. The choice α :=σ, β :=Π0σdRT =σCR , and b :=∇NC uCR in Lemma 3.3 leads to

|〈σ,Π0σdRT 〉|2q+c(p)(E∗(σ)−E∗d(σdRT ))≤−c(p)
ˆ

Ω
∇NC uCR ·(σ−Π0σdRT )dx.

The conforming P3 companion u3∈P3(T )∩V with uCR = INC u3 from Lemma 3.2 shows

−
ˆ

Ω
(σ−Π0σdRT )·∇NC uCR dx

=−
ˆ

Ω
(σ−σdRT )·∇NC(INC u3−u3)dx−

ˆ
Ω
(σ−σdRT )·∇u3dx

=

ˆ
Ω
(σ−σdRT )·(I−Π0)∇u3dx+

ˆ
Ω

u3div(σ−σdRT )dx.

The combination of the preceding results reads

|〈σ,σCR〉|2q+c(p)(E∗(σ)−E∗d(σdRT ))

≤c(p)
(ˆ

Ω
(σ−σdRT )·(I−Π0)∇u3dx−

ˆ
Ω
(u3−Π0u3) (I−Π0) f dx

)
. (5.3)
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The sum of (5.3) and (4.1) plus Theorem 3.1 show that

|〈σ,σCR〉|2q+c(p)|E∗(σ)−E∗d(σdRT )|

≤c(p)max
{

F(u)−Fh(INC u),
ˆ

Ω
(σ−σdRT )·(I−Π0)∇u3dx−

ˆ
Ω
(u3−Π0u3) (I−Π0) f dx

}
.

The inequality (5.1) implies

|〈σ,σdRT 〉|2q≤
1

21−q ‖hT f ‖q
q,Ω+

c(p)
21−q max

{
F(u)−Fh(INC u),

ˆ
Ω
(σ−σdRT )·(I−Π0)∇u3dx

−
ˆ

Ω
(u3−Π0u3) (I−Π0) f dx

}
.

A piecewise Poincaré inequality applies in the last term with the constant hT/j1,1 from
[23]. This shows that

−
ˆ

Ω
(u3−Π0u3) ( f−Π0 f )dx≤

|||u3|||p,Ω

j1,1
osc( f ,T ). (5.4)

The Young inequality and Π0∇u3=∇NC INC u3 show that

c(p)
21−q

ˆ
Ω
(σ−σdRT )·(I−Π0)∇u3dx

≤1
2
|〈σ,σdRT 〉|2q+

c2(p)
23−2q sup

x∈Ω
(|σ|2−q+|σdRT |2−q)|||INC u3−u3|||2NC,2,Ω

.

Recall that Π0(−∂E∗d(σdRT)) =∇NC uCR . This and |∇u|p−2 = |σ|2−q, |∇uCR |p−2 = |σCR |2−q

conclude the proof.

6 Numerical experiments

This section is devoted to the numerical investigation of the lowest-order schemes of
NCFEM and dRT-MFEM for the p-Laplace Problem on square domain and L-shaped
domain.

6.1 Numerical realization

The edge-oriented basis functions ψE for any interior edge E∈E(Ω) in the triangulation
T and their enumeration ψ1,··· ,ψm at hand allows for the representation uCR =∑m

j=1 xjψj

with the unknown coefficient vector x=(x1,··· ,xm). The data structures and the discrete
Euler-Lagrange equations are realized as in [7] and then minimized with the Matlab stan-
dard function fminunc and default parameters and the input of ENC , DENC , and D2ENC at
x.



D. J. Liu, A. Q. Li and Z. R. Chen / Adv. Appl. Math. Mech., 10 (2018), pp. 1365-1383 1379

6.2 A posteriori error control

The numerical experiments concern the practical application of the a posteriori error es-
timates (4.4) and (5.2) and their efficiency. Denote the left-hand side (LHS) of the two
estimates by LHS(4.4) and LHS(5.2). The guaranteed upper bounds (GUB) read

GUB(4.4)= c(p)max
{

F(uCR−u3)+C1|||uCR−u3|||2NC,2,Ω
,C2 ·osc( f ,T )

}
;

GUB(5.2)=
1

21−q ‖hT f ‖q
q,Ω

+
c(p)
21−q max

{
|||u3|||p,Ω

j1,1
osc( f ,T )+ c(p)

22−q M|||INC u3−u3|||2NC,2,Ω
,C2 ·osc( f ,T )

}
.

The triangulations are either uniform with successive red-refinement or with an adap-
tive mesh-refinement algorithm with initial mesh T0 and then, for any triangle T of a
triangulation T` at level `=0,1,2,3,··· , set

η2(T)= |||INC u3−u3|||2NC,2,T
+‖hT f ‖q

q,T.

Given all those contributions, mark some setM` of triangles in T` of minimal cardinality
with the bulk criterion

1/2 ∑
T∈T`

η2
` (T)≤ ∑

T∈M`

η2
` (T).

The refinement of all triangles in M` plus minimal further refinements to avoid hang-
ing nodes lead to the triangulation T`+1 within the newest-vertex bisection. The choice
of the refinement-indicator η(T) is motivated by the convergence theory of adaptive
mesh-refining algorithms e.g., in the review article [8] with further details on the mesh-
refinement. The convergence history plots display the left-hand sides LHS(4.4), LHS(5.2)
and the upper bounds GUB(4.4), GUB(5.2) as function of the number of degrees of free-
dom (ndof) in a log-log scale.

6.3 Example 1

Consider the p-Laplace Problem on the square domain Ω :=(0,1)2 with the exact solution

u(r)=(p−1)(1/(σ+2))1/(p−1)(1−r(σ+p)/(p−1))/(σ+p) for |x|= r

and right-hand side f (r)= rσ for p=4, σ=7. The reference value for the minimal energy
E=0.082674 stems from Aitken extrapolation.

Fig. 1 and Fig. 2 display the global upper bounds (GUB) and the corresponding error
terms (LHS) of the estimates from (4.4), (5.2) as explained in Subsection 6.2 for uniform
and adaptive mesh-refinement. Fig. 3 displays the corresponding sequences of triangu-
lations generated by adaptive FEM for (4.4). The exact solution is smooth and hence
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Figure 1: Convergence history of CR method on square domain.
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Figure 2: Convergence history of dRT method on square domain.
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Figure 3: Adaptively generated triangulations T` for `=2,4,6,8 on square domain.

uniform mesh-refining leads to optimal convergence rates (on structured grids with pos-
sible super convergence phenomena) and hence the adaptive mesh-refining is not neces-
sarily better (on unstructured grids without higher symmetry). Lemma 3.2 implies that
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|||u3|||p,Ω is computable and is bounded by some generic constant.

6.4 Example 2

Consider the p-Laplace Problem on the L-shaped domain Ω:=[−1,1]2\(0,1]×(0,−1] with
f ≡ 1. The extrapolated energy reads E=−0.34337. Fig. 4 and Fig. 5 display the global
upper bounds (GUB) and the corresponding error terms (LHS) of the estimates from
(4.4), (5.2) for uniform and adaptive mesh-refinement. Fig. 6 displays the corresponding
sequences of triangulations generated by adaptive FEM for (4.4). Since the constant right-
hand side f ≡ 1 leads to vanishing oscillations osc( f ,T )= 0, the global upper bound in
(4.4) and (5.2) is fully computable.

6.5 Conclusions

The proposed the dRT-MFEM of the p-Laplace problem is equivalent to CR-NCFEM. The
numerical examples shows that the convergence results of CR-NCFEM and dRT-MFEM
are consistent with the theoretical analysis.
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Figure 4: Convergence history of CR method on L-shaped domain.
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Figure 5: Convergence history of dRT method on L-shaped domain.
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Figure 6: Adaptively generated triangulations T` for `=2,4,6,8 on L-shaped domain.
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