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Abstract. In this paper the authors discuss the numerical simulation problem of three-
dimensional compressible contamination treatment from nuclear waste. The mathe-
matical model is defined by an initial-boundary nonlinear convection-diffusion sys-
tem of four partial differential equations: a parabolic equation for the pressure, two
convection-diffusion equations for the concentrations of brine and radionuclide and a
heat conduction equation for the temperature. The pressure appears within the con-
centration equations and heat conduction equation, and the Darcy velocity controls the
concentrations and the temperature. The pressure is solved by the conservative mixed
volume element method, and the order of the accuracy is improved by the Darcy ve-
locity. The concentration of brine and temperature are computed by the upwind mixed
volume element method on a changing mesh, where the diffusion is discretized by a
mixed volume element and the convection is treated by an upwind scheme. The com-
posite method can solve the convection-dominated diffusion problems well because it
eliminates numerical dispersion and nonphysical oscillation and has high order com-
putational accuracy. The mixed volume element has the local conservation of mass and
energy, and it can obtain the brine and temperature and their adjoint vector functions
simultaneously. The conservation nature plays an important role in numerical simula-
tion of underground fluid. The concentrations of radionuclide factors are solved by the
method of upwind fractional step difference and the computational work is decreased
by decomposing a three-dimensional problem into three successive one-dimensional
problems and using the method of speedup. By the theory and technique of a priori
estimates of differential equations, we derive an optimal order result in L2 norm. Nu-
merical examples are given to show the effectiveness and practicability and the com-
posite method is testified as a powerful tool to solve the well-known actual problem.
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1 Introduction

An upwind mixed volume element-fractional step difference method on a changing mesh
is proposed and its numerical analysis is shown in this paper for compressible nuclear
waste contamination disposal in porous media. High-level nuclear waste in underground
repositories is diffused and gives destructive disaster once natural disaster, such as earth-
quake or rock fracture, takes place. So it is important to understand how the pollution
spreads and to obtain the safeguard measures. Numerical simulation of this problem
plays an important role in modern energy mathematics, and the research on computa-
tional method of nuclear waste in porous media can give valuable suggestions for dispos-
ing and analyzing the contamination. The compressible three-dimensional mathematical
model is formulated by an initial-boundary system of coupled convection-diffusion par-
tial differential equations to describe the transport in underground environment. The
physical features are stated by the movement of flow, the heat conduction migration, the
miscible displacement of main contamination (brine) and the miscible displacement of
trace contamination factors (radionuclide). The mathematical description is stated below
following the work on slight-compressibility by Douglas [1-3].
Fluid:

9 _
¢1£+Vu:_q+R;1 X:(x/y/Z)TGQf te]:<O’T]’ (11&)

u:—;Vp, XeQ, tej, (1.1b)

where p(X,t) and u(X,t) are the fluid pressure and Darcy velocity, respectively. ¢ =¢cy,,
and g=q(X,t) is the production. R, =R.(¢) = [cs¢Ks s/ (14c;)](1—¢) is a salt dissolution
term of main contamination, x(X) is the permeability of the rock, and (¢) is the viscosity
dependent on the concentration of main contamination ¢.

Heat:

ap . AT
dl(p)a—f%—dzg—kcpu-VT—V-(EHVT):Q(u,p,T,é), XeQ, te], (12

where T is the temperature. I denotes an identity matrix, di(p) = ¢cy[vo+(p/p)], d2=
¢cp+(1=¢)orppr, En=Dcpuw+K}, I, Ky =%/ po. D=(Dj;)=(ar|u|d;+(ar —ar)uu;/ [ul),
Q(u,p,T,6)=—{[Voo—cpVTo]-u+[vo+c,(T—To)+(p/p)][-q+Ri]} gL —qgH —qn. Take
Ey=Kj],I in general.

The concentration of brine (main contamination):

<pg‘;+u-V@—v-(ECVé):f(@), XeQ, tej, (1.3)



1386 C.E Li, Y. R. Yuan and H. L. Song / Adv. Appl. Math. Mech., 10 (2018), pp. 1384-1417

where ¢ is the porosity, E.=D+D,,I, Ec=D+Dy,1, f(¢)=—¢{[cs¢Ksfs/(14cs)](1—¢)} —
qc _Rs. Take EC = DmI.
The concentrations of radionuclide (trace contamination factors):

ac d
(,bKlaftl—}—u'VCl—V'(ECVC1)+d3(CZ)£

:fl(@,cl,CZ,”-,CN), XeQ, te], 1=12,--,N, (1.4)
where ¢; denotes the concentration of I-th trace contamination (I = 1,2,---,N),
ds(cr) = pewer(Ki—1), and fi(&,c1,c2,-++,en) = ci{q—[espKsfs/ (1+¢5)] (1 =€) } —qe1—qe,+
N
Gor+ _Zlkj)\jKﬂPCj — MKy
]:

We assume that no flow of fluid occurs across the boundary (Impermeable boundary
conditions):

u-v=0, (X,t)€0Q1x], (1.5a)
(EcVé—eu)-v=0, (X,t) €3], (1.5b)
(EcVei—cpu)-v=0, (X,t)eoQx], 1=1,2,---,N. (1.5¢)

Q) is a bounded domain of R?, and v is the outer normal vector to the boundary surface
0Q). No heat transports across the boundary of (1.2)

(EHVT—cpu)-v=0, (X,t)coQx]. (1.5d)
Furthermore, initial conditions are given as follows

p(X,0)=po(X), &(X,0)=06(X), a(X0)=cp(X), [=12:N, (1.6a)
T(X,0)=Ty(X), XeQ. (1.6b)

Douglas, Ewing, Russell, Wheeler and Yuan gave a series of research on the incom-
pressible two-phase displacement problem [3-8]. For modern numerical simulation of
energy and environmental sciences especially of seepage transportation, the compress-
ibility must be considered to avoid numerical distortion [9,10]. Douglas and Yuan et al.
proposed several numerical methods for solving two-phase compressible displacement
problem [3, 8,11, 12] such as the method of characteristic finite element [8, 13, 14], the
characteristic finite difference [15,16], fractional step differences [8,17]. The finite volume
element method [18, 19] has some advantages, such as the simplicity of the difference
method, the high-order accuracy of the finite element method and the local conservation
of mass, so it is an effective method to solve partial differential equations. The mixed
finite element method was argured in [20-22] for solving the pressure and Darcy ve-
locity simultaneously and the accuracy was improved by one order. A mixed volume
element combining the above two methods was discussed in [3,23, 24], and numerical
experiments were presented in [25,26] to demonstrate the efficiency. Theoretical analy-
sis was given for an elliptic problem in [27-29], along with a general discussion of the
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form of the mixed volume element method. Rui and Pan adopted this method to argue
numerical computation for Darcy-Forchheimer flow problems in [30,31]. On numerical
simulation of nuclear waste disposal problem, Yuan and Ewing studied the methods of fi-
nite element and finite difference carefully and discussed the actual applications [2,9,12].
Adaptive finite element method, whereby the mesh changes dynamically during the sim-
ulation, has become an important tool to solve partial differential equations efficiently
and accurately. Numerical solutions at some sharp bumps on special regions can be ap-
proximated excellently. In [32], Dawson and Kirby developed a backward-Euler mixed
finite element method to solve the heat equation on dynamically changing meshes, and
demonstrated that numerical solutions approached exact solutions in an optimal rate un-
der a special changing mesh. On the basis of the previous studies, an upwind mixed
volume element-fractional step difference method on a changing mesh is proposed for
three-dimensional nuclear waste contamination problem in this paper. The pressure and
Darcy velocity are computed simultaneously by the conservative mixed volume element
method, and the accuracy is improved by one order for the Darcy velocity. The concen-
tration of brine and the temperature are computed by the upwind mixed volume element
scheme on a dynamically changing mesh, where the upwind scheme and mixed volume
element are used to approximate convection and diffusion, respectively. The compos-
ite scheme can avoid numerical dispersion and decrease the time truncation error, so it
works well in solving convection-dominated diffusion problems. The brine concentra-
tion and temperature and their adjoint vector functions are computed simultaneously.
Since piece-wise-defined constant functions are taken as test functions, it has the nature
of mass and energy conservation, an important law in numerical simulation of seepage
mechanics. By the theory and special technique of a priori estimates of differential equa-
tions, we obtain optimal order error estimates. The concentrations of trace contamination
factors, whose computational work is the largest, are treated by upwind fractional step
differences. The computation on the whole domain is divided into three one-dimensional
problems, where the algorithm of speedup is used [17]. In this paper numerical exper-
iments are given for a simplified model problem of convection-diffusion equation, then
numerical data show that this method is effective and support theoretical result. More-
over, this method gives an efficient tool for solving the challenging benchmark prob-
lem [1-3,8,17,33,34].

The common notation and norms of Sobolev space are adopted in this paper. The
regularity assumptions of (1.1)-(1.6) are defined by

peL®(H"Y),
(R) ue L®(H(div))NL*®(WL)NWL(L®)NH?(L?),
&c(1=1,2,---,N), TeL®(H2)NH (H)NL®(WL)NH2(L?).

We suppose that the coefficients of (1.1)-(1.6) satisfy the following positive definite con-
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ditions

~—

O<a*§K(X
© u(c)
0<K,<K;<K* 1=12,---,N, 0<E,<E.<E*, O0<E,<Eg<E*

<a*

7 0 < 4)* Scpl()bl S (Ib*r O < d* S dlld2/d3 S d*/

where ay, a*, ¢., ¢*, d., d*, K., K*, E,, E*, E, and E* are positive constants. The coeffi-
cients are supposed to be bounded locally and be Lipschitz continuous.

In the following discussion the symbols K and & denote a generic positive constant
and a generic small positive number, respectively. They have different definitions at dif-
ferent places.

2 Notations and preparations

Three different partitions are constructed to define the method of upwind mixed vol-
ume element-fractional step differences on a changing mesh. The large-step partition is
nonuniform for the pressure and Darcy velocity. The mid-step nonuniform partition de-
pendent on t is defined to obtain the concentration of main contamination factor and the
temperature, that is, the partitions maybe are different at different time levels. The small-
step uniform partition is defined for the concentrations of trace contamination factors.
The large-step and mid-step partitions are considered.

For simplicity, to discuss three-dimensional problems, take Q= {[0,1]}3, and let 0Q)
denote the boundary. Define

53(2 O:x1/2<x3/2<-~-<xNX,1/2<xNx+1/2:1,
Oy 0=y1/2<Y3/2<--<YNn,-1/2 <YN,+1/2=1,
0z: 0=z1/2<z3/0<---<zN,-1/2<2ZN,41/2=1.

Q) is partitioned by 6, x 6, x6;. Fori=1,2,---,Ny, j=1,2,---,N,, and k=1,2,---,N;, let Q=
{(xy2)xic12<x<xiy172,¥j-1/2<Y<Vj+1/22k-1/2<2<Zky1/2}, Xi= (Xi—1/2+Xi11/2) /2,
yi=Wji12+Yj41/2) /2, 2k = (2k—1/2FZk41/2) /2. My = Xi1 72— Xio172, by, = Yjv12—Yj-1/2,
hy=zky1/2—2k-1/2- Miv1/2= (ha s, ) /2= (Xip12—Xi-1/2) /2, By jr1 2= (hy,+hy,, ) /2=
Yiv1/2=Yj-1/2)/2, hojir/2 = (hz -z ) /2= (Zks1/2—2Zk—172) /2. hx = maxi<i<n, {Fx; },
hy =maxi<j<n, {hy,}, hz =maxi<ken. { Iz}, by = (hfc—khi—i—hg)l/z. The partition is regular
if there exist two positive constants & and &, such that
i > i >
(min {h}Zarhs, - min {hy}>aihy,
15(11;]1\]2{}12,(} >wrhy, min{hy,hy,h,} >aomax{hy,hy,h,}.

Here a7 and ay depend on the partition of ). A simple illustration of N, = 4,
N, =3 and N, =3 is shown in Fig. 1. Define an experimental space by Mld(éx) =
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Figure 1: Nonuniform partition.

{feC'01]: flo, € pa(Q), i =1,2,--- Ny}, where Q; = [x;_1/2,%i11/2] and pa(Q;) de-
notes a space consisting of all the polynomial functions of degree at most d con-
stricted on (). f(x) is possibly discontinuous on [0,1] if | = —1. M¥(5,) and
MY(6;) are defined similarly. Let S, = M°,(6:)@M°,(6,) @M°,(6,), V}, = {w|w =
(w*,w¥,w?), w* € M}(6x) @M (6,) @M° (32), w¥ € M® | (6x) @M} (6y) @M (82), w* €
M (6,) @M, (6,) @M}(6-) , w-fl|[5o =0}. For a grid function v(x,y,z), let Vijks Vit1/2,jks
0 j+1/2,k and vjj 41,2 denote the values of v(x;,yj,zk), v(Xiy1/2,Yj,2k), 0(Xi,Yj41/2,2k) and

0(Xi,Yj, Zk41/2), respectively.
Inner products and norms are introduced,

Ny Ny N,
('U,T/U)m = Zl gkzlhxihyjhzkvijkwijk,
1=1j=1k=
Ny Ny N,
(v’w)x = ZZ Zhxi—l/zhyjhzkvi—l/Z,jkwi—l/Z,jk/
i=1j=1k=1
Nx Ny Nz
(U,Z/U)y = E 2 2 hxihyjq/zthUi,j—l/Z,kwi,j—l/Z,k/
i=1j=1k=1
Ny Ny N
(U’w)z = Z 2 E hxz’hyjhzkﬂ/zUij,kfl/Zwij,k—l/zr
i=1j=1k=1
Pl = (o), s=mxyz |[ollo= 1§i§Nx,1gg)I\(fy,1§k§Nz [viji|,
‘ ‘U‘ ’oo(x) = 1§i§Nx,1gg)I\(fy,1§k§Nz ’Ui—l/Z,]'k‘/ ’ ‘U‘ ‘oo(y) = 1§i§Nx,1gjlg)I§Iy,1§k§Nz |Ui,j—1/2,k‘,
| ‘7)‘ ’oo(z) = 1§i§Nx,12’]‘12§y,1§k§Nz |Ui]',k_1/2 ‘ .
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Then a vector function w= (w*,w¥,w?)T is measured by

x||2 y||2 Z|]2 172 x Y z
1wl = (™ B+ B4R 2) 198 oo = 0™ ooy + 120 ey + 207 e
1/2
[l = (120" |5 Heo? 5,4 0] 5,) 77, 1 wleo = [0 Joo + 0¥ oo + ][] |-

Define Wy(Q) = {UELP< )‘m eLr (Q), n—l—TZO, ZIO,l,"‘,Tl; 7’:0,1,"',7’1,

n=0,1,---,m; 0<p<oo} and let H"(Q)) = W}"(Q). Inner product and norm in L*((}) are
denoted by (-,-) and ||-||. For a function v € Sy, it clearly holds that

|[o]|m=1]]. (2.1)

Introduce the difference operators and other notations as follows,

Vit1,jk — Vijk Ui, j+1,k — Vijk
[dxv]i+1/2,jk = 7@ 1 [dyv] ij+1/2k hy 4172 ’
_ Uijk+1— Uijk _ Wit1/2,jk — Wi-1/2,jk
[d.0];; k12T T 1 [Dxw] ijk = hy ’
Z, i
Wij+1/2,k —Wij—1/2k Wijk+1/2— Wijk—1/2
[Dyw] ijk = 2 ’ [Daw];je= h ’
Yj Zk
y y
e Wit 2,k T W01 2k o Wiir1/2k T Wij 172k
1]k - 2 ’ ijk 2 ’
Z Z
o Wikt Wik1/2 i} By i1 i
Wik = 2 ’ Yijk = op i+1/2 Wik 2n 1/2 WLk
X,1 X,1
hy i h h
=Y yj+1 Y. 7 Nzr4a zk
w;; Wijk+ Wij+1,ks Wik =57 Wik + 57— Wijk+1,
UK 2hy i T 2y iy U DM T 2hapiaye

and W;j = (@7 . wl]k) Wijk = (O w0

ijk” *ijk” ijk’

l]k) . ds(s=x,y,z) and Ds(s = x,y,z) are

difference quotient operators independent of the coefficient D in (1.3). Let L denote a

positive integer, At=T/L, t" =nAt, v" =v(t") and d;v" = (v" —

v" 1) /At.

On the basis of the above notation, several preliminary statements are given.

Lemma 2.1. Forve S, and we 'V,
(0,Dxw") =—(dro,w"),

Lemma 2.2. Forwe 'V,

(UrDywy)m =—(dyv,0")

, (U,Dzwz)m =— (dzv,wz)z. (2.2)

y

1W< [[[w]]] (2.3)

Proof. 1t is required to prove ||@*||,; < |[|w* ||y, ||@¥|]m < ||w¥|], and ||D* ||, < ||w?|];. From
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the fact that

Ny Ny N;

Z Z Z hxihyjhzk (wék)z

i=1j=1k=1
y N

+ (w* )2
<22h thZ 1+1/2]k) (wz—l/z,]k) hx’-

j=1k= 2
Ny N,

_Zzhy/th(Z xzzl/z Wi 12,k +Z Wi 1/2,jt) )

j=1k=1

NV Nz Nx h
i—1/2+hy,
=) Y Iyha ) S (W )
=2

j=1k=1
Ny Ny N

= Z Z Z hx,i—l/zhyjhzk (wffl/z,jk)zl

i=1j=1k=1

we have ||@*|],;, <||w*||x. The other two terms are proved in a similar manner.

Lemma 2.3. For g€ Sy,

17 L < Mllqllm, 1§71y <Mllqllm, 7] < Ml[q]|m,
where M is a constant independent of q and h.
Lemma 2.4. ForweV,

[ < [Dxw™[ |, (| [[y <[|Dyw!|m,  [|w*]]z <|[Dz0| |-

1391

(2.4)

(2.5)

Proof. ||w*||x <||Dxw*||s is proved first. The other two inequalities are discussed simi-

larly. From the fact that

1 w* L —wx
x . x x . i+1/2,jk i—1/2,jk 1/2 1/2
Wi1/2,jk = Z (wi+1/2,jk_wz‘—1/2,jk) = Z I, hy “h

i=1 i=1 i

and by Cauchy inequality, we have
Ny 2
(wf+1/2,jk)2 <X Z%hXi ( [Dxw”] ijk) :
i=

Multiplying both sides by hy ;11/2hy;hz, and making the summation, we have

Ny / Nz N, Ny N,
ZZ z 1/2]k xz 1/2hy]hzk<222 ( ) hx,hy]hzk
i=1j=1k= i=1j=1k=

Then the proof is completed.
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The mid-step partition is dynamical, obtained by refining the large-step partition of
Q={[0,1]}3 uniformly. Generally, the mid-step is taken by 1/2 or 1/4 times the large-
step, he =h / [ for [ =2 or [ =4. This local refined treatment is used and moves on ¢
for the sharp fronts of the concentration and temperature. Other notation has the same
definitions as above. The numbers of nodes in different directions, N, Ny and N, are
unchanged during the computations.

The small-step partition of Q= {[0,1]}? is defined uniformly,

x: OZXO<X1<-"<JCM171<3CM1:1/
i 0=yo<y1< - <ym-1<ym=1,
0;: 0=zp<z1< - <zZpmy-1<zm,=1,

where M, M and M3 are positive constants. The space steps and other notation are
denoted by h* = M%, W =5, h* = M3 ,xi=1-h*, yi=j-h, zt=k-h* and h. = ((h*)*+ (h¥)*+
(h*)*)'/2. Let Di11/2,k=3 [D<X1]k)+D(X1+1,]k)] and D;_1 5 jx=3[D(Xjx)+D(X;_1jx)], and
define Di,j+1/2,k/ Di,jfl/Z,k/ Dij,k+1/2/ Dij,kfl/z similarly. Let

5X(D5xw>?jk:(hx)iz[DiJrl/Z,jk(WzZ—l,jk_Wz?k)_Dz 172, (Wiie = Wity )], (2.6a)
87(D8W) = (W) 2 [Dij1 2k (WE 1 = Wi ) = Dij1 ok (Wi =W/, )], (2.6b)
82(DO: W)= (h*) " [Dijic1/2(W] 1 = Wii) = Dijr1/2(Wii = Wi 1), (2.6¢)

and

Vi(DVW)l =6:(D6 W)L, +85( DSy W) b+ 82 (DSW) ! 2.7)

ijk*
3 An upwind mixed volume element-fractional step difference
on a changing mesh
3.1 The procedures
The flow equation (1.1) is changed into a standard form
dp A

qblﬁ—l—v-u:R(c), (3.1a)

u=-—a(é)Vp, (3.1b)
where R(¢)=—q+R} and a(¢) =x(X)u~1(¢).

The brine concentration equation (1.3) is rewritten in a divergent form to construct
the computational scheme. Let g=ué= (u1¢,us¢,u3¢)", z=—V¢é and z=E.z. Then,

¢$+V-g+v-z—év-u:f(é). (3.2)
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Substituting V-u= —([)%—f —g+R}(¢) into (3.3),
a¢ d
PS5 o915 +V g+ V 2=F(0), (33)

where F(¢&) =—¢éq+RL(¢)+ f(6).

The expanded mixed volume element [35] is adopted, then the flux z and its gradient
Z can be computed simultaneously. The heat conduction equation (1.2) is discussed in a
similar manner. Let gr =c,uT = (u1cpT,uchT,u3cpT)T, Zr=—V T and zr = EgZt. Then,

d oT
15y +das 4V ogr+V 20 =Qr(wp,T,0), (3.4
where dy 7 =di(p)+cp¢1 T and Qr(u,p,T,¢) =Q(w,p,T,6) —cpqT+c, TRL(C).
Let P, U, C, Z and Z denote numerical solutions of p,u, ¢, Z and z, respectively. Using
Lemma 2.1-Lemma 2.4, we obtain the procedures of mixed volume element for the flow
equation (3.1)

Pn+1_Pn x,n+1 n+1 z,n+1
(17— —0) + (DU 14D U 14 DU o)
At m m
=(R(C"),v),, YveS,, (3.5a)
(u—l(éx,n)ux,n+1’wx)x+(a—l(éy,n)uy/n+1,wy)y_|_(a—l(éz,n)uz,n—i-l,wz)z
— (P!, Dyw* +Dyw? 4+ Dyw®) =0, Ywe V. (3.5b)

The upwind mixed volume element scheme on a changing mesh for Eq. (3.3) is defined

by

Cn+1 . é” n Pn+1 _pn w1 s,n+1
<¢T,0>m+<¢1c T,v)m+(VG /’U)m‘i_(s_xZ,yIZDsZ /'U)m
— (P(C”),v)m, YoeSy, (3.6a)
( ‘s,n+1’ws)s - (CnJrl, Z Dsw5> =0, VweyV, (3.6b)
S=X,Y,z S=XY,z "
(7" w'), = Y (EZ" T wt), , YweV,. (3.60)
S=X,Y,Z S=X,Y,Z

T, Zt and Zt are numerical solutions of T, zr and z7. The computational scheme on a
changing mesh is stated as follows for (3.4)

Tn+1 _Tn Pn+1 — pn
(75 e) (P ™), 4 (VG 4 ( L D2 Tr),

S=x,Y,z
= (Qr(u",P",T;,C")0), , VveES), (3.7a)
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Z (Z%nﬁ-l,ws)s_(’]}’z*—l’ Z Dsws) =0, YweV, (3.7b)
S=XY2 §=X,Y,Z m

Z (Z?n+1,ws)s: Z (EHZ;-JH—l,wS)m, Ywe v, (3.70)
S=X,Y,2 S=X,Y,z

The radionuclide concentration (1.4) is solved by the following upwind fractional step
difference scheme

C?ri?klm_ Lijik n+1/3 17k+ 1_Pi7'k
le,ijkT:(sx(EC(SxCl )ijk"‘(sg(Ec(SyC?)ijk—l-(sz(Ecézcln)ijk—d1(CZ~k)T
+£1(C"LCLLCE - R
— Y oGl 1<i<My, 1=12,N, (3.82)
S=X,Y,2
Gk~ n+2/3 ,
Prijk At = 07(Ecdy(C) —C))ijk, 1<j<M,, 1=12,---,N, (3.8b)
Cl’f;kl B ClnlJJrk2 ° 1
<l>1,z'jkTIfsz(Ecdz(C;1+ —C"))ijk, 1<k<Ms, 1=1,2,---,N, (3.8¢)

Initial approximations:

PO=p0 0=, (0=C0 7070 70— 70 TO=17°, Z‘%:io, 79=7% XcQ, (39)
Cije=Cio(Xi), Xi€Q, I=1,2,---,N. (3.9b)

Here {P°,0°}, {CO,ZO,io} and {To,i%,z(%} are obtained by using the Ritz projection for
{r°u’}, {€0,2° 20} and {T°,29,2%} (the definition of Ritz projection can be found in the
following section). C?,i i is defined by (1.6).

The upwind-term of (3.6a) is treated by a simple upwind approximation dependent
on C. Since g=uc =0 on (), we assign the mean value of the integral of G"*'-fl by 0.
o is the interface of e; and ey, X] is the barycenter and ; is the unit normal vector to e.
Define

Gl (Ut (X)), (Uhy)(X)) >0,

A 3.10
CH(Uurtt-y) (X)), (Uhyp) (X)) <0. (3.10)

Gn-‘rl 'ﬂl — {
Cit1 and CILM! are the values of C"™1 on the elements. Then G"*! is defined and the
scheme of (3.6a)-(3.6¢) is constructed. A nonsymmetric matrix is given to compute C.

If G"*! is defined by the values at the previous time level, then a symmetric matrix is
formed

G — { CL U m) (X)), (U"-m)(X1) 20, a1)

Co(U™-y)(Xp), (U™-7)(X;) <O.
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Similarly, Tj, is used to treat the convection term of (3.7a). Let gr =c,uT =0 on Q2 and
define

it gl { e Ty (U™ 1) (X)), (U 1) (X)) 20, .
ey T U y) (X)), (UMHyy) (X)) <O,
or
G;%H,ﬂl:{ ep T, (UM y) (X)), (U"-71)(X;) =0, 519
ep Ty, (UT-y)(Xi),  (U"-) (X)) <O.

The combined procedures run as follows. {P°, 0%} and {5020,20} are determined by
(1.6) and the Ritz projection, then initial approximations are given by P? = P°, U =1T¢,
(0=(0,70=70,70=70. Using (3.5) and the conjugate gradient method we find { P!,U'}.
Then, {61,21,21} are obtained from (3.6) and the method of conjugate gradient. We apply
(1.6) and the Ritz projection to determine {To,i%,z(%} and approximate initial solutions
of (1.2) by TO =19, 29 = 7% and 29 = Z9. Then {T},Z3,ZL} is computed by using the
changing-mesh upwind mixed volume element scheme (3.7). Using the upwind frac-

tional step difference scheme of (3.8a)-(3.8¢c) and the algorithm of speedup we get {Cl1 Z/]i}

and {Clzz/]i}, then obtain {C} ijk}, the numerical solution at t =t!. The concentrations are

computed in parallel for / =1,2,---,N. All the numerical solutions at t = 1 are obtained.
In a similar procession, we get { P2, U?}, {C?,22,7%}, {T?,7%,72} and {C?1=1,2,---,N}
from (3.5), (3.6), (3.7) and (3.8) in turns. When the approximate solutions at t =#""! are
given, we can obtain the numerical solutions at t=t" as above. They exist and are unique
under the assumption (C).

Remark 3.1. Since the meshes are changing, (¢ C”,v)m in (3.6a) must be computed. That
is, the L2-projection of C" is defined by a piecewise constant function on ] mapping into
a piecewise constant function on J#*1. J* and J#*! denote different partition at " and
"1, respectively. (daT!,v) in (3.7b) is computed similarly.

4 The law of conservation

Suppose that the problem of (1.1)-(1.5) has slight compressibility [2,11,33,34], i.e., ¢1 =0,
and it has no source or sink, i.e., F(¢) =0. Suppose that there is no permeation across
the boundary, then on each element e of the unchanging mid-step partition, e = Q;j =
[Xi—1/2,Xi41/2] X [Yj=1/2,Yj+1/2) X [Zk=1/2,Zk+1/2], the concentration of brine has elemental
conservation of mass

a¢
/ecpng—/aeg-’yeds—/aez-’yeds—0, (4.1)

where de is the boundary of e and +, is the outer normal vector. The following theorem
shows that (3.6a) has the discrete form of (4.1).
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Theorem 4.1. If ¢1 =20 and F(¢) =0 hold, then (3.6a) has the elemental conservation of mass for
numerical solutions on e € ()

Cn+1_én
/ P dx— / G rypdds — / 7" yds =0. 4.2)
e At de de

Proof. Forve Sy, let

1 , on e= Qijk ,
v= .
0, otherwise,

then (3.6a) is changed into

((])M 1) - / G q. ds+< Y Dz 1) —0. (4.3)
At ’ Qe SO " S=X,1,2 ’ Qi
Using the notations in Section 2, we have
Cntl_(on CA'ZI':l —CAZ.n].k Cntl_(n
((P At '1> Qiji = Pijk ( At ) hxihyjhzk - /Qijkcp At aX, (4.42)

s,n+1 _ (7xn+l  _ Zxn+l yn+l  Syn+l
( Y. Dz ’1>Q”k - (Zi+1/2,jk Zi—l/2,jk> hy;ha + (Zi,j+1/2,k Zij-1/2k hihz
S=X,Y,Z ij

M+1 m+1 _ 1
+(Zz‘zj,’;cﬂ/z_zizj,’llcfl/z)hxihyj—_ ao..kzn+ "y ds.  (4.4D)
1]

Substituting (4.4) into (4.3), we complete the proof. O
Then the whole conservation of mass is derived as follow.
Theorem 4.2. If ¢; =0, F(¢) =0 and the impermeable boundary condition hold, then (3.6a) has

the conservation of mass on the whole domain

An+1__ An
/Q cp%dX:O, 1n>0. (4.5)

Proof. Summing (4.2) on all the elements, we have

Cn+l_én n+1
Y| ¢ —dX=) | G"yauds—)

AR Y0, 45=0.  (4.6)
ij k! Qije ijk” 9k ijk” Ok

07 denotes the interface of e; and e, X is the barycenter, and 7 is the outer normal vector
to e. Recalling the definition of the diffusion, we can see that if Uty (X;) >0 on ey,
then

/ G"Hyds =CpU oy (X)) oy (4.7a)
€1
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Here |0;| denotes the measure of ¢;. The outer normal vector on e, is —7;, so U*t1.
71(X;) <0. Then,

[ &t ods ==L U (X) e (4.7b)
e
Since (4.7b) is opposite to (4.7a), so we have
y / G yppds =0. 4.8)
e Joe
Combing the following fact
-y / ZMyeds = — / Z" 1 y30ds =0, (4.9)
= Joe a0
and substituting (4.7) and (4.8) into (4.6), we obtain (4.5) and complete the proof. O

Suppose that Eq. (1.2) has three conditions: 1) slight compressibility, i.e., di v =0, 2)
no source or sink, 3) impermeable boundary. Then (3.4) has the elemental conservation
of energy. Similar to the discussions of Theorem 4.1 and Theorem 4.2, we can obtain the
discrete conservation of energy on every element and on the whole domain for (3.7a).

Theorem 4.3. If dy 1 =0 and Qr =0 hold, then (3.7a) has the elemental conservative nature on
¢,

T Ty
[ ax = [ G s — [ 27 ds =0, (4.10)
e At de de

Theorem 4.4. If di 1 =0 and QT =0 hold, and no heat conducts through the boundary, then
(3.7a) has the whole conservation of energy

Tn+1_Tn
/ p-t——Lax=o, n>o0. 4.11)
9]

The nature of conservation is an important physical standard in numerical simulation
of seepage mechanics.

5 Convergence analysis

First we introduce a Ritz projection to determine initial approximations. Define {P,U} €
S X Vi by

( ) Dsl:ls,v) =(f0),, YvES (5.1a)
S=X,Y,2 m

y (afl(@)aS,wS)sz(P, y Dsws) . YweV, (5.1b)
S=XY.z S=X,,2 m

(P-p1),=0, (5.1¢)
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where f = —?%—f —q+R.(¢).
Define {C,i,Z} S Sh XV xVy by
(X Do) =(fe0),, WoESK (5.2a)
s=x,y,z m
7sw') =(C, Dsw®) , Ywev, (5.2b)
(s—x,y,z >s ( s:;:y,z ’ )m "
Z (Zs,ws)s = Z (Ecis,ws)s, Ywev, (5.2¢)
S=X,Y,2 S=X,Y,2
(C-¢1), =0, (5.2d)

where f; = —¢% —u-Veé+£(¢).
Define {Th,ZT,ZT} €Sy XV, xVy, by

( Z DSZST,U>m: (fT,U)m, Yo eESy, (5.3a)
S=x,y,z
Zs s\ _ [ S
<s=x2,y,zZT,w >5 N <Th,s=x2,y,zDsw )m’ vwe Vi, (5.3b)
s:%z( ~§"/ws)s:s;z(EHis ,ws)s, Yw e Vi, (53c)
(T,-T,1) =0, (53d)

where fr=—d(p) % —d> % —c,u-VT+Q.

Let 7-[:13—[3, ﬂzp—P, U:U—ﬁ, p:ﬁ—u, C@Zé—é, gﬁzé—é, 545:2—i, B@:i—z,
[XC:Z—Z, IBC:Z—Z, CT:Th_Th/ CT:Th_T/ &TZZT—iT, BT:iT_ZT/ (XT:ZT—ZT and
Bt =Z1—2z71. The problem of (1.1)-(1.6) is supposed to be positive definite and regular.
From the discussions of Weiser, Wheeler [24] and Arbogast, Wheeler, Yotov [35], it is easy
to see that the auxiliary solutions { P, U, 5,22} and {T},,Z1,Z7} of (5.1)-(5.3) exist and are
unique.

Lemma 5.1. The coefficients and exact solutions of (1.1)-(1.6) are supposed to satisfy (C) and
(R). Then there exist two positive constants Cy and Cy independent of h and At, such that

" d s
]+ :ZTHCsHm+!Hae\H+ _ZTHHﬁHHH!ﬂsHH+Ha’ZHmﬂL _ZTH;;
<Cy{hy+hz}, (5.4a)
|[1O][ o+ ZTUHZ\HoﬁlesHIOO]SCZ- (5.4b)

In this paper we show convergence analysis for a model problem. Let u(¢) ~ o,
a(&) =x(X)u (&) = x(X)uy ' =a(X) and R, =0 in (1.1) and (1.3). This assumption is
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reasonable for the mixture fluid with ”slight compressibility” [3,36]. The problem is
simplified into

¢1aa—f+v-u:R(é), XeQ, te], (5.5a)
u=-aVp, Xe€Q, tej, (5.5b)

and o
¢a—§+u-va—v-(ava):f(a), Xeq, teJ. (5.6)

The mixed volume element scheme of (3.5) is simplified into

pr+1_ pn
(4)1 T,v) A+ (DU DU 4 DU )

=(R(C"),v),, YveSy, (5.7a)
(a—l ux,n+1,wx)x+ (a—l Uy’"+1,wy)y+ (a—l UZ’”+1,wz)Z . (Pn+1,wax+way+waz)m
=0, vYweV,. (5.7b)

We estimate 7t and ¢ first. By subtracting (5.1a) (t=t"*1!) and (5.1b) (t=t"*1), respectively,
from (3.5a) and (3.5b), we obtain

(¢1at7r”,0)m+(Dxa.x,n+1+Dy0.y,n+1+Dzo.z,n+llv)

m
=n+1

=—<¢1 (8t15”—apat ),v)m—(¢18f17”,v)m+(R(C")—R(é”“),v)m, YoeS,, (5.8a)
(aflo.x,nJrl/wx)x_f_(aflo.y,nJrl,wy)y_’_(aflo.z,nﬂlwz)z_(nn+1/wax+Dywy+Dsz)m

=0, YweV, (5.8b)

where 0; 71" = ("1 — 7t") / At, 9;P" = (P"T1 — P") / At.
Taking v =0;7t" in (5.8a), dividing the difference of (5.8b) at "*! and t" by At, taking
w=0""! then summing the results, and noting that for A >0,

(9:(AB™),B"*1)_ :%at(AB”,B”)S%—ﬁ(A(B”“—B”),B”“—B")S
Z%af(ABn/Bn)sl Szx/]//Z/

we have

(¢1atﬂnzatnn)m+%at [(aflo.x,nla.x,n)x_'_ (aflo.y,nlo.y,n)y_’_ (aflg.z,nlo.z,n)z}

~n+1 n+1

g—(%(afﬁ"—apat ),am")m—((pla”at ,atn”)m+(R(C”)—R(é”“),atn")m. (5.9)
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By the positive definite condition (C) and Lemma 5.1,

(qblat n”,atn")m Z q>*| (510&)
B a~n+1 n+1 .
—(¢1(atpﬂ— ”at ),am) (q;l 9 atn”)m—l—(R(C”) R(E™),9")
<ellain"| 2 ;i i+h§+h§+(At) ). (5.10b)
Applying (5.10), we have
|| +3r Yo (a0, o) < K{||G2||2 +hi+hE+ (At (5.11)
S=X,Y,z

The concentration of brine (1.3) is discussed. Subtracting (5.2a), (5.2b) and (5.2c) at t=¢"*1

from (3.6a), (3.6b) and (3.6¢), respectively, and taking v=¢r"!, w=a!"' and w=a!*! in
the three differences, we have

Cntl_(Gn w1 A prtl_pn a1 n+1 =n+1 sn+1 xn+41
(¢T,§5 )m+(¢1c T,Cé >m+(v'G /‘:5 )m+<s—xz,y,zDsaé /‘:5 )m
R e+l optl
_ (P(Cn)_F(én+1)+(P ¢ +¢€”+1L+v.gn+l,€g+1) , (5123)
ot ot m
Z <&2,n+1,“2,n+1)s:(€21+1, Z Dslx?n‘i‘l)m, (5.12b)
S=X,1,2 S=X,,z
Z (Zs,nﬂlaz,nﬂ)sz Z (ECZS’"H,ECZ’HH),”- (5.12¢)
$=X,,2 S=X,Y,2
Subtracting (5.12¢) from the sum of (5.12a) and (5.12b), we have
grt=ar 1 1 1
(P o) (T g,
n+1_ »n Jentl  pntl_pn
n an+1 n+1) _ g ¢ an+l —C n+1
=(FE-Fe D2, (0% g tae) (05 - ),
(An+1¢ n+1 _CH(PPVH-l_P ¢n+1) Z (E sn+1 s 1’l+1) (5.13)
ot At N i ' '

Rewrite the above equation,

§?+1_ ? n+1 —sn+1 —sn+1
s= xyz
aénJrl €n+l_€n
_ . n+1__ jn+l n+1 n An+1 n+1 _ n+1
== (V-(G" 1 —g"), g ), + (F(C) =P )&t + (o S5 -5 ) )
) n+1 . Pn+1_Pn Cti—&-l_ n
an+1 14 _(n n+1Y\ _ ¢ ¢ an+l
+(C o OO Ar ) (‘b At b >m

=T1+ T+ T34+ T4+ Ts. (5.14)
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The left-hand side is estimated first,

Cg+1 — g n 1 ” - -
GPT’(:@H) m = A { (93¢ H'gé H)m — (¢2%.c%) " }, (5.15a)
Y (Eaytayh) > E|[jartt| (5.15b)
s=xy,z

The first term on the right-hand side of (5.14) is considered,

_ (v (Gn+1 _gn—&-l),gg—l—])m
~(" g, Ve,
<el[|ar || [F+] 6" g, (5.16)

Let o denote the interface. <, is the outer normal vector and X; is the barycenter. Then

/gnﬂ—l.,)/l:/6n+1(un+l,rﬂ)ds. (5.178.)
o ag

By using the regularity of g"*! and the mean value of integral, we have

mei(a) L(GHH —g") m=CH U ) (X)) — (") (X)) + O (he),  (5.17b)
From the regularity of ¢"™!, Lemma 2.4 and the argument in [35],
|Cott =t (X)) | <[+ O(he), (5.18a)
(U —u" <[ + O (he). (5.18b)
Continue,
167+ g5, <K{ ]z |I, +12 (5.19)

The right-hand side terms of (5.14) are estimated as follows

| <[P+ 2z |1, +42 (5.20a)

1o <k{[t][, +(ar?+ht], (5.20b)
9%

‘T?’} S K{Atl ‘ﬁ‘ ‘iz(t”,t”“;m) + ‘ ‘C?+1 ‘ ‘fn}/ (520C)

0
T <elorn| B k{2112 oy I I (002} 5200)
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Substituting (5.15) and (5.20) into (5.14),
2 Evij1- 2
2At{|!¢”2€”“H — |loV2e 5, b+ &

KHatHLz oy SEEKL |7+ |25, 12+ (A0 e o[,
§n+1 n

(gl (5.21)

Multiplying both sides of (5.21) by 2At, summing them on n (0 <n <L—1) and using
g%=0, we obtain

1/2=L||2 L — 1 ZAt
| QHNZ\H%\H

<k{n+ (s }+KZHCCH AH—SZ\am I at— 22(

The last term on the right-hand side of (5.22) is divided into two cases: changing mesh
and unchanging mesh,

€n+1

n
e gg“) At. (5.22)
m

_22< €n+l Cnén—H)mAt
-2 Z,(¢§n+l ?g”+1> At—2 Zﬁ(ﬁnit ?g”“)m 3 (5.23)

n=n' denotes the unchanging mesh,

_22<

n=n’

§n+1 n L 5
L) At<Kuite ) [[art | (5.23b)
n=0

n=n""denotes the changing mesh,

(g, c"), =0. (5.23¢)

Suppose that the mesh changes at most M times, M < M*, where M is a positive integer
independent of & and At. From (5.23) and Lemma 5.1,

_22(

Substituting (5.24) into (5.22), we have

gn—O—l n

GG o) w<K(Mhe + Kt 1[92 e o[22 Par - 62)
n=0

2 L _ 2
[1917%8e L+ X llla"[|"At
n=

L-1 L-1
<K{H 12+ (M he) 4 (A0)2 Y+ K Y [|er||Pat+e Y ||aer| [*At. (5.25)
n=0 n=0
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Multiplying both sides of (5.11) by At, summing them on n (0 <n <L-1) and using
0¥ =0, we obtain

Ik |2 L2 4,4 2
o1 P+ X o | [ st <KL Y [[e] L at+ 1+ hé+ (an)?}. (5.26)

n=0 n=0

Combining (5.22) and (5.26),
e, e nl)2 L2 L NS || (ot ]| 2
™[+ X oo™ [ at+[[ge [ [, + X |[|az T [|["at
n=0 n=0
. n||2 4 2 * 2 2
<K{ Y [[EH| |7 At I+ 2 (Mhe) 4+ (80)% . (5.27)
n=0
Applying the discrete Gronwall’s Lemma
L2, e |2 LI L N[ [antl| |2
el +20H3t7f HmAt+H€eHm+ZOIH% At
n= n=
gK{h§+h§+(M*h5)2+(At)2}. (5.28)

A duality method is introduced to address 7' €S;, [37,38]. Consider the following elliptic
problem,

Vw=rl X= (x,y,z)TEQ, (5.29a)
w=Vp, XeQ, (5.29b)
w-y=0, XedO. (5.29¢)
It follows from the regularity that
s 112 2
Y2 gMHnLH . (5.30)
S=X,Y,2 ds
Suppose that @ €V}, is defined by
0w’ ow’
hbadl — (== = . 31
( % ,v)m ( % ,v) L VoeSy,, s=xy,z (5.31a)
The solution @ exists and satisfies
0w’ |2 dw? |2
IR | - W e (5.31b)
S=x,y,z CE s=Xx,Y,z s Ilm

By Lemma 2.4, (5.29), (5.30) and (5.1), we have
|7t = (7t Vow) = (2, 1 D) = Y (a7lo%h@f),

S=X,YY,2 S=X,Y,2

<K[{[@[[|- o] (532)
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Using Lemma 2.4, (5.30) and (5.31), we have
(LT iy Yoy off (25 of [ [
By substituting (5.33) into (5.11) and combining the result with (5.28) we have
(172 [5, < K{ g 24 (Mhe)*+ (812 ). (5.34)

A similar discussion is adopted for (3.4). Subtracting (5.3a), (5.3b) and (5.3c) at t = gl
from (3.7a), (3.7b) and (3.7c), respectively, and taking v=¢%", w=at"! and w=al"",

Pn+1 _ pn

n+1 n
(dz I+ T,
At

h an+1 n gn
Ar CT >+<d1'T<P Ti)

( Z Dasn+l 51%+1>m

’C?}+1> N T (v . Gi%ﬁLl’gijflfrl)

S=x,y,z
A 1 1 1 1 aTrH_l
— (Q(U”,Pn,Tﬁz,Cn)—Q(un+ /pn+ /Tn+ /CAnJr )—f—dz 5
d
+d1,T(pn+l’TYl+1) pat +v n+1 érn+l) , (535&)
m
Y@yt S—( 1, Y Daa S”“) , (5.35b)
s=x,y,z s=x,y,z m
Z (lx;i’l-i-l D—C?i’H—l)S: Z (E OCSI’H—l C—K%n-'v‘l)s. (5.35C)
s=X,2 S=X,Y,2

Summing (5.35a) and (5.35b) and subtracting (5.35c), we have
‘:n—l—] 1]1" n+1 E —s n+1 ~sn+1
C + 2 ( Sl ) s

(1
m - s=xy,z

_(V.(Gn—H g¥+1) n+1)m—|—(Q(Un,Pn Tff,én)—Q( n+1/pn+1/Tn+1,C¥+1)

(dz(?)z W),%H)m_i_(dl, (p", Tn+1)aP;t+1
m

t
pntl_pn il €n+1 n
t

m

— nony—_ © T n+1
:T1+T2+T3+T4+T5. (5.36)

The left-hand side (L.h.s.) of (5.36) is estimated by

Lhs 2M{(d S ), — (da8h,2h),, b B || (5.37)
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The terms on the right-hand side are estimated by

‘Tl‘—‘ (G gty an n+1 ‘<€man+1w +K{|’€n+1H +h§}, (5.382)
| To| <K [1&F |5+ 1|83, + g+ (802, (5.38b)
A o*T

5 <K{ 8t | Sz on ooy + 125 - (5.380)
1] < 0| K 1 Pt (a7 (5.354)

Substituting (5.37) and (5.38) into (5.36), we obtain

ZAt{H a2 Pl )+ )P

SKAt{H 8t2 HLZ g1 pn+lagy +H atfHLz fn pntl. )}

S 1 [ e R [
_ <d
Multiply both sides of (5. 39) by 2At and sum them on n (0 <n <L—1). Estimating the last
term — Z ( §n+ gT C"H) At in a similar discussion of Ts of (5.14), using &% =0, (5.28)

€n+1

éT €n+1> ) (539)

and the dlscrete Gronwall’s Lemma, we have
L2, v 2 4,12 2 2
511, 2 |75 |*At < K{ g 12+ (Mhe)*+ (88)? ). (5.40)
n=0
Error estimates of the upwind fractional step difference scheme of (1.4) are argued. Let

é‘?/ijk:cl(Xl]k, " — Cl; e Eliminating Cl”“/3, C;"H/S
of (3.8a), (3.8b) and (3 8¢) as follow,

and writing a combination equation

Ciake —Cli
Jij Jf +1
Pk~ Y Ss(EcbsCl )ik
S=X,Y,2
Pn]:rl nk
n 1 Y n+1 n n
=—di(Clig) =+ /i (Czjk Clijer o+ CN i)

~ (a2 f< : x<¢f15y-(Ec5y<atC?>>))ijk
+5J?(Ec(sx(q’fl‘SZ(EC‘SZ(atC?))))ijk+5y‘(Ec (‘Pl 152( (atcl ))))ijk}

+ (A6 (Ecox (¢ ' 05(Ecdy (¢ '62(Ec82(9:CT))))) i
- Y ounClin Xix€Qy, 1=12,--,N. (5.41)

S=X,1,z
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Making the difference of (1.4) at (t=#""!) and (5.41), we get the error equation of ra-
dionuclide factor

Clin i
Ji i
fPl,ijk#* Y Ss(EcdsE) )i

S=X,,Z
antl 1l ntl +1 +1
=fi(¢ Zk ’C}quk'cqu' Crziu;k) fl(CZk i Co i CN i)
7.(7‘1‘-4-1_ n pn-i-l_p
ijk ijk +1 ijk ijk
=1 (Clyp) =37 — [ (L) = (Clyp) | =%

—(At)? {52(Ec5x (@7 07 (EcOy (0:8]))))ijk+ 0z (Ecx () ' 62(Ecdz (0:E]))) )i

“'59(Ecéy(¢f15Z(Ec5Z(at§?))))ijk}+(At)35x(Ec5x(4’f1‘5y'(Ec5y(‘Pfléi(Ecéz(atg?))))»ijk
+ Y [ypnCliyg—0pnclyp] veite, Xix€Qy, 1=12,-,N, (5.42)

S=X,l,Z

where ‘811]1‘ <K{h2+At}.

From (5.42),
Gl — Sl
¢l,ijk'”Tl] Y Os(EcooZ )i
s=x,y,2
N nl—:l nk
1 1
SK{Z\C?:‘]NHC%}HIUZF Uk\+h2+h2+Af} dl(clrfijk)ij X :

—(At)? { +(E¢ 5x((Pl—lfsy‘(Ec(Sy(atC?))))iijr"'+5y(Ec(5y(¢z_l5z(Ec(5z(at(f?))))ijk}

+(At)365(Ec82 (¢ 65(Ecy (¢ 02(Ec6(9:81))))) ijk
+ ), [y Gl pnclinl,  Xix € e (5.43)
§=X,Y,2

Multiplying both sides of (5.43) by até;fijkAt = (jﬁkl —@;fijk and using the summation by
parts, we have an inner product formulation,

(!

N
gs\até‘?}éAtJrK{ Y[ o+ g o o | |* i+ 2+ (ar)? f at
=1

§n+1

S oAy ¥ {(Eagr e~ (Eadh)oi) )

S=XY,2

— (e (2" iG] ) 5t — (4)*{ (3 (B (77 03B, (i) i)
e (O (Eedy (9702 (Ecb(aid}))), i) | (5.44)
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+(Af)4<5f(Ec5x(4>f15y-(Ec5y(4>f15z(Ec5z(3té‘?)))))),até‘?>

+( % [buCl =510 YA, (5.45)

S=XY,2

where (-,-) and |- ‘0 denote the discrete inner product and discrete norm in /2 space, re-

spectively. The relation of continuous L?(())-norm and discrete /?(Q))-norm is used [39].
Rewrite (5.44) in the following formulation

€n+1

(0 ag)ars ) ¥ {(Bagaa) - (Eodod))

S=X,,2

<K{Z!é‘z o 12E G 1o 1 [2re” g+ 2 -+ (At At

— (At {<5x(Ec5x(¢f 167(Ecoy(9:€1)))),0¢E) >+~~.+<5y—(Ecay(gb,—lzsg(a(sz(atg?)))),at§;1>}
+ (ALY (S5 (Ecdie (¢ 87 (Ecdy (¢ 102 (Ec=(i]')))))), Qe ) +e| i)t [oAL
+{ % [yl b0 At (5.46)

S=X,,2

The second part on the right-hand side of (5.46) is estimated. Consider the first term

— (A1) (0 (Ecde (¢ 87 (Ecdy (eG1)))),eGT)
= — (A1) { (62 (Ecdy (1)), 0y (97 " Ecbx (i) +(EcSy (Auc]) 8y (0: - Ecbx (211))) }

= (At)3§ { Ec,z',j+1/2,kEc,i+1/2,jk47[i]1-k (5x5y5t§ln)i2jk + [Ecijt1/2,k0y (Ec,i+1/2,jk¢[i}k) XACIS Y
h

+Ec,i+1/2,jk4);i]1k5xEc,i,j+1/2,k'5y(at§?,ijk) +Ecijr1/2kEci+1/2,k0y (9G] %) - 0x0y (9] i)

1
+ [Ec,i,j+1/2,kEc,i+1/2,jk‘5x5y4’z,z'jk

+Ecijr1/2k0yEcit1 /2,jk5x5y¢lji]1-k] 0x (96 i) -0y (G i) }hfh]yh? (5.47)

Using the positive definiteness of E; and eliminating high-order difference quotient
0x0y(9:¢}') by Cauchy inequality, we get

— (A’ { Ec,z‘,j+1/2,kEc,i+1/2,jk¢{i}k(5x5y5t§1,z'jk>2 +-- }hfh]yhi
Qy

K{|Vigr 1 o+ Vadi [ } o, (5.48)

where \vhgl{ézszxzszssg,\é.
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Similarly, we complete the estimates of the second and third parts of (5.46). Thus,

— (AP (03 (Ec0x(97 1 05(Ecd, (311)))) Ducy ) +
+ <5g(E65y(¢;152(Ec5z(até?)))>Iat€?>}

+(A1)* (02 (Ecox (¢ "85 (Ecdy (¢ 162(Ec0=(3671)))))), 0y )
<K{|Vagi o+ Vagh 3 ot (5.49)

The fourth part is estimated by

(L [bunCl=8,mc] 0 )at
S=X,Y,2

<eforp | Fae+K{|[|o"]| [P+ Vigp s+ + (a0} (5.50)

Applying (5.48)-(5.50),

e larts ¥ {(Eag ) aq )~ (Ead) o)}

2, XY,2
N n|2 n+1|2 |2 n+12 n+1|(2 n2 3,4 1,2
SK{;HCZ ot VA o+ IVl (o] 1627 o+ o™ [+ [0 [+ T, -1

hE+ (AL Atelorg] At (5.51)

Summing (5.51) on / (1 <I < N) then on t (0 <n <L), noting that é? =0,/=1,2,---,N and
using (5.28) and (5.34), we obtain

L N
ZZ\B@?!@N%Z PORCRI A

n=0[=1

L
<Ky [air" [jat+K{ 3 S 1+ [V ) k2
n=0 n=01=1

+<M*h@)2+h§+(At)2}At. (5.52)

L L
Here ’@'ZLH }3 <el yatg? ‘éAt—l—K Y |§’l” léAt is used. Using the relation of L?(Q))-norm and
n=0 n=0
I>-norm [8,39], (5.28), (5.34) and the Gronwall’s lemma, we have

ko n|2 & |2 n+112 472 *7 N2 | 1,4 2
ZZ\ ST oD+ Y (|67 o+ Vg \O]SK{hp+hE+(M he)*+he+(At) } (5.53)
n=0/=1 =1

The following theorem is concluded from (5.28), (5.34), (5.40), (5.53) and Lemma 5.1.
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Theorem 5.1. Suppose that the problem of (1.1)-(1.6) satisfies (R) and (C). Adopt the composite
scheme of (3.5), (3.6), (3.7) and (3.8) to obtain numerical solutions. Then,

‘|p_PHE°°(];m)+}’at(p_P)‘{EZ(];m)_{_‘|u_UHE°°(];V)+H€_C\}‘E“’(];m)_'_HZ_ZHP(];V)
+"T_ThHiw(];m)JFHZT_ZT}‘tm;vﬁé{"Cl_Calo(];hl)ﬂ|at(cl_cl)H12(],~z2)}
<M LI e+ M he+ 12+ At }, (5.54)
where
sl = st 1”1 Hg||LzU;X)=L135T{§\rg"|\§At}l/2
and the constant M** depends on p, &, ¢; (1=1,2,--+,N), T and their derivaties.

Next, an improved composite scheme on a changing mesh of (3.5)-(3.8) is discussed.
(3.5) and (3.8) are not changed for the pressure and the concentration of radionuclide.
(3.6) and (3.7) are improved by a linear approximation for the concentration of brine and
temperature. The linear approximation to C"~! is used to replace L2-projection, and an
optimal error estimates is concluded on a changing mesh.

Consider the improvement for (3.6). Given C" € 57, a linear function is defined on e"
by C",

n

(@

o =C"(x0)+ (x—x})-6C, (5.55)

where x7 is the barycenter of ¢” and 6C” is the gradient or the slope of numerical function
obtained by the mixed volume element, —Z",

An 1 4l
ot = st /enz (x)dx. (5.56)

The procedures of (3.6b) and (3.6¢) are not changed, and (3.6a) is replaced by

én+1 _ én . prtl_pn
<¢(X)T,U>m+ (cpch,v) . + (V'G”H,U)m-l- ( Z DsZS’”H,U)m
S=X,Y,Z
=(F(C"),0),, Voesit. (5.57)

The computation of ¢ is added only if the mesh changes. If the mesh is unchanged,
S =51, then

A

(9C"0), = (¢C"0) . (5.58)
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We use a similar discussion to give the estimates. (5.12b) and (5.12c) are still true. (5.12a)

is changed into

(<P§n+;t? e, PO o8
- (7@ g, y+ (F(C")— (@) g1),
(e ) (5.59)

—TIT1¢". T1¢" is defined by

where ¢! = én
— T8 (x") — (x— 7). <me81(en)/enﬂz”(x)dx>, (5.60)

r1e"

where IT is the projection operator in (5.2), that is, I1¢" =¢", 112" =2z
The first four terms of (5.59) have the same estimates as above. The other terms are

addressed now. It holds obviously
1&gz |2 +K][e 3. 66

(o255 ), = Sl e 1< o
From (5.55), (5.56) and (5.60), we have

&~z —Z/ & -t Pdx = 2/( mese)/ ”dy‘zdx. (5.62)

Substituting (5.62) into (5.61) and assuming that it holds h; = O(At), we have
2 2
K[, 6.63)

~1
C

(o555 ) < P <l o

The last term of (5.59) is considered. We note that

(o )

Using the Taylor expansion, for Vx € e”, we have

2 (x7)+ O((he)?)

& (x) =" (xg) = (x—x) - 2"(

:Hé”(x?)—(x—x?)mesl(en)/enZ”dy—i—O((h@)z),

)

Ganilng (5.64)

~ (At)?

(5.65)
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where

¢"(xf) 118" (x}) = O((he)?)  and  [2"(x) — : /eﬂindy\ZO((ha)z)

mes(e")
are used. Thus,
2
Z/’x %) meste / Bldy+O((he)?)] dx

<K (e[| B[ ' +K(he)* < K(he)*. (5.66)
Substituting (5.66) into (5.64),

An_ﬁ,\n

(o5 ert) <Khepk|[e I, 567)

Substituting (5.63) and (5.67) into (5.59), multiplying both sides of the resulting equation
by 2At, summing them on n=1,2,---,L —1 and using C? =0 and the discrete Gronwall’s
lemma, we have

'/ 2k |2 +ZH &l || [Par<K{h2+(At)2}. (5.68)
(3.7) is estimated similarly. Then,
L
13285 [+ 3 ||| Ar < K {12+ (ar?}. (5.69)
n=0

Combining (5.26), (5.34), (5.68), (5.69), (5.54) and Lemma 5.1, we have the following the-
orem.

Theorem 5.2. Suppose that the problem of (1.1)-(1.6) is reqular (R) and positive definite (C).
Adopt the modified scheme on a changing mesh to obtain numerical solutions. If the partition
satisfies he = O(At), then we have the following optimal order error estimates

[P =Pz gy 1P =P |2y T[4 = Ul [ 10
<Ml +he+ At} (5.70a)

A

= C|| 1o F 12— 2| 200 H T =Tl | 1o 1y T 120 = Z[| 120

N
+l}:;{ch—Cz}\im(hhl)ﬂ|8t(c,—Cl)HE2WZ)}

< M {h§,+h@+h§+m}, (5.70b)

where M*** is a positive constant dependent on p, ¢, ¢; (1=1,2,---,N), T and their derivatives.
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6 Numerical example

In this section, a simplified displacement problem is solved by the present scheme. Sup-
pose that the pressure and the Darcy velocity are known. Consider the concentration
equation

dc
g—kcx—acxx—f, (6.1)

where t € (0,%), x€[0,7t], a=1.0x107%, that is to say that (6.1) is convection dominated.
Exact solution is defined by ¢ = exp(—0.05t)(sin(x—#))?°, and f is obtained naturally.
Exact solution has a sharp front in the interval [1.5,2.5] as shown in Fig. 2, which moves
with respect to t. Since finite element method gives rise to numerical oscillation, so we
adopt upwind-mixed volume element method on changing meshes. Here we change
the partition once, and get satisfactory numerical results without numerical oscillation
or dispersion (see Fig. 3. The oscillation figure obtained by finite element method is
illustrated in Fig. 4.

From Figs. 2-4, we conclude that the upwind-mixed finite element approximates
convection-dominate diffusion problems well in comparison with finite element method.
Error estimates in L?-norm at different positions are compared in Table 1. STATIC de-
notes the upwind-mixed volume element on a statistic partition, and MOVE denotes the
scheme on changing meshes. The method on changing meshes can solve convection-
dominated diffusion problems well and has on order of accuracy consistent with the
theoretical result.

Remark 6.1. In actual computations, numerical data are bad when time step is indepen-
dent of space step. The approximations are accurate when time step is almost equal to
space step. The numerical conclusion is consistent with Theorem 5.1.

0.8

0.7(

0.6

0.5

0.4

0.3

0.2

0.1

L L L
0 0.5 1 1.5 2 25 3 3.5

Figure 2: Exact solution at t= %
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Figure 3: Numerical solution on changing meshes.

081

061

0.4r

021
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Figure 4: Oscillated illustration of finite element method.

Table 1: Error estimates at t=1/2.
h /60 /80 71/100 /120

STATIC 7.70e—003  3.89¢—003 2.11e—003 1.23e—003
MOVE 1.59e—003 5.5064e—004 1.6198¢—004 2.8174e—005

7 Conclusions and discussions

An upwind mixed volume element-fractional step difference scheme is proposed and its
convergence analysis is shown for the disposal of compressible nuclear waste contamina-
tion. In Section 1, mathematical model, physical background and related research are in-
troduced. In Section 2, the partitions, notations and preliminary statements are prepared
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for constructing the procedures and convergence analysis. In Section 3, the composite
procedures including mixed volume element, upwind approximation and fractional step
difference are constructed. The flow equation is approximated by a conservative mixed
volume element scheme. The computational accuracy of Darcy velocity is improved by
one order. The conservative upwind mixed volume element is used to solve the con-
centration equation of brine and the heat conduction equation, where the diffusion and
convection are treated by mixed volume element and upwind difference, respectively.
The upwind method can solve convection-dominated diffusion equations well because
it avoids numerical dispersion and nonphysical oscillation and confirms high accuracy.
The mixed volume element can compute the concentration and temperature and their ad-
joint vector functions simultaneously. It has the nature of elemental conservation of mass
or energy which is important in numerical simulation of underground seepage mechan-
ics. The concentrations of radionuclide factors are computed by the method of upwind
fractional step difference in parallel, where the whole computation is divided into three
one-dimensional problem and the simple speedup solver is used. So the computational
workload is decreased greatly. In Section 4, The elemental conservation of mass or energy
is proved. In Section 5, we apply the theory and technique of a priori estimates to show
optimal order error estimates. In Section 6, numerical examples of a simplified model
are discussed to illustrate theoretical analysis and show the feasibility of the presented
composite scheme. Several interesting conclusions are stated as follows.

(I) The compressibility is involved in the present paper. The scheme has the conser-
vation of mass or energy, an important nature in numerical simulation of seepage
mechanics.

(IT) The presented scheme combines mixed volume element, upwind approximation
and fractional step difference, so it has many merits such as high accuracy, strong
stability and the feasibility in solving large-scale actual engineering problems on
three-dimensional complicated region.

(IIT) This discussion improves the research on nuclear waste contamination disposal [1,
2,12,33,34]. The method presented by the research group of Ewing only solves
two-dimensional problem and the conservation of mass or energy does not hold.

(IV) This discussion improves the mixed finite element on changing meshes by Dawson
and Kirby in [32], where they gave an optimal result only for a simple parabolic and
a special changing mesh. Here we obtain an optimal convergence rate for numerical
scheme on general changing meshes.

Acknowledgements

The authors express their deep appreciation to Prof. J. Douglas Jr, Prof. R. E. Ew-
ing, and Prof. L. S. Jiang for their many helpful suggestions in the series research



C.E Li, Y. R. Yuan and H. L. Song / Adv. Appl. Math. Mech., 10 (2018), pp. 1384-1417 1415

on numerical simulation of energy sciences. Also, the project is supported by NSAF
(Grant No. U1430101), Natural Science Foundation of Shandong Province (Grant
No. ZR2016AMO08), National Tackling Key Problems Program (Grant Nos. 20112X05052,
2011ZX05011-004, 20050200069).

References

[1] M. REEVES AND R. M. CRANWALL, User’s manual for the sanda waste-isolation flow and trans-
port model (swift), release 4. 81, Sandia Report Nareg/CR-2324, SAND 81-2516, GF. Novem-
ber, 1981.

[2] R. E. EWING, Y. R. YUAN AND G. LI, Time stepping along characteristics for a mixed finite
element approximation for compressible flow of contamination from nuclear waste in porous media,
SIAM J. Numer. Anal., 6 (1989), pp. 1513-1524.

[3] R. E. EWING, The Mathematics of Reservior Simulation, SIAM, Philadelphia, 1983.

[4] J. DOUGLAS JR, Finite difference method for two-phase incompressible flwo in porous media, SIAM
J. Numer. Anal,, 4 (1983), pp. 681-696.

[5] J. DOUGLAS JR. AND Y. R. YUAN, Numerical simulation of immiscible flow in porous media based
on combining the method of characteristics with mixed finite element procedure, Numer. Simulation
Oil Recovery, 119-132, New York: Springer-Berlag, 1986.

[6] R. E. EWING, T. F. RUSSELL AND M. F. WHEELER, Convergence analysis of an approximation
of miscible displacement in porous media by mixed finite elements and a modified method of charac-
teristics, Comput. Methods Appl. Mech. Eng., 47(1-2) (1984), pp. 73-92.

[7] T. F. RUSSELL, Time stepping along characteristics with incomplete interaction for a Galerkin ap-
proximation of miscible displacement in porous media, SLAM J. Numer. Anal., 22(5) (1985), pp.
970-1013.

[8] Y. R. YUAN, Theory and Application of Reservoir Numerical Simulation, Beijing: Science
Press.

[9] R. E. EWING, Y. R. YUAN AND G. LI, Finite element for chemical-flooding simulation, Proceed-
ing of the 7th International conference finite element method in flow problems, 1264-1271.
The University of Alabama in Huntsville, Huntsville, Alabama: UAHDRESS, 1989.

[10] Y. R. YUAN, D. P. YANG, L. QI ET AL., Research on Algorithms of Applied Software of
the Polymer, Qinlin Gang (editor in chief), Proceedings on Chemical Flooding, Petroleum
Industry Press, Beijing, 1998, 246-253.

[11] J. DOUGLAS JR. AND J. E. ROBERTS, Numerical methods for a model for compressible miscible
displacement in porous media, Math. Comput., 41(164) (1983), pp. 441-459.

[12] Y. R. YUAN, Numerical simulation and analysis for a model for compressible flow for nuclear waste-
disposal contamination in porous media, Acta Math. Appl. Sinica, 1 (1992), pp. 70-82.

[13] Y. R. YUAN, The modified method of characteristics with finite element operator-splitting procedures
for compressible multi-component displacement problem, J. Systerms Sci. Complexity, 1 (2003), pp.
30-45.

[14] Y. R. YUAN, The characteristic finite element alternating direction method with moving meshes
for nonlinear convection-dominated diffusion problems, Numer. Methods of Partial Differential
Equations, 22 (2005), pp. 661-679.

[15] Y. R. YUAN, Characteristic finite difference methods for positive semidefinite problem of two phase
miscible flow in porous media, ]. Systems Sci. Math. Sci., 12(4) (1999), pp. 299-306.



1416 C.E Li, Y. R. Yuan and H. L. Song / Adv. Appl. Math. Mech., 10 (2018), pp. 1384-1417

[16] Y. R. YUAN, The characteristic finite difference fractional steps method for compressible two-phase
displacement problem, Science in China (Series A), 1 (1999), pp- 48-57.

[17] Y. R. YUAN, Fractional Step Finite Difference Method for Multi-Dimensional Mathematical-
Physical Problems, Beijing: Science Press.

[18] Z. CAl, On the finite volume element method Numer. Math., 58 (1991), pp. 713-735.

[19] R.H. L1 AND Z. Y. CHEN, Generalized difference of differential equations, Changchun: Jilin
University Press, 1994.

[20] J. DOUGLAS JR, R. E. EWING AND M. F. WHEELER, Approximation of the pressure by a mixed
method in the simulation of miscible displacement, RAIRO Anal. Numer., 17(1) (1983), pp. 17-33.

[21] J. DOUGLAS JR, R. E. EWING AND M. F. WHEELER, A time-discretization procedure for a mixed
finite element approximation of miscible displacement in porous media, RAIRO Anal. Numer., 17(3)
(1983), pp. 249-265.

[22] P. A. RAVIART AND J. M. THOMAS, A mixed finite element method for second order elliptic prob-
lems, in: Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics,
606, Springer, 1977.

[23] T. F. RUSSELL, Rigorous block-centered discritization on inregular grids: Improved simulation of
complex reservoir systems, Project Report, Research Comporation, Tulsa, 1995.

[24] A. WEISER AND M. F. WHEELER, On convergence of block-centered finite difference for elliptic
problems, SIAM J. Numer. Anal., 25(2) (1988), pp. 351-375.

[25] Z. CAL J. E. JONES, S. K. MCCORMILK AND T. F. RUSSELL, Control-volume mixed finite ele-
ment methods, Comput. Geosci., 1 (1997), pp. 289-315.

[26] J. E. JONES, A Mixed Volume Method for Accurate Computation of Fluid Velocities in
Porous Media, Ph. D. Thesis. University of Colorado, Denver, Co. 1995.

[27] S. H. CHOU, D. Y. KAWK AND P. VASSILEVIKI, Mixed volume methods on rectangular grids for
elliptic problem, SIAM J. Numer. Anal., 37 (2000), pp. 758-771.

[28] S. H. CHOU, D. Y. KAWK AND P. VASSILEVIKI, Mixed volume methods for elliptic problems on
trianglar grids, SIAM J. Numer. Anal., 35 (1998), pp. 1850-1861.

[29] S. H. CHOU AND P. VASSILEVIKI, A general mixed covolume frame work for constructing conser-
vative schemes for elliptic problems, Math. Comput., 12 (2003), pp. 150-161.

[30] H. PAN AND H. X. RuUl, Mixed element method for two-dimensional Darcy-Forchheimer model, ].
Sci. Comput., 52(3) (2012), pp. 563-587.

[31] H. X.RUI AND H. PAN, A block-centered finite difference method for the Darcy-Forchheimer model,
SIAM J. Numer. Anal., 50(5) (2012), pp. 2612-2631.

[32] C. N. DAWSON AND R. KIRBY, Solution of parabolic equations by backward Euler-mixed finite
element method on a dynamically changing mesh, SIAM ]. Numer. Anal., 37 (2000), pp. 423-442.

[33] R. E. EWING, Y. R. YUAN AND G. L1, A time-discretization procedure for a mixed finite element
approximation of contamination by incompressbile nuclear waste in porous media, Math. Large
Scale Comput., 127-146, New York and Basel: Marcel Dekker, INC, 1988.

[34] R. E. EWING, Y. R. YUAN AND G. LI, Finite element methods for contamination by nuclear
waste-disposal in porous media, in Numer. Anal., 1987, D. E. Griffiths and G. A. Watson, eds.
Pitman Research Notes in Math. 1970, Longman Scientific and Technical, Fssex, U. K., 1988,
pp. 53-66.

[35] T. ARBOGAST, M. F. WHEELER AND 1. YOTOV, Mixed finite elements for elliptic problems with
tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal., 34(2) (1997), pp. 828-
852.

[36] R. E. EWING AND M. F. WHEELER, Galerkin methods for miscible displacement problems with
point sources and sinks-unit mobility ratis case, Proc. Special Year in Numerical Anal., Lecture



C.E Li, Y. R. Yuan and H. L. Song / Adv. Appl. Math. Mech., 10 (2018), pp. 1384-1417 1417

Notes #20, Univ. Maryland, College Park, 1981, 151-174.

[37] L. S. JIANG AND Z. Y. PANG, Finite Element Method and Its Theory, Beijing: People’s Edu-
cation Press, 1979.

[38] J. NITSCHE, Linear splint-funktionen and die methoden von Ritz for elliptishce randwert probleme,
Arch. Rational Mech. Anal., 36 (1968), pp. 348-355.

[39] J. DOUGLAS JR, Simulation of miscible displacement in porous media by a modified method of char-

acteristic procedure, In Numerical Analysis, Dundee, 1981. Lecture Notes in Mathematics, 912,
Berlin: Springer-Verlag, 1982.



