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Abstract. A Crank-Nicolson finite volume scheme for the modeling of the Riesz space

distributed-order diffusion equation is proposed. The corresponding linear system has a

symmetric positive definite Toeplitz matrix. It can be efficiently stored in O (NK) mem-

ory. Moreover, for the finite volume scheme, a fast version of conjugate gradient (FCG)

method is developed. Compared with the Gaussian elimination method, the computa-

tional complexity is reduced from O (MN3 + NK) to O (lAMN log N + NK), where lA is

the average number of iterations at a time level. Further reduction of the computational

cost is achieved due to use of a circulant preconditioner. The preconditioned fast finite

volume method is combined with the Levenberg-Marquardt method to identify the free

parameters of a distribution function. Numerical experiments show the efficiency of the

method.
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1. Introduction

In the past few decades, fractional partial differential equations (PDEs) have been

widely used to model complex physical phenomena with long-range time memory and

spatial interactions [3, 7, 27, 29, 36]. Systematic introduction to fractional calculus and

fractional differential equations can be found in Refs. [33,35].
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Unlike the PDEs of integer-order, analytical solutions of fractional PDEs are rarely avail-

able, so that numerical methods have to be employed — cf. Refs. [8,9,13,17,18,24–26,30,

31, 39, 44, 46]. However, the nonlocal nature of fractional differential operators leads to

dense stiffness matrices and/or long tails in the time direction. Thus, traditional approxi-

mation methods using numerical discretisation, have a high computational cost, especially

in multidimensional situations. In 2010, Wang et al. [41] proposed a direct fast finite

difference method for space-fractional diffusion equations, which retained the same accu-

racy as regular finite difference methods but required only O (N ) memory storage with the

computational cost O (N log2 N ). After that, fast solution methods have been extended to

various fractional PDEs, including space-fractional PDEs [19,21,34,42,43], time-fractional

PDEs [20,45] and space-time-fractional PDEs [10,11,15].

Recently, Li et al. [23] considered a finite volume method for a distributed-order space-

fractional model and proved the unconditional stability, convergence and the second order

accuracy of the method, both in space and time. Here, we want to develop a precondi-

tioned fast finite volume method for a distributed-order space-fractional model and apply

it to an inverse problem to determine the free parameters of the corresponding distribution

function. Starting with the investigation of the matrix structure of the method and its ef-

ficient storage, we then develop a preconditioned fast conjugate gradient (PFCG) method

based on a circulant preconditioner and fast matrix-vector multiplication. Numerical ex-

periments show a largely reduced CPU usage, hence the method is well suited to large-

scale modeling and simulation. Let us recall that various application problems require the

identification of free parameters in the corresponding mathematical models — e.g. given

experimental data, determine a parameter by minimising the difference between the nu-

merical output and experimental data. Such procedures are usually considered as inverse

problems [6,12], and in this work we develop a PFCG-based optimisation algorithm, which

is based on the Levenberg-Marquardt iterative method with the Armijo rule. It is numeri-

cally tested, including the situations when the observation data contaminated by random

noise. The numerical tests show the efficiency and accuracy of the method proposed.

The rest of the paper is organised as follows. In Section 2, we consider the Riesz space

distributed-order diffusion equation and describe the corresponding finite volume approx-

imations. Section 3 discusses the structure of the finite volume scheme matrix and its

efficient storage. In Section 4, we develop a PFCG iterative method for the finite volume

scheme and test its efficiency. Section 5 is devoted to the identification of free parameters

for a distributed-order diffusion equation with the distribution function (2.2). We note

that numerical experiments show the strong performance of the method. Our concluding

remarks are in Section 6.

2. A Diffusion Equation and Finite Volume Approximations

In this paper, we develop a preconditioned fast finite volume method for the Riesz space

distributed-order diffusion equation
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∂ u(x , t)

∂ t
−
∫ 2

1

P(α)
∂ αu(x , t)

∂ |x |α dα= f (x , t), (x , t) ∈ (0,1)× (0, T ],

u(x , 0) = uo(x), x ∈ (0,1), u(0, t) = u(1, t) = 0, t ∈ (0, T ],

(2.1)

where f (x , t) is the source or sink term, P(α) a non-negative weight function satisfying the

conditions

P(α) ≥ 0, P(α) 6= 0, α ∈ (1,2), 0<

∫ 2

1

P(α)dα <∞,

and u0(x) a given function. We note that, according to [38], the function P(α) can be

chosen as

P(α) = lα−2D (A1δ(α− eα1) + A2δ(α− eα2)) , (2.2)

where l and D are positive constants, A1 > 0, A2 > 0 and 0 < eα1 < eα2 < 2. If eα1 6= 1 and

eα2 6= 1, then P(1) = 0. Throughout the paper we also assume that P(1) = 0. Moreover,

∂ αu(x , t)/∂ |x |α refers to the Riesz fractional derivative [37], defined by

∂ αu(x , t)

∂ |x |α :=






− 1

2 cos(πα/2)

�
∂ αu(x , t)

∂+xα
+
∂ αu(x , t)

∂−xα

�
, 1< α < 2,

∂ 2u(x , t)

∂ x2
, α = 2,

where
∂ αu(x , t)

∂+xα
=

1

Γ (n−α)
∂ n

∂ xn

∫ x

0

u(s, t)

(x − s)α−n+1
ds,

∂ αu(x , t)

∂−xα
=
(−1)n

Γ (n−α)
∂ n

∂ xn

∫ 1

x

u(s, t)

(s− x)α−n+1
ds

are the left and right Riemann-Liouville fractional derivatives [35] and Γ (·) is the Gamma

function.

Now we discretise the distributed-order diffusion model (2.1), starting with the inte-

gral term. Let K be a positive integer and ξk = 1 + kρ, ρ = 1/K , k = 0,1, · · · , K the

corresponding uniform partition of the interval [1,2]. Setting αk := (ξk−1 + ξk)/2 and

using the midpoint quadrature rule, we write

∫ 2

1

P(α)
∂ αu(x , t)

∂ |x |α dα=

K∑

k=1

P(αk)
∂ αk u(x , t)

∂ |x |αk
ρ + O (ρ2). (2.3)

Analogously, for a positive integer M , we define the uniform partition tm = mτ, τ = T/M ,

m = 0,1, · · · , M of the interval [0, T ] and, taking into account the representation (2.3), we

approximate the model (2.1) by the following semi-discrete Crank-Nicolson scheme

u(x , tm)− u(x , tm−1)

τ
=
ρ

2

K∑

k=1

P(αk)

�
∂ αk u(x , tm)

∂ |x |αk
+
∂ αk u(x , tm−1)

∂ |x |αk

�

+
1

2
( f (x , tm) + f (x , tm−1)) + O (ρ2 +τ2), (2.4)
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which has the second-order accuracy in time for sufficiently smooth functions u(x , t).

Finally, we choose another positive integer N and consider the spatial partition x i = ih,

h= 1/(N + 1), i = 0,1, · · · , N + 1 of the interval [0,1]. Setting x i−1/2 := (x i−1 + x i)/2, we

integrate the Eq. (2.4) over the intervals [x i−1/2, x i+1/2], 1≤ i ≤ N thus obtaining

∫ xi+1/2

xi−1/2

u(x , tm)d x − ρτ
2

K∑

k=1

ak

�
∂ βk u(x , tm)

∂+xβk
− ∂

βk u(x , tm)

∂−xβk

����
xi+1/2

xi−1/2

=

∫ xi+1/2

xi−1/2

u(x , tm−1)d x +
ρτ

2

K∑

k=1

ak

�
∂ βk u(x , tm−1)

∂+xβk
− ∂

βk u(x , tm−1)

∂−xβk

����
xi+1/2

xi−1/2

+
τ

2

∫ xi+1/2

xi−1/2

( f (x , tm) + f (x , tm−1)) d x + O (τh(ρ2 +τ2)) (2.5)

with βk = αk − 1 ∈ (0,1) and ak = −P(αk)/(2 cos(παk/2))> 0.

Let Sh(0,1) be the space of continuous functions, linear on each subinterval (x i−1, x i),

vanishing at the points x = 0 and x = 1. Then the finite volume solution um
h
(x) :=

uh(x , tm) ∈ Sh(0,1) for the model (2.1) can be written in the form

um
h
(x) =

N∑

i=1

um
i φi(x), (2.6)

where φi , 1≤ i ≤ N , are the nodal basis function defined by

φi(x) =






x − x i−1

h
, x ∈ [x i−1, x i],

x i+1 − x

h
, x ∈ [x i, x i+1],

0, elsewhere,

and um
i

are the finite volume approximation of u(x i, tm) for i = 1,2, · · · , N and m =

1,2, · · · , M . In particular, u0
i
= uo(x i) for i = 1,2, · · · , N .

Replacing u(x , tm) in (2.5) by um
h
(x) of (2.6) and omitting the truncation-error term,

we arrive at the fully-discrete finite volume scheme of the model (2.1) — viz.

N∑

j=1

um
j

∫ xi+1/2

xi−1/2

φ j(x)d x − ρτ
2

N∑

j=1

um
j

K∑

k=1

ak

�
∂ βkφ j(x)

∂+xβk
− ∂

βkφ j(x)

∂−xβk

����
xi+1/2

xi−1/2

=

N∑

j=1

um−1
j

∫ xi+1/2

xi−1/2

φ j(x)d x +
ρτ

2

N∑

j=1

um−1
j

K∑

k=1

ak

�
∂ βkφ j(x)

∂+xβk
− ∂

βkφ j(x)

∂−xβk

����
xi+1/2

xi−1/2

+
τ

2

∫ xi+1/2

xi−1/2

( f (x , tm) + f (x , tm−1)) d x . (2.7)

Consider now the vectors

um :=
�
um

1
,um

2
, · · · ,um

N

�⊤
, Fm :=
�
F m

1
, F m

2
, · · · , F m

N

�⊤
, m = 1,2, · · · , M ,
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where

F m
i =

τ

2

∫ xi+1/2

xi−1/2

( f (x , tm) + f (x , tm−1)) d x , 1≤ i ≤ N .

The finite volume scheme (2.7) can be written as the system of linear algebraic equations

(A−ηB)um = (A+ηB)um−1 + Fm, η :=
ρτ

2
, (2.8)

where A = (Ai, j)
N
i, j=1

and B = (Bi, j)
N
i, j=1

are, respectively, mass and stiffness matrices with

entries

Ai, j =

∫ xi+1/2

xi−1/2

φ j(x)d x ,

Bi, j =

K∑

k=1

ak

�
∂ βkφ j(x)

∂+xβk
− ∂

βkφ j(x)

∂−xβk

����
xi+1/2

xi−1/2

.

(2.9)

It was established in [23, Theorems 4,5] that the finite volume scheme (2.7) is uncon-

ditionally stable and converges as O (ρ2 + τ2 + h2). Although it resembles the scheme for

the classical second-order diffusion equation, for nodal basis functions φi(x) the deriva-

tives ∂ βkφ j(x)/∂±xβk are supported on the whole interval [0,1], so that the corresponding

stiffness matrix B in (2.9) is full. The inversion of such matrices generally requires O (N3)

operations and O (N2) memory for the storage, which is computationally costly, especially

in large-scale modeling and simulations.

3. Matrix Structure and Efficient Storage

To develop an efficient and faithful approximation method for the system (2.8), we

have to investigate the structure of the matrices A and B.

Direct calculations show that

∫ xi+1/2

xi−1/2

φ j(x)d x =






h/8, | j − i| = 1,

3h/4, j = i,

0, otherwise,

(3.1)

and
∂ βkφ j(x)

∂+xβk

���
x=xi−1/2

= χk

¨
0, j > i,

s
(βk)

i− j
, j ≤ i,

∂ βkφ j(x)

∂+xβk

���
x=xi+1/2

= χk

¨
0, j > i + 1,

s
(βk)

i− j+1
, j ≤ i + 1,

∂ βkφ j(x)

∂−xβk

���
x=xi−1/2

= χk

¨
s
(βk)

j−i+1
, j ≥ i − 1,

0, j < i − 1,

∂ βkφ j(x)

∂−xβk

���
x=xi+1/2

= χk

¨
s
(βk)

j−i
, j ≥ i,

0, j < i,

(3.2)
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where χk := 1/hβkΓ (2− βk) and

s
(βk)

i
=






�
1

2

�1−βk

, i = 0,

�
3

2

�1−βk

− 2

�
1

2

�1−βk

, i = 1,

�
i +

1

2

�1−βk

− 2

�
i − 1

2

�1−βk

+

�
i − 3

2

�1−βk

, 2≤ i ≤ N .

(3.3)

Using the representations (3.1)-(3.3), we conclude that A is a tridiagonal matrix — viz.

A=
h

8
tridiag(1,6,1), (3.4)

whereas B has the entries

Bi, j =






K∑

k=1

âk

�
s
(βk)

i− j+1
− s
(βk)

i− j

�
, j < i − 1,

K∑

k=1

âk

�
s
(βk)

2
− s
(βk)

1
+ s
(βk)

0

�
, j = i − 1,

2

K∑

k=1

âk

�
s
(βk)

1
− s
(βk)

0

�
, j = i,

K∑

k=1

âk

�
s
(βk)

2
− s
(βk)

1
+ s
(βk)

0

�
, j = i + 1,

K∑

k=1

âk

�
s
(βk)

j−i+1
− s
(βk)

j−i

�
, j > i + 1

(3.5)

and

âk = −
P(αk)

2hβkΓ (2− βk) cos(παk/2)
> 0.

Moreover, using the notation

qi =






2

K∑

k=1

âk

�
s
(βk)

1
− s
(βk)

0

�
, i = 0,

K∑

k=1

âk

�
s
(βk)

2
− s
(βk)

1
+ s
(βk)

0

�
, i = 1,

K∑

k=1

âk

�
s
(βk)

i+1
− s
(βk)

i

�
, i ≥ 2

(3.6)
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we write the stiffness matrix B of (3.5) in the form

B=





q0 q1 q2 · · · qN−2 qN−1

q1 q0 q1

. . .
. . . qN−2

q2 q1 q0

. . .
. . .

...
...

. . .
. . .

. . .
. . . q2

qN−2

. . .
. . .

. . . q0 q1

qN−1 qN−2 · · · · · · q1 q0





, (3.7)

thus noting that this is a Toeplitz symmetric matrix.

The tridiagonal matrix A requires at most 3N − 2 = O (N ) memory to store and for

Toeplitz matrix B we only have to store N entries qi. In addition, the Eq. (3.6) implies

that the terms âk, 1 ≤ k ≤ K and s
(βk)

i
, i = 0, · · · , N and k = 1, · · · , K need, respectively,

O (K) and O (N K) storage memory, whereas um,um−1, and Fm require O (N )memory. These

considerations lead to the following conclusion.

Theorem 3.1. The finite volume method (2.7) requires O (N K) storage memory.

Let us now consider the matrix A−ηB of the system (2.8) in a more detail.

Theorem 3.2. The matrix A−ηB of the Eq. (2.8) is symmetric and positive definite.

Proof. It is clear that B is a symmetric matrix and A is symmetric and positive definite.

We show that B negative definite. If 0< βk < 1, then using [13, Lemma 1] we obtain that

s
(βk)

1
− s
(βk)

0
< 0, s

(βk)

2
− s
(βk)

1
+ s
(βk)

0
> 0,

s
(βk)

i
< 0, s

(βk)

i+1
− s
(βk)

i
> 0, for i ≥ 2.

(3.8)

Substituting (3.8) into (3.6) shows that

q0 < 0, q1 > 0 and qi > 0, if i ≥ 2,

and following the proof of [13, Theorem 1], we establish the strict diagonal dominance of

the matrix B. Noting the negativity of the diagonal elements of B, we conclude that B is

negative definite, which yields the positive definiteness of A−ηB.

4. A Preconditioned Fast Conjugate Gradient Method

We now introduce a PFCG method for the system (2.8). For this, we first recall the

standard preconditioned conjugate gradient (PCG) method for (2.8) — cf. [2]. As was

already mentioned, the coefficient matrix can be efficiently stored by using O (N K)memory.

Therefore, to develop a fast version PCG solver, we need a fast matrix-vector multiplication

procedure and an efficient preconditioner.



A Preconditioned Fast Finite Volume Method 35

Algorithm 4.1 Preconditioned Conjugate Gradient Method

At each time level tm, choose an initial vector x(0) = um−1.

Compute r(0) = 2ηBum−1 + Fm.

for i = 1,2, · · · do

Solve the system Mz(i−1) = r(i−1), with a preconditioner M.

ρi−1 = r(i−1)⊤z(i−1);

if i = 1 then

set p(1) = z(0);

else

βi−1 = ρi−1/ρi−2, p(i) = z(i−1) + βi−1p(i−1);

end if

q(i) = (A−ηB)p(i), αi = ρi−1/p
(i)⊤q(i);

x(i) = x(i−1) +αip
(i), r(i) = r(i−1) −αiq

(i);

Check convergence; continue if necessary.

end for

um = x(i).

4.1. Fast matrix-vector multiplication

In the above PCG algorithm, the matrix-vector multiplication (A−ηB)p(i) has to be

evaluated at each time step that generally costs O (N2) operations per iteration. All other

computations are already performed with O (N ) operations, which is optimal. Therefore,

to reduce computational cost, one needs to incorporate an efficient matrix-vector multipli-

cation (A−ηB)v for any N -dimensional vector v.

Theorem 4.1. The matrix-vector multiplication (A−ηB)v can be performed in O (N log N )

operations.

Proof. Since A − ηB is a tridiagonal plus Toeplitz matrix, it follows from [16] that

(A−ηB)v can be calculated in O (N log N ) operations.

Remark 4.1. Following Theorem 4.1, we conclude that the total computational cost for the

finite volume method (2.8) based on the fast version of CG solver is O (lAMN log N +N K),

where lA is the average number of iterations at each time level, and O (N K) comes from the

evaluation of {qi}Ni=0
in (3.6).

4.2. Circulant preconditioner

The fast matrix-vector multiplication considered in this section allows to reduce com-

putational complexity from O (N2) to O (N log N ) per iteration. However, in large-scale

problems — i.e. when the spatial mesh size tends to zero, the condition numbers of the

coefficient matrix A−ηB can be quite large, which could significantly increase the compu-

tational cost of the algorithm. Therefore, efficient preconditioners for finite volume scheme

(2.8) play a vital role.
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There are a variety of such preconditioners for Toeplitz systems and it is not possible to

provide even a very brief review here. In particular, T. Chan circulant preconditioner [4,5]

is an optimal circulant preconditioner minimising the norms ‖C− T‖F on the set of n× n

circulant matrices C for the Frobenius norm ‖ · ‖F . For Toeplitz symmetric matrices

T=





t0 t1 · · · tn−2 tn−1

t1 t0 t1 tn−2
... t1 t0

. . .
...

tn−2

. . .
. . . t1

tn−1 tn−2 · · · t1 t0




, (4.1)

this circulant preconditioner is also symmetric, and its first column has the entries —cf. [4]:

c j =
(n− j)t j + j tn− j

n
, j = 0,1, · · · , n− 1. (4.2)

Since both A and B are Toeplitz symmetric matrices, we can follow T. Chan approach and

construct a circulant matrix for Q := A−ηB. More precisely,

Step 1. Construct T. Chan circulant approximation CircF (A) of the Toeplitz symmetric matrix

A, the first column of which is

c j(A) =
h

8

�
6, j = 0,

(N − 1)/N , j = 1, · · · , N − 1.

Step 2. Construct T. Chan circulant approximation CircF (B) of the Toeplitz symmetric matrix

B, the first column of which is

c j(B) = ((N − j)q j + jqN− j)/N , j = 0,1, · · · , N − 1.

Step 3. Form the corresponding circulant preconditioner CT (Q) for Q by setting

CT (Q) := CircF (A)−ηCircF (B). (4.3)

Remark 4.2. T. Chan circulant preconditioner CT (Q) of (4.3) can be diagonalised by the

discrete Fourier transform (DFT) matrix FN [14] as

CT (Q) = F−1
N diag(FN c)FN ,

where c = (c j)
N−1
j=0

is the first column vector of CT (Q) with c j = c j(A)− ηc j(B). Hence, it

can be inverted in O (N log N ) operations. The PFCG method based on this preconditioner,

requires only O (N log N ) operations to find the solution of the linear algebraic system (2.8).
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4.3. The efficiency of the method

Here, we consider numerical examples aimed to study the performance of the finite

volume scheme (2.8). It is solved by CG solver, by the fast version of CG without precondi-

tioning (FCG solver), by PFCG solver and by Gaussian elimination (Gauss). All simulations

are carried out in MATLAB R2010 environment on a Lenovo E470c laptop with Intel(R)

Core(TM) i5-6200U processor of 8 GB RAM and 2.30GHz CPU. In all numerical experi-

ments the corresponding iterative solver stops if

||r(k)||2
||r(0)||2

≤ 10−12.

Example 4.1. Let 0 < x < 1 and 0 < t < 1. Following [23], we consider the approximate

solution of the distributed-order equation (2.1) with the forcing function f (x , t) = et x2(1−
x)2 − et[ω(x) +ω(1− x)] and the weight function P(α) = −2Γ (5−α) cos(πα/2), where

ω(x) =
24

ln x
(x3 − x2)− 12

ln x

�
(3x2 − 2x)− x2 − x

ln x

�
+

2

ln x

�
6x − 2− 5x − 3

ln x
+

2x − 2

ln2 x

�
.

Table 1: Computational e�ieny of the �nite volume sheme (2.8) solved by di�erent solvers.

N Error Cov. CPU time # of Itr.

Gauss 28 = 256 3.1982× 10−6 — 3m29s —

29 = 512 7.9896× 10−7 2.00 21m07s —

210 = 1024 1.9661× 10−7 2.02 4h17m —

211 = 2048 — — > 35h —

CG 28 = 256 3.1982× 10−6 — 29.44s 110

29 = 512 7.9896× 10−7 2.00 13m05s 209

210 = 1024 1.9661× 10−7 2.02 1h36m 400

211 = 2048 4.5918× 10−8 2.10 9h27m 773

FCG 28 = 256 3.1982× 10−6 — 18.63s 110

29 = 512 7.9896× 10−7 2.00 49.94s 209

210 = 1024 1.9661× 10−7 2.02 2m44s 400

211 = 2048 4.5918× 10−8 2.10 9m32s 773

212 = 4096 8.6297× 10−9 2.41 1h02m 1485

213 = 8192 3.1873× 10−9 1.44 4h03m 2875

PFCG 28 = 256 3.1982× 10−6 — 2.78s 10

29 = 512 7.9896× 10−7 2.00 4.06s 12

210 = 1024 1.9661× 10−7 2.02 7.31s 15

211 = 2048 4.5918× 10−8 2.10 11.70s 19

212 = 4096 8.6297× 10−9 2.41 42.46s 23

213 = 8192 3.1873× 10−9 1.44 1m48s 29
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The exact solution of this problem is the function u(x , t) = et x2(1− x)2.

In all numerical tests, the parameters K and M are the same — viz. K = M = 1000.

Table 1 shows the performance of various solvers with respect to error, convergence order,

CPU time, and iteration number. Since these methods are developed without using any lossy

compression, all solvers generate identical numerical solutions with the second-order con-

vergence rate in space. It is also worth noting that, in comparison to conventional solvers

such as Gauss and CG, the FCG solver has a significantly reduced CPU usage. It requires

only O (N K)memory and has O (lAMN log N+N K) computational complexity overall. Thus

for N = 210, the Gauss runs at least 4 hours, the CG one and half an hour, while FCG needs

at most 3 minutes! However, if the number of unknowns grows, the coefficient matrix

A− ηB of (2.8) becomes ill-conditioned, the number of iterations and computational cost

increase even for FCG solver. For example, if N increases from 28 to 213, the number of

iterations jumps from 110 to 2875 and CPU usage increases from 18 seconds to more than

4 hours! The PFCG solver, where the circulant preconditioner of Subsection 4.2 is used,

reduces the computational cost further. Thus, for N = 213 the FCG solver needs 2875 it-

erations, the PFCG requires only 29 iterations. CPU time also decreases from more than 4

hours to less than 2 minutes! This example demonstrates the advantage of the introduced

fast finite volume method for the Riesz space distributed-order diffusion equation (2.1).

5. Parameter Identification

In applications, various free parameters of mathematical models have to be identified

— e.g. space-fractional orders in two-dimensional space-fractional diffusion models [6]

and time-fractional order in time-fractional subdiffusion models [12]. Here, we consider

the a priori unknown parameters eαi, i = 1,2 in the distribution function P(α) of the model

(2.2) — cf. [38]. Therefore, given the source function f (x , t), the initial value u0(x) of the

distributed-order diffusion equation (2.1), and the observation data for the state variable g

at the final time, we construct an optimisation model by minimising the difference between

the numerical output and the observation data. After that, the Levenberg–Marquardt (L-M)

iterative algorithm [32,40] is used to identify the parameters eαi, i = 1,2.

5.1. PFCG-based L-M regularization method

Suppose that 1 < eα1 < eα2 < 2. Set p := (eα1, eα2)
⊤ and introduce a nonlinear residual

function

r(p) = (r1(p), r2(p), · · · , rN (p))
⊤ (5.1)

such that ri(p) = u(x i , T ;p)− gi. In order to determine parameters eαi, i = 1,2, we con-

sider the parameter identification problem consisting in finding a vector pinv := (α∗1,α∗2)
⊤,

minimising the nonlinear least square problem

pinv = arg min
p∈(1,2)×(1,2)

F (p) :=
1

2

N∑

i=1

[ri(p)]
2 , (5.2)
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where gi is the i-th observed value of g at the point x i.

The solution of the problem (5.2) can be established by an iterative algorithm such as

Gauss-Newton method. According to [40], this algorithm can be represented in the form

pk+1 = pk + dk, dk = −(J⊤k Jk)
−1J⊤

k
rk, (5.3)

where the subscript k is the relevant iteration, r = r(p) is defined in (5.1) and J = J(p) is

the Jacobian of r(p), so that

J=





∂ u(x1, T ;p)

∂ eα1

,
∂ u(x2, T ;p)

∂ eα1

, · · · , ∂ u(xN , T ;p)

∂ eα1
∂ u(x1, T ;p)

∂ eα2

,
∂ u(x2, T ;p)

∂ eα2

, · · · , ∂ u(xN , T ;p)

∂ eα2





⊤

. (5.4)

Remark 5.1. In practical computation, the exact values of partial derivatives in (5.4) cannot

be derived. They have to be approximated. One possibility is to employ the first-order finite

difference scheme

u(x i, T ;p+ εe j)− u(x i , T ;p)

ε
, (5.5)

where ε is a small differential step size and e1 = (1,0)⊤, e2 = (0,1)⊤ are unit vectors. Such

an approximation is used here.

The Gauss-Newton iteration method is well-defined, if the Jacobian Jk is a full column

rank matrix. This condition may not be satisfied in certain cases. Therefore, the vector

dk can be not properly directed, and Levenberg [22] and Marquardt [28] proposed an

approach to overcome the difficulty mentioned. They modified the Gauss-Newton method

(5.3) as follows

pk+1 = pk + dk, dk = −(J⊤k Jk +αkI)−1J⊤
k

rk, (5.6)

where αk is a positive penalty parameter and I the 2×2 unit matrix. The reader is referred

to [40] for more details concerning the L-M algorithm.

It is well-known that the solution of the optimisation problem (5.2) reduces to the

inverse problem (5.4)-(5.6). In each iteration of the L-M method, we first have to apply

the finite volume scheme (2.8) to the distributed-order diffusion equation (2.1) with special

chosen parameters p= (eα1, eα2)
⊤ to derive an approximate solution at the final time. As was

already mentioned, the computational cost of solving direct problem is very high and the

invertibility problem could not be solved efficiently. Nevertheless, the L-M iterative method

combined with the PFCG solver from Section 4 can be used to find required parameters of

P(α).

The parameters identification procedure is summarised in Algorithm 5.1, where the

Armijo rule [1] is used to guarantee that the objective function F has a sufficient descent

direction. Other rules and related convergence results can be found in [40].
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Algorithm 5.1 PFCG-based Parameter Identification Algorithm

Consider the observation data g and related information of model (2.1).

Chose an initial vector p0 and ρ ∈ (0,1), σ ∈ (0,1/2), α0 > 0 and a small ε.

for k = 0,1, · · · , Kmax do

Step 1. Solve the finite volume scheme (2.8) using the PFCG solver corresponding to

pk and pk + εe j to obtain u(·, T ;pk) and u(·, T ;pk + εe j), respectively.

Step 2. Use (5.4)-(5.5) and (5.1) to compute Jk and rk, respectively, and then update

the search direction dk in (5.6).

Step 3. Determine the search step ρm by the Armijo rule:

F (pk +ρ
mdk)≤F (pk) +σρ

md⊤
k

J⊤
k

rk,

where m is the smallest nonnegative integer.

Step 4. If |ρmdk| ≤ Tol, then stop and let pinv := pk. Otherwise update

pk+1 := pk +ρ
mdk, αk+1 := αk/2

and go to Step 1.

end for

5.2. Numerical test

Example 5.1. Let us identify the parameters p= (eα1, eα2)
⊤ in the distribution function

P(α) = lα−2 (δ(α− eα1) +δ(α− eα2)) .

We consider the domain (x , t) ∈ [0,1]× [0,1] and the problem (2.1) with the right-hand

side f (x , t) = 10, the initial condition u(x , 0) = x(1− x) and the boundary conditions. We

also set p= (1.3, 1.6), l = 2, ρ = 0.9, σ = 0.25, α0 = 1, ε = 10−3 and Tol = 10−15.

We consider the numerical solution of (2.1) with K = M = N = 32 as observation data

g. The real data can be contaminated by noise, therefore we also include a random small

perturbation of the observation data — viz.

gǫi := gi(1+ ǫ% randn(i)), 1≤ i ≤ N ,

where ǫ shows the noise level and "randn" is the random noise generated by standard

normal distribution.

We will deal with the cases ǫ = 0, ǫ = 0.1, ǫ = 1 and in each case, three initial guesses

p0 = (1.2,1.2), p0 = (1.8,1.8) and p0 = (1.4,1.5) are used. Set

ep := ‖p− pinv‖∞ =max{|eα1 −α∗1|, |eα2 −α∗2|}.
We solve the model numerically for K = M = N = 32, using the following approximation

of the delta-function

δ(α− eα j) ≈
1

0.05
p

2π
e
− 1

2

�
α−eα j
0.05

�2
, j = 1,2.
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Table 2: Numerial observation of Example 5.1 with ǫ%-level noise-ontaminated data.

ǫ p0 pinv ep # of Itr.

0 (1.2,1.2) (1.3000,1.6000) 4.8850× 10−14 24

(1.8,1.8) (1.3000,1.6000) 1.2212× 10−14 24

(1.4,1.5) (1.3000,1.6000) 4.4631× 10−14 15

0.1 (1.2,1.2) (1.3019,1.5990) 1.8866× 10−3 26

(1.8,1.8) (1.3019,1.5990) 1.8866× 10−3 26

(1.4,1.5) (1.3019,1.5990) 1.8866× 10−3 15

1 (1.2,1.2) (1.3049,1.5988) 4.9325× 10−3 17

(1.8,1.8) (1.3049,1.5988) 4.9325× 10−3 17

(1.4,1.5) (1.3049,1.5988) 4.9325× 10−3 10
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Figure 1: Unontaminated ase of Example 5.1.
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Figure 2: 1%-level ontaminated ase of Example 5.1.

Table 2 shows numerical results obtained via PFCG solver for the parameter estima-

tion problem. For uncontaminated data and for data contaminated by 1%-level random

noise, the maximum error ep and objective function F (p) are presented in Figs. 1-2. Let

us note that the PFCG-based L-M algorithm efficiently works at various contamination lev-

els with different initial vectors. Compared with the uncontaminated case, the parameters



42 H. Fu, H. Liu and X. Zheng

are approximated with relatively lower accuracy but the final results are still acceptable.

Moreover, better initial guesses lead to a faster convergence of the parameter identification

procedure, consistent with our expectations.

6. Conclusions

We proposed a Crank-Nicolson finite volume scheme for the modeling of the Riesz space

distributed-order diffusion equation. It is shown that the corresponding linear system has a

symmetric positive definite Toeplitz matrix. It can be efficiently stored in O (N K) memory.

Moreover, based on fast matrix-vector multiplications and an efficient T. Chan precondi-

tioner developed in Section 4, a preconditioned fast conjugate gradient solver is proposed

for the finite volume scheme (2.8). Compared with the Gaussian elimination method, the

computational complexity is reduced from O (MN3 + N K) to O (lAMN log N + N K), where

lA is the average number of iterations at a time level. Finally, the proposed preconditioned

fast finite volume method combined with Levenberg-Marquardt method is applied to solve

an parameter identification problem. Numerical experiments show the efficiency of the

method.
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