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Abstract. This study aims to investigate the rapid loss of numerical symmetry for
problems with symmetrical initial conditions and boundary conditions when solved
by the seventh and higher order nonlinear characteristic-wise weighted essentially
non-oscillatory (WENO) finite difference schemes. Using the one-dimensional dou-
ble rarefaction wave problem and the Sedov blast-wave problems, and the two-
dimensional Rayleigh-Taylor instability (RTI) problem as examples, we illustrate nu-
merically that the sensitive interaction of the round-off error due to the numerical un-
stable explicit form of the local lower order smoothness indicators in the nonlinear
weights definition, which are often given and used in the literature, and the nonlin-
earity of the WENO scheme are responsible for the rapid growth of asymmetry of an
otherwise symmetric problem. An equivalent but compact and numerical stable com-
pact form of the local lower order smoothness indicators is suggested for delaying the
onset of and reducing the magnitude of the symmetry error. The benefits of using the
compact form of the local lower order smoothness indicators should also be applica-
ble to non-symmetrical strongly non-linear problems in terms of improved numerical
stability, reduced rounding errors and increased computational efficiency.
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Characteristic-wise Weighted Essentially Non-Oscillation (WENO) conservative finite
difference schemes are a class of high order/resolution nonlinear schemes for simulat-
ing flows with both shock waves and small scale structures that were initially developed
in [11] (for details and history of the WENO scheme, see [19] and references therein). The
WENO scheme employs a dynamic set of substencils where a nonlinear convex combi-
nation of lower order polynomials adapts either to a higher degree polynomial approxi-
mation at smooth stencils, or to a lower degree polynomial that avoids interpolation of
the function across discontinuities at the cell boundary.

The high (fifth and higher) order WENO schemes with the global Lax-Friedrichs flux
splitting (GLF) via the Roe-averaged eigensystem have also been applied to the solu-
tion of highly unstable fluid flows with a perturbed interface separating two fluids with
different densities. One of the well-known examples is the Richtmyer-Meshkov insta-
bility (RMI) (see, e.g., [1, 7, 14, 21] and references therein). The interface is accelerated
impulsively by a passing shock wave. The interface perturbation grows linearly initially
forming a system of bubbles and spikes, and then nonlinearly after the amplitude of the
perturbation becomes sufficiently larger. In the meantime, a large amount of vorticity is
created and deposited along the interface where the pressure gradient is perpendicular to
the density gradient forming vortical rollup in the shape of the mushroom cap. A similar
temporal and spatial evolution can also be found in the Rayleigh-Taylors instability (RTI)
(see, e.g., [1,15,22,25] and references therein), where a heavy density fluid rests on top of
a lighter density fluid. Instead of an impulsive acceleration of the interface by a passing
shock, the perturbed interface is accelerated by a constant bulk force, such as the gravity.
This phenomenon can often be observed in a lava lamp.

We are motivated by the recent observations about the fact that these highly unstable
fluid systems lose the spatial symmetry of an otherwise symmetrical solution under a
symmetrical setup and a sinusoidal perturbation on the interface rapidly when solved
by the seventh and ninth order WENO schemes. For example, Fig. 1 shows the density
of the RTI problem with a sinusoid perturbation and the temporal history of the symme-
try error, which measures the L2 error in the deviation of the symmetry between the left
and right half of the density (see Definition 4.1 below), as computed by the ninth order
WENO-JS9 scheme at a very high resolution. Even though the density seems to be sym-
metric about x=0.125 in the eyeball norm, the symmetry errorO(10−11) is actually much
larger than the machine error O(10−16) at the early time and grows fairly large O(10−4)
rapidly at the later time.

In this study, we systematically investigate and identify the source(s) of the symmetry
error. It is a surprise to find out that the commonly used explicit form of the local lower
order smoothness indicators βk (smoothness indicators) used in the definition of the non-
linear weights ωk in a substencil Sk for the seventh and ninth order WENO schemes [5] is
the source of rounding off errors, and when interact with the nonlinearity of the WENO
scheme, can have a strong influence on the symmetry of the solution. For example, the
explicit form of βk given by Balsara et al. [5] is far less accurate and less numerically stable
in term of rounding off errors. A loss of four or more significant digits can be devastating
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Figure 1: Two-dimensional Rayleigh-Taylors instability. (a) The density and (b) the symmetry error computed
by the WENO-JS9 scheme with ∆x=1/1920.

to problems which are physically unstable inherently and when solved by a nonlinear
shock capturing scheme such as the WENO schemes.

In this work, we would like to emphasize the following two observations:

• By reducing this particular source of numerical errors, one can be confident that the
symmetrical solution, when simulated by a high order nonlinear WENO scheme, is
not unnecessary overwhelmed by the numerical error prematurely.

• Even though the benefits of using the compact form of βk is illustrated with prob-
lems with symmetrical solutions, the numerical solution of a non-symmetrical
strongly non-linear problem can also be benefited in terms of improved numeri-
cal stability, reduced rounding off error and increased computational efficiency [3].

This paper is organized as follows. In Section 2, we briefly review the governing equa-
tions and the nonlinear WENO finite difference scheme. In Section 3, a brief introduction
to the explicit [5] and compact [9] forms of the smoothness indicators βk used in the def-
inition of the WENO nonlinear weights ωk. In Section 4, the one-dimensional double
rarefaction wave and Sedov blast-wave problems, and the two-dimensional Rayleigh-
Taylors instability with symmetrical solution are used as examples to illustrate the rapid
loss and improvement of the symmetry when simulated by the seventh and ninth order
WENO finite difference schemes with the explicit and compact forms of the smoothness
indicators βk respectively. Concluding remarks are given in Section 5. In Appendix A,
one example of the Matlab code for sum of squares via Shur complement is given.
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2 WENO finite difference scheme

In this work, we shall consider the hyperbolic conservation laws with the form

Qt+∇·
−→
F =0, (2.1)

in cartesian coordinates. For the two-dimensional case,
−→
F =(F,G) where

Q=(ρ,ρu,ρv,E)T , (2.2a)

F=
(
ρu,ρu2+P,ρuv,(E+P)u

)T
, (2.2b)

G=
(
ρv,ρuv,ρv2+P,(E+P)v

)T
, (2.2c)

where ρ is density, P is pressure, and U = (u,v) is the velocity vector. The ideal gas
equation of state (EOS) closes the system of equations with

P=(γ−1)
(

E− 1
2

ρ
(
u2+v2)), (2.3)

where γ is the ratio of specific heats. The source term, if exists, accounts for the effect of
the gravity on the fluid in the Rayleigh-Taylors instability (RTI).

To solve the nonlinear system of hyperbolic conservation laws above, we shall use
the high order weighted essentially non-oscillatory (WENO) scheme. Below is a brief de-
scription of the classical WENO-JS and improved WENO-Z finite difference scheme for
solving a nonlinear scalar hyperbolic equation (without the source term) in one dimen-
sion. Higher dimensional problems will be handled in a dimensional by dimensional
manner. Readers are referred to the literature [19] for discussion on other similar vari-
ants of the WENO finite difference schemes.

Consider an equidistant grid defined by the points xi= i∆x, i=0,··· ,N, which are cell
centers, with cell boundaries xi+ 1

2
= xi+

∆x
2 , where ∆x is the uniform grid spacing. The

semi-discretized form of (2.1) forms a system of ordinary differential equations (ODE)
that will be solved by the third order Runge-Kutta TVD scheme,

dQi(t)
dt

=− ∂ f
∂x

∣∣∣∣
x=xi

, i=0,··· ,N, (2.4)

where Qi(t) is a numerical approximation to the cell-averaged value Q(xi,t).
To form the flux difference across the uniformly spaced cells and to obtain a high-

order numerical flux consistent with the hyperbolic conservation laws, a conservative
finite difference formulation is required at the cell boundaries. By defining a numerical
flux function h(x) implicitly, one has

f (x)=
1

∆x

∫ x+ ∆x
2

x− ∆x
2

h(ξ)dξ, (2.5)
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such that the spatial derivative in (2.4) is approximated by a conservative finite difference
formula at the cell center xi,

dQi(t)
dt

=− 1
∆x

(
hi+ 1

2
−hi− 1

2

)
, (2.6)

where hi± 1
2
= h(xi± 1

2
). For a (2r−1) order WENO scheme, (2r−1) order polynomial

interpolation to hi± 1
2

are computed using the known cell-averaged values f j = f (xj), j=
i−(r−1),··· ,i+(r−1).

The key idea of the WENO methodology is the following polynomial reconstruction
procedure. By taking the (r = 3, 2r−1= 5) order WENO scheme for example, the five-
points global stencil S5 = (xi−2,··· ,xi+2) is subdivided into three three-points substen-
cils {Sk = (xi+k−2,xi+k−1,xi+k), k = 0,1,2}. The fifth degree polynomial approximation
f̂i± 1

2
= hi± 1

2
+O(∆x5) is built through the convex combination of three second degree in-

terpolation polynomials f̂ k(x) in substencils Sk at the cell boundaries xi± 1
2
,

f̂i± 1
2
=

2

∑
k=0

ω±k f̂ k(xi± 1
2
), f̂ k(xi+ 1

2
)=

2

∑
j=0

ckj fi−k+j, i=0,··· ,N, (2.7)

with Lagrangian interpolation coefficients ckj [11].

• In the classical WENO-JS5 scheme [11], the nonlinear weights ωk are defined as

ωk =
αk

∑2
j=0 αj

, αk =
dk

(βk+ε)p , k=0,1,2.

• In the improved WENO-Z5 scheme [6, 8], the nonlinear weights ωk are defined as

ωk =
αk

∑2
l=0 αl

, αk =dk

(
1+
(

τ5

βk+ε

)p)
, k=0,1,2, (2.8)

where τ5 = |β2−β0|, which has a leading truncation error of order O(∆x5) in the
absence of critical points.

The coefficients
{

d0=
3

10 , d1=
3
5 , d2=

1
10

}
are the ideal weights that, when the solution

is sufficiently smooth, one has {ωk ≈ dk, k = 0,1,2} and the WENO scheme essentially
becomes the optimal fifth order central upwind scheme. The sensitivity parameter ε is
used to avoid the division by zero in the denominator and power parameter p is chosen
to increase the difference of scales of distinct weights at the non-smooth stencils of the
solution [9, 16].

Remark 2.1. An improved WENO-Z scheme has been used extensively and is less dissi-
pative and has higher resolution power than the classical WENO-JS scheme for a larger
class of problems. Readers are referred to the literature for the higher order WENO
scheme [8, 19].
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3 Local lower order smoothness indicators βk

The regularity of the interpolation polynomial approximation f̂ k(x) of the substencil Sk
at xi is measured by the local lower order smoothness indicators,

βk =
r−1

∑
l=1

∆x2l−1
∫ x

i+ 1
2

x
i− 1

2

(
dl

dxl f̂ k(x)
)2

dx, k=0,1,··· ,r−1, (3.1)

which is the sum of the normalized L2 norm of the first (r−1) derivatives of f̂ k(x).
In this section, we shall discuss the explicit and compact forms of βk, which plays an

important role in maintaining the symmetry of a symmetrical problem when solved by
the high order (2r−1> 5) WENO schemes. For example, there are basically two forms
of βk available for the seventh and ninth order WENO scheme in the literature. They are
the explicit form of βk as given explicitly in Balsara et al. [5], Gerolymos et al. [10] and
Arandiga et al. [2], and the compact form of βk that can be found in the Appendix of the
paper by Don et al. [9].

Remark 3.1. We note that Balsara et al. [3, 4] provide an alternative and equally effective
compact expression for βk by using the Legendre polynomials basis for the WENO recon-
struction procedure as oppose to the polynomials basis [11], which is more commonly
used in the literature. Readers who are interested in the former case are referred to [3]
for details. Our preliminary study indicates that the results from either formulations are
virtually identical. In this study, we will focus our discussion on the latter case.

3.1 The explicit form of the smoothness indicators βk

In [2, 5, 10], the explicit long complex formulas of βk for the seventh and higher order
WENO scheme are given. For example, the β0 for the ninth (r=5, 2r−1=9) order WENO
scheme is

β0= f j−4(22658 f j−4−208501 f j−3+364863 f j−2−288007 f j−1+86329 f j)

+ f j−3(482963 f j−3−1704396 f j−2+1358458 f j−1−411487 f j)

+ f j−2(1521393 f j−2−2462076 f j−1+758823 f j)

+ f j−1(1020563 f j−1−649501 f j)+107918 f j. (3.2)

For the full set of βk, see [5, 10] and others.
Due to the machine round-off floating points representation of a real number, these

formulas with large coefficients are prone for rounding errors. This numerical error could
lead to an undesirable erratic and chaotic behavior of a high order nonlinear WENO
scheme for solving problems sensitive to small random perturbations. If the sensitive
parameter ε is not sufficiently large (for example, ε = 10−15), a negative small random
βk, for an even power parameter p, would reduce the effectiveness of ε and thus create



1424 W. S. Don, P. Li, K. Y. Wong and Z. Gao / Adv. Appl. Math. Mech., 10 (2018), pp. 1418-1439

unnecessary random substencil bias in an under-resolved or discontinuous stencil, and
for an odd power parameter p, might even destabilize the solution with negative weights
once a while. Therefore, a significant loss of accuracy (at least 4-5 digits) can be expected
for a high order WENO scheme.

3.2 The compact form of the smoothness indicators βk

Alternatively, one can take advantage of the compact and relatively more numerical sta-
ble formula in computing the βk according to [9]. Its basic description is reproduced here
for the sake of completeness.

Given the (2r−1) order WENO scheme, the k substencil Sk, and a set of functional
value f k

n = fi+k−r+n, n = 1, ··· ,r, defined on the global stencil S2r−1, the (r−1)×(r−1)
symmetric smoothness measuring matrix Cr and the (r−1)×r differentiation matrix Gk,
the smoothness indicators βk based on (3.1) can be written compactly in a quadratic bi-
linear form

βk =
〈

vk,Crvk
〉

, (3.3)

where
vk=Gkfk with f k

n = fi+k−r+n, n=1, ··· ,r. (3.4)

The matrices Gk up to the eleventh order WENO scheme can be found in [9].
For any given r, the elements of the symmetric smoothness measuring matrix Cr are

Cr
m,n =

min{m,n}

∑
`=1

A`
m+`−1,n+`−1. (3.5)

(See [9] for the definition of A). For example,

C6=



1 0 0 0 0

0
13
12

0 − 1
720

0

0 0
781
720

0 − 43
30240

0 − 1
720

0
32803
30240

0

0 0 − 43
30240

0
1312121
1209600


= I+H6, (3.6)

where I is the identity matrix and

H6=



0 0 0 0 0

0
1

12
0 − 1

720
0

0 0
61

720
0 − 43

30240
0 − 1

720
0

2563
30240

0

0 0 − 43
30240

0
102521

1209600


. (3.7)
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It should be noted that {Ck, k=1,··· ,r−1} are the leading principal minor of Cr. For ex-
ample, the smoothness measuring matrices {Ck, k=1,··· ,5} is a leading principal minor
of C6. Hence, (3.1) or (3.3) can be rewritten as

βk =
〈

vk,vk
〉
+
〈

vk,Hrvk
〉
=bk+hk, (3.8)

where bk=
〈
vk,vk〉 contains only squared terms like (vk

i )
2 with a unit coefficient while hk

contains all the remaining terms including all cross multiplied terms like vk
i vk

j , i 6= j.
For example, in the ninth (r=5, 2r−1=9) order WENO scheme, we have

βk =
4

∑
l=1

(vk
l )

2+
61
720

(vk
3)

2+
1
12

(vk
2)

2− 1
360

vk
2vk

4+
2563
30240

(vk
4)

2, (3.9)

with

bk =
4

∑
l=1

(vk
l )

2 and hk =
61
720

(vk
3)

2+
1

12
(vk

2)
2− 1

360
vk

2vk
4+

2563
30240

(vk
4)

2.

In order to guarantee the positivity of βk, one would need to replace all the cross
multiplied terms and express all the terms related to the elements in the cross multi-
plied terms as sum of squares. In the following, we present three different approaches to
achieve the above goal. The first one is to perform the brute force completion of squares
iteratively with increasing complexity. The second one is the method of expansion which
solves a small but increasingly complex system of equations iteratively. The last one is
the method of Shur complement which solves a matrix equation via the mathematically
elegant Shur complement method by taking advantage of the special structure of the ma-
trix for any order of the WENO scheme. The first two approaches require that all the βk
of the WENO order [1,3,··· ,2r−3] are known before finding the βk of the WENO order
2r−1, thus they are less flexible. This is in contrast to the third approach that βk of order
2r−1 can be found for any given r.

3.2.1 Method of completion of squares

For example, the term 1
360 vk

2vk
4 in (3.9) should be eliminated from the equation by modi-

fying the three terms involving vk
2 and vk

4. This can be done by the simple technique of
completing the square †, and one obtains

βk =
4

∑
l=1

(vk
l )

2+
61
720

(vk
3)

2+
1
12

(
vk

2−
1

60
vk

4

)2

+
949

11200
(vk

4)
2. (3.10)

This simple procedure can be applied recursively for other cross multiplied terms for any
high order WENO scheme.

†ax2−bxy+cy2 = a(x−δy)2+ωy2, where ac 6=0, δ=b/(2a), ω= c−aδ2.
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3.2.2 Method of expansion

Instead, one can assume that the m-ary quadratic form has the sum of squares form (Here,
we take the thirteen (r=7, 2r−1=13, m=(r−1)/2=3) order WENO scheme for illustra-
tion)

βk = a(x−by−cz)2+d(y−ez)2+ f z2, (3.11)

where (a,b,c,d,e, f ) are the (2m=6) unknown coefficients and, for clarity, we denote x=vk
2,

y = vk
4, z = vk

6. We shall determine the unknown coefficients by expanding (3.11) and
matching the coefficients of the corresponding terms with the known values given in F
(see (3.13) below). This results in a system of six equations with six unknown. After some
straightforward algebraic manipulations, one can show that



a
b
c
d
e
f


=



F11

−F12/a
−F13/a
F22−ab2

−(F23−abc)/d
F33−ac2−de2


=



1
12
1
60

− 1
2520
949

11200
397

23652
559977250489
6608785075200



. (3.12)

It is noteworthy that the coefficients (a,b,d) are exactly the same as the one given in the βk
of the ninth order (r=5) WENO scheme. Hence, there are actually only three unknowns
coefficients (c,e, f ) related to the new variable z are needed to be solved for. Similar
pattern can be found in an even higher order βk.

3.2.3 Method of Shur complement

One can also obtain the same results for the smoothness indicators βk of arbitrary WENO
order in a mathematically elegant way via the method of Shur complement (see [23] and
reference therein). In general, since all the relevant terms involved in the cross multiplied
terms in the βk can be written compactly in a symmetric positive definite m×m (here,
m=

[ r−1
2

]
) matrix F associated with a symmetric positive definite m-ary quadratic form

with real coefficients (see below for example) as

F=
(

A B
BT C

)
, (3.13)

where A is a (m−1)×(m−1) block symmetric matrix, B is a (m−1)×1 block matrix and
C is a 1×1 block matrix.
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Since A itself is a symmetric positive definite matrix and invertible, one can decom-
pose the matrix F using the Shur complement of A in F, namely,(

A B
BT C

)
=

(
I BTA−1

0 I

)T( A 0
0 C−BTA−1B

)(
I BTA−1

0 I

)
=LTDL,

where D=diag(d1,d2,··· ,dm−1,dm) with di, i=1,··· ,m−1 are the diagonal elements of A
and dm =C−BTA−1B with all di >0.

Recognizing that A, which is a symmetric positive definite matrix itself and associ-
ated with a symmetric positive definite (m−1)-ary quadratic form, can be decomposed,
similarly to F, as A=LTDL, and A−1 can be readily found for an upper triangular block
matrix by observing that (

I BTA−1

0 I

)−1

=

(
I −BTA−1

0 I

)
. (3.14)

Finally, by defining a new variable u in term of original variables involving the cross
multiplied terms in βk, v, such that u=vLT, one can replace all the terms involving the
elements in v with 〈u,Du〉=d1u2

1+···+dmu2
m in the formula of βk.

For example, the cross multiplied term 1
360 vk

2vk
4 in (3.9) involves only the elements vk

2
and vk

4, one can group and rewrite these three terms together as

vTFv, (3.15)

where

v=
(

vk
2

vk
4

)
, F=

 1
12

− 1
720

− 1
720

2563
30240

. (3.16)

(Notice the relationship between the elements of F and H5).
Following the procedure above, one has

D=(d1,d2)=

(
1

12
,

949
11200

)
, u=(u1,u2)=

(
vk

2−
1

60
vk

4, vk
4

)
, (3.17)

and

hk =
61
720

(vk
3)

2+d1u2
1+d2u2

2, (3.18)

which is exactly what we have obtained earlier.
In Appendix A, a symbolic Matlab code is provided to illustrate the application of

the method of Shur complement that performs the sum of perfect squares for the thirteen
order WENO scheme. Extension to higher order WENO scheme can be easily derived
following the same procedure.



1428 W. S. Don, P. Li, K. Y. Wong and Z. Gao / Adv. Appl. Math. Mech., 10 (2018), pp. 1418-1439

3.3 Unified compact form of the smoothness indicators βk

In fact, one can express the compact form of βk of any order in a mathematically elegant
way as (For simplicity, we illustrate the concept with order (2r−1, 2≤ r≤7))

βk =
〈

vk,vk
〉
+aeB2

e +aoB2
o , (3.19)

where vk=Gkfk=
(
vk

1,vk
2,··· ,vk

r−1

)
with f k

n = fi+k−r+n, n=1, ··· ,r,

ae =
[

a2 a4 a6
]
, ao =

[
a3 a5 a7

]
, (3.20)

and

Be =

 1 −b4 −c6
0 1 −b6
0 0 1

 vk
2

vk
4

vk
6

, Bo =

 1 −b5 −c7
0 1 −b7
0 0 1

 vk
3

vk
5

vk
7

, (3.21)

or, explicitly as

βk =
r−1

∑
l=1

(vk
l )

2+a2

(
vk

2−b4vk
4−c6vk

6

)2
+a4

(
vk

4−b6vk
6

)2
+a6

(
vk

6

)2

+a3

(
vk

3−b5vk
5−c7vk

7

)2
+a5

(
vk

5−b7vk
7

)2
+a7

(
vk

7

)2
. (3.22)

The coefficients (am,bm,cm), m = 2,··· ,r are given in the Table 1. The βk of any (2r−1,
2≤ r≤7) order can be obtained by setting the corresponding coefficients (am =0, bm =0,
cm=0), m≥r−1. Extension to order greater than thirteen (r>7) is trivial in either one of
these two unified compact forms once the coefficients are found via one of the methods
above.

Remark 3.2. We remark that the coefficients appeared in the compact form of βk are
O(1) and are generally only slightly larger than one despite the size of the numerator
and denominator. Hence, the compact form of βk has a better numerical stability than
the explicit form.

Furthermore, regarding the implementation of these coefficients in an algorithm, the
numerical value of these coefficients can be computed with extra precision or symboli-
cally and stored with extra precision as data in the program.

Table 1: The coefficients (am,bm,cm), m=2,··· ,7 of the unified compact form of the smoothness indicators βk.

a2=
1

12 b4=
1

60 c6=− 1
2520

a3=
61

720 b5=
43

2562 c7=0
a4=

949
11200 b6=

397
23652

a5=
131292421

1549497600 b7=0
a6=

559977250489
6608785075200

a7=0
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4 Numerical results and discussion

In this section, we present the symmetry property of symmetrical problems computed by
the high order WENO schemes. The influence of the βk for the symmetry problems will
be shown. We shall refer to the WENO scheme (JS/Z) with the explicit form of βk given
by Balsara et al. [5] as the WENO-JS/Z-BS, and the compact form of βk given by Don et
al. [9] as the WENO-JS/Z-DB in the following discussions.

Since we are interested in the examining the symmetry property of the high order
WENO scheme, we shall examine the temporal evolution of the error in term of the loss
of symmetry along a direction where the solution is supposedly symmetrical. We shall
give the definition that quantify the global l2 symmetry error Es( f ,t) as follow

Definition 4.1. Given a function f (x,y,t), assuming symmetric along the x-direction in a
domain x∈ [0,L],y∈ [0,H], the symmetry error Es( f ,t) of f is defined as

Es( f ,t)=

(
1

2NM ∑
i,j

(
f (xi,yj,t)− f (L−xi,yj,t)

)2

) 1
2

, (4.1)

where xi = iL/N, i=0, ··· , N and yj = jH/M, j=0, ··· , M.

In the characteristic-wise WENO finite difference scheme that used in this study, the
polynomial reconstruction procedure is applied to the characteristic projection (via Roe
eigensystem) of the positive and negative fluxes after applying the global Lax-Friedrichs
flux splitting of the Euler flux above [11]. The resulting system of ODEs after the spatial
discretization is advanced in time via the third order TVD Runge-Kutta scheme [20].
Unless stated otherwise, the CFL condition is set to be CFL=0.45, and the sensitivity and
power parameter in the WENO nonlinear weights are set to be ε = 1×10−12 and p = 2
respectively, in the numerical experiments performed in this study.

4.1 One-dimensional problems

The one-dimensional double rarefaction problem and Sedov blast wave problem are in-
vestigated to demonstrate the behaviors of the WENO-JS/Z-BS and WENO-JS/Z-DB
schemes for the symmetrical problems in this section.

4.1.1 Double rarefaction problem

The initial conditions of the double rarefaction problem are

(ρ,u,P)=
{

(1,−2,0.4), −5≤ x<0,
(1,2,0.4), 0≤ x≤5,

and the final time is t=1. The number of uniform cells used is N=200.
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Figure 2: One-dimensional double rarefaction problem. (a) The density profile computed by the WENO-JS7
scheme at time t=1 and the symmetry errors of the density computed by (b) the WENO-JS/Z7 and (c) the
WENO-JS/Z9 schemes.
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Figure 3: One-dimensional double rarefaction problem. The temporal evolution of the symmetry errors of the
density computed by the WENO-Z9 scheme at times (a) t=0.1, (b) t=0.2 and (c) t=0.4.

In the left figure of Fig. 2, the density profile computed by the WENO-JS7 scheme and
the exact solution are shown. Similar results computed by the WENO-Z7 and WENO-
JS/Z9 are omitted here for clarity. The symmetry errors of the density computed by
seventh and ninth order WENO-JS7/9 and WENO-Z7/9 schemes are shown in the mid-
dle and right figures of Fig. 2 respectively. It can be observed that the symmetry errors
with the compact form of βk (3.3) are at least six digits smaller than those computed with
the explicit form of βk (3.2).

For the purpose of clarity, we show the temporal evolution of the symmetry error
computed by the WENO-Z9 scheme in space at times t=0.1, t=0.2 and t=0.4 in Fig. 3.
From the temporal-spatial solution of the density, the largest symmetry error is located
at the corner of the rarefaction wave (a jump in the derivative of the density) and the
constant left/right states. The results show that, with the explicit form of βk, the symme-
try error increases rapidly to a large value of O(10−7) in the early time and then grows
slowly up to a value of O(10−5) afterward. By comparison, with the compact form of
βk, the symmetry error also grows rapidly at the early time but at a much lesser rate to
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Figure 4: One-dimensional double rarefaction problem. The symmetry errors of the density computed by the
(a) WENO-Z7 and (b) WENO-Z9 scheme at time t=1 with compact form of βk (blue solid line: present study,
and red dashed line: [3]).

a value of O(10−13) and then grows slowly and remains more or less around a value of
O(10−12) afterward.

Furthermore, we show the comparative results with the present compact form and
the compact form of βk given in [3, 4] in Fig. 4, which demonstrates no discernible dif-
ference between the two compact forms of βk. In essence, user can choose either version
of compact form of βk as convenient in term of reducing the symmetry error, and the
numerical results studied here hold for both forms.

One might ask what role does the sensitivity parameter ε plays in term of the sym-
metry error in light of two different forms of βk. In this regard, we show two figures
(Fig. 5) which indicate the effect of the ε on the symmetry error of the one-dimensional
double rarefaction problem. They clearly show that, for any fixed ε, the compact form of
βk out-performs the explicit form of βk for a wide range of ε. Furthermore, for large ε, the
βk is effectively unimportant relative to ε. Hence, as expected, the symmetry error will be
reduced. As the in-depth study in [12], for essentially non-oscillatory shock capturing, it is
important to keep ε small, say 10−12. As the matter of fact, ε should be a zero or machine
zero in an ideal situation for effective shock capturing.

4.1.2 Sedov blast-wave problem

The Sedov blast-wave problem [18,24] is a shocked flow with a large pressure ratio and a
very low pressure. A high pressure point-blast wave propagates into a very low pressure
region. The initial conditions are

(ρ,u,P)=
{

(1,0,4×10−13), δ< |x|<2,
(1,0,2.56×108), |x|<δ,

δ=
∆x
2

, (4.2)
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Figure 5: One-dimensional double rarefaction problem. The symmetry errors of the density computed by the
WENO-Z7 and WENO-Z9 schemes with different ε (eps∗=10−∗) at time t=1 (Left) the explicit and (Right)
compact form of βk.

with γ= 1.4, ∆x= 5×10−3 and final time t= 10−3. The number of uniform cells used is
N=800.

In the left figure of Fig. 6, the density profile computed by the WENO-JS7 scheme and
the exact solution are shown. Similar results computed by the WENO-Z7 and WENO-
JS/Z9 are omitted here for clarity. The symmetry errors of the density computed by the
seventh and ninth order WENO-JS7/9 and WENO-Z7/9 schemes are shown in the mid-
dle and right figures of Fig. 2 respectively. It can be observed that the symmetry errors
with the compact form of βk (3.3) are at least five digits smaller than those computed with
the explicit form of βk (3.2). In this case, however, the symmetry error of the WENO-Z9-
DB scheme is only two to three digits smaller than that of the WENO-JS9-BS scheme. We
have not found out the reason for this behavior for the ninth order WENO-Z9 scheme
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Figure 6: One-dimensional Sedov blast-wave problem. (a) The density profile computed by the WENO-JS7
scheme at time t= 10−3 and the symmetry errors of the density computed by (b) the WENO-JS/Z7 and (c)
the WENO-JS/Z9 schemes.

yet and will report it in the future work if any improvement can be made. Nonetheless,
these two simple examples have clearly demonstrated that the rapid loss of symmetry is
related to the explicit form of βk in the high order WENO scheme.

4.2 Two-dimensional Rayleigh-Taylor instability problem

In this section, we consider the two-dimensional Rayleigh-Taylor instability (RTI) prob-
lem for investigating the Symmetry property of the high order WENO schemes. The
problem is set up as follows: the computational domain is [0, 1

4 ]×[0,1] with a perturbed
interface located at y= 1

2 initially. The heavy fluid with density ρ= 2 is below the inter-
face, and the light fluid with density ρ=1 is above the interface with the acceleration in
the positive y-direction. The pressure P is continuous across the interface and a small
perturbation is given to the y-direction fluid speed. That is, for 0≤ y< 1

2 , we have ρ=2,
u=0, p=2y+1, v=v0cos(2πkx), and for 1

2≤y≤1, ρ=1, u=0, p=y+ 3
2 , v=−v0cos(2πkx),

where k=4, v0 =−0.025c, c=
√

γP/ρ is the sound speed, and the ratio of specific heats
γ= 5

3 . The reflective boundary conditions are imposed on the left and right boundaries.
At the top boundary, the flow values are set as ρ=1, p=2.5, u=v=0, and at the bottom
boundary, they are ρ= 2, p= 1, u= v= 0. The source terms ρ is added to the right hand
side of third equation, and ρv is added to the fourth equation of Euler equations. The
final simulation time is t=1.95.

In Figs. 7 and 8, we show the contour lines of the density computed by the classical
WENO-JS7 and WENO-JS9 schemes under different mesh resolutions. From the figures,
it is very difficult to identify the difference among the figures computed by the WENO-
JS7/9 with two different forms of βk under the resolutions ∆x = 1/480,1/960. In the
case of the highest resolution ∆x=1/1920, the WENO-JS7-BS scheme generates a slightly
asymmetric figure (e.g., structures in the red boxes) but the WENO-JS7-DB scheme pre-
serves the symmetry of the result. Furthermore, there are some minor different structures
observed in the results computed by the WENO-JS9-BS and WENO-JS9-DB schemes. The
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Figure 7: Two-dimensional Rayleigh-Taylors instability. The density ρ(x,y,t=1.95) computed by the WENO-
JS7-BS and WENO-JS7-DB schemes.

corresponding symmetry errors of density are plotted in Fig. 9. We can easily find that
the symmetry errors computed by the WENO-JS7/9 schemes with the compact form of
βk (3.3) are around 3-4 digits smaller than those with the explicit form of βk (3.2) under
different resolutions.

5 Conclusion remarks

The symmetry property of the nonlinear seventh and ninth order characteristic-wise
weighted essentially non-oscillatory (WENO) finite difference shock capturing scheme
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Figure 8: Two-dimensional Rayleigh-Taylors instability. The density ρ(x,y,t=1.95) computed by the WENO-
JS9-BS and WENO-JS9-DB schemes.

with the global Lax-Friedrichs flux splitting via the Roe-averaged eigensystem was in-
vestigated in this study. We found that the explicit and compact forms of βk in the non-
linear weights definition of the WENO scheme play an important role in the rapid loss of
symmetry property in the solution. The explicit form of βk is prone for rounding errors
because of the large coefficients. Therefore, an alternative compact and stable formula in
computing high order βk is derived and strongly recommended for simulations employ-
ing a high order WENO scheme. The numerical results of the one-dimensional double
rarefaction and Sedov blast-wave problems, and the two-dimensional Rayleigh-Taylor
instability problem demonstrated that the symmetry errors computed by the high order
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(a) Es(ρ,t), WENO-JS7 (b) Es(ρ,t), WENO-JS9

Figure 9: Two-dimensional Rayleigh-Taylors instability. The symmetry error of density computed by (a) the
WENO-JS7 and (b) the WENO-JS9 schemes.

WENO scheme with the compact form of βk can be substantially smaller than those with
the explicit one. Even though the benefits of using the compact form of βk is illustrated
with problems with symmetrical solutions, the numerical solutions of non-symmetrical
strongly non-linear problems can also be benefited in terms of improved numerical sta-
bility, reduced rounding errors and increased computational efficiency.

Appendix

A Matlab code for sum of squares via Shur complement

clear all;

F = sym(’f’, 3);

F(1,1) = 13/sym( 12) ;

F(1,2) = -1/sym( 720) ; F(2,1) = F(1,2) ;

F(2,2) = 32803/sym( 30240) ;

F(1,3) = 1/sym( 30240) ; F(3,1) = F(1,3) ;

F(2,3) = -1721/sym( 1209600) ; F(3,2) = F(2,3) ;

F(3,3) = 259799963/sym(239500800) ;

F = F-eye(3)

%-----------------------------------------

A = sym(’a’,1); B = sym(’b’,[1 1]) ; C = sym(’c’,1); d = sym(’d’,2);

A = F(1,1)
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B = F(1,2)

C = F(2,2)

d = diag( [ A, sym(C - B’*inv(A)*B) ] )

L0 = sym(eye(2)); L0(1,2) = sym(B’*inv(A))

L = L0

G = L’*d*L

V = sym(’v’,[1,2]);

U = transpose(V*L’)

%---------------------------------------------------------

L2 = sym(eye(3)); L2(1:2,1:2) = L

%----------------------------------------------------------

A = sym(’a’,2); B = sym(’b’,[2 1]) ; C = sym(’c’,1); D = sym(’d’,3);

A = F(1:2,1:2)

B = F(1:2,3)

C = F(3,3)

D = diag( [ diag(d)’, sym(C - B’*inv(A)*B) ])

L3 = sym(eye(3)); L3(1:2,3) = sym(B’*inv(A))

L = L2*L3

G = L’*D*L

V = sym(’v’,[1,3]);

U = transpose(V*L’)

D

Y = sum(diag(D).*(U.^2))

Acknowledgements

The authors would like to acknowledge the funding support of this research by the
National Natural Science Foundation of China (Nos. 11801383, 11871443), National Sci-
ence and Technology Major Project (No. 20101010), Shandong Provincial Natural Sci-
ence Foundation (No. ZR2017MA016) and Fundamental Research Funds for the Cen-
tral Universities (No. 201562012). The authors (Li and Don) also like to thank Shiji-
azhuang Tiedao University and Ocean University of China for providing the startup



1438 W. S. Don, P. Li, K. Y. Wong and Z. Gao / Adv. Appl. Math. Mech., 10 (2018), pp. 1418-1439

funds (No. Z6811021064 and 201712011), respectively.

References

[1] N. N. ANUCHINA, V. I. VOLKOV, V. A. GORDEYCHUK, N. S. ES’KOV, O. S. ILYUTINA AND
O. M. KOZYREV, Numerical simulations of Rayleigh-Taylor and Richtmyer-Meshkov instability
using MAH-3 code, J. Comput. Appl. Math., 168 (2004), pp. 11–20.
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