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1. Introduction

The nonlinear boundary value problem

y ′′ +
m

x
y ′ + f (x , y) = 0, 0≤ x ≤ 1,

α1 y(0) + β1 y ′(0) = γ1, m = 0 or y ′(0) = 0, m > 0,

α2 y(1) + β2 y ′(1) = γ2,

(1.1)

where αi,βi, γi, i = 1,2 are finite constants, arises in various applications, including ther-

mal explosions [10], tumor growth models [7], electroosmotic flows [11,12,15], modelling

of heat sources in human head [26], and oxygen diffusion [42]. The unique solvability of

the problem (1.1) for m ≥ 1 and boundary conditions y ′(0) = 0 and y(1) = B was estab-

lished by Chawla & Shivkumar [19], while the more general case of nonlinear boundary

conditions was studied by Garner & Shivaji [27]. In order to find approximate solutions of

the problem, various numerical methods have been used — e.g. the Adomian decomposi-

tion method [39], the Taylor series method [18], a variational iteration method [49, 58].

The first two of these methods experience convergence difficulties, while the third one is
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restricted to the solution of the problem (1.1) with functions f (x , y) belonging to a special

class of non-linear polynomials. To avoid these difficulties, modifications of the last two

methods have been suggested [13,14,16].

The variational iteration method proposed by He [30–32] and its modifications [38,56]

have a high convergence rate and small error, so they are widely regarded as a good tool for

solving functional equations [1,28,29,33,34,37,41,44,45,51,53,59] arising in nonlinear

science and engineering problems [5, 6, 40, 50, 54, 55, 60, 61]. Based on the variational

iteration algorithm I, the convergence of the method has been extensively studied in [29,

45, 51–53]. Recently, Chang [17] used the variational iteration algorithm II to prove the

convergence of the method for two-point diffusion problems. For more details about the

method and its applications we refer the reader to [36,37] and references therein.

The concept of Adomian polynomials was introduced by Adomian [8] in 1976. Later,

Adomian and Rach [9] presented a formal formula to generate the Adomian polynomials for

all form of nonlinearity. Since then, various algorithms for calculating the Adomian polyno-

mials have been proposed to improve computational efficiency [2,22,23,47,57]. Symbolic

implementation of several recurrence algorithms by using MATHEMATICA or MAPLE was

also developed — cf. [20, 21, 23, 46]. The convergence of the Adomian polynomial series

has been also discussed in [2,22,48].

Here, we combine a variational iteration method with Adomian polynomials to obtain

the approximate solutions of a strongly nonlinear boundary value problem. In contrast to

the above mentioned methods, our approach does not require any additional tools. The

key idea is that the nonlinear terms in the correction functionals are decomposed into a

series of Adomian polynomials, as this simplifies the computations considerably. Sufficient

conditions for the method convergence are established, and test examples involving expo-

nential nonlinearity, demonstrate the efficiency of the algorithm. The errors do not depend

on a specific location of a point x ∈ [0,1], and are valid for the whole domain considered.

This approach can be applied to various problems involving other differential equations

with a strong nonlinearity.

2. Convergence

According to He [35, 36] and Chang [17], the variational iteration algorithms I and II

for the problem (1.1) have the form

yn+1(x) = yn(x) +

∫ x

0

λ(s; x)
h

y ′′
n
(s) +

m

s
y ′

n
(s) + f (s, yn(s))

i

ds, n≥ 0,

yn+1(x) = y0(x) +

∫ x

0

λ(s; x) f (s, yn(s))ds, n≥ 0,

(2.1)

where y0(x) := y(0) + y ′(0)x and λ(s; x) is the Lagrange multiplier [49,58] defined by
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λ(s; x) =









s ln
�

s

x

�

, m = 1,

s
�

sm−1 − xm−1
�

(m− 1)xm−1
, 0≤ m 6= 1.

(2.2)

Integrating the differential equation in (1.1) twice, one obtains

y ′(x) =











y ′(0)−

∫ x

0

f (s, y(s))ds, m = 0,

−

∫ x

0

sm

xm
f (s, y(s))ds, m> 0,

(2.3)

y(x) = y0(x) +

∫ x

0

λ(s; x) f (s, y(s))ds. (2.4)

Though the variational iteration method is widely used in nonlinear problems, the pres-

ence of complicated functions in the kernels of symbolic integrals can cause substantial dif-

ficulties in implementation. Therefore, we represent the nonlinear term f (x , y(x)) as the

series

f (x , y(x)) =

∞
∑

k=0

Ak(u0(x),u1(x), · · · ,uk(x)), (2.5)

where u0(x) = y0(x), uk(x) = yk(x)− yk−1(x), A0(u0(x)) = f (x ,u0(x)), and for k ≥ 1 the

Adomian polynomials Ak(x) are recurrently defined in [23] by

Ak(x) = Ak(u0(x),u1(x), · · · ,uk(x)) =

k
∑

i=1

f (i)(x ,u0(x))C
i
k
(x), k ≥ 1 (2.6)

with

C1
k
(x) := uk(x), k ≥ 1, C i

k
(x) :=

1

k

k−i
∑

j=0

( j + 1)u j+1(x)C
i−1
k−1− j

(x), 2¶ i ¶ k.

Such a modification is called the variational iteration-Adomian method [3,4,24,25]. Anal-

ogously, taking into account the Eq. (2.4), one obtains

y(x) = y0(x) +

∫ x

0

λ(s; x)

∞
∑

k=0

Ak(s)ds (2.7)

and for n≥ 0 the variational iteration algorithm I and algorithm II take the form

yn+1(x) = yn(x) +

∫ x

0

λ(s; x)

�

y ′′
n
(s) +

m

s
y ′

n
(s) +

n
∑

k=0

Ak(s)

�

ds, (2.8)

yn+1(x) = y0(x) +

∫ x

0

λ(s; x)

n
∑

k=0

Ak(s)ds. (2.9)
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The Adomian polynomials Ak(x) above are also called the classical Adomian polynomials.

According to [48], they satisfy the relations

A0(u0(x)) = f (x ,u0(x)) = f (x , y0(x)),

Ak(x)< f (x , yk(x))− f (x , yk−1(x)), k ≥ 1. (2.10)

Following Ref. [17], we present the truncation error for the method under consideration

and establish sufficient conditions for its convergence.

Theorem 2.1. Assume that the function f (x , y) is analytic in the rectangle R= {(x , y) : 0≤
x ≤ 1, |y − y0| ≤ b} and bounded from above by an M such that M < 2(m+1)b. Then every

sequence (2.8) or (2.9) with y0(x) = y(0) + y ′(0)x converges to the exact solution y(x) of

the problem (1.1) in the norm of C[0,1]. Moreover,

En := ||y(x)− yn(x)||C[0,1]
≤

MKn

(n+ 1)!2n+1(m+ 1)(m+ 3) · · · (m+ 2n+ 1)
, (2.11)

where K = ||∂ f (x , y)/∂ y||C[0,1]
.

Proof. Since f (x , y) is analytic in R, by the Cauchy-Kovalevskaya theorem the prob-

lem (1.1) has unique solution y(x) analytic in x ∈ [0,1]. Therefore, the Murray-Miller the-

orem for existence and uniqueness [43] guarantees that f (x , y) =
∑∞

k=0
Ak(u0,u1, · · · ,uk),

where Ak(x) is the classical Adomian polynomials, and the above series is uniformly con-

vergent because it is essentially a rearrangement of the parameterised Taylor expansion

series of the analytic function f (x , y) about the function u0(x) [48]. Obviously, (x , y0) ∈ R

for all x ∈ [0,1] such that | f (x , y0)| = |A0(x)| ≤ M . It follows from (2.9) and (A.4) that

for n= 0 one has

|y1(x)− y0(x)| ≤

∫ x

0

|λ(s; x)| |A0(s)|ds ≤
M

2(m+ 1)
x2 ≤

M

2(m+ 1)
< b,

so that (x , y1) ∈ R and | f (x , y1)| ≤ M . Further, the usual induction arguments show that

(x , yn) ∈ R and | f (x , yn)| ≤ M for any positive integer n. Thus the expressions containing

the points yn(x), n ∈ N can be estimated — e.g. the Eqs. (2.7) and (A.4) yield

|y(x)− y0(x)| ≤

∫ x

0

|λ(s; x)|

�

�

�

�

�

∞
∑

k=0

Ak(u0,u1, · · · ,uk)

�

�

�

�

�

ds =

∫ x

0

|λ(s; x)| | f (s, y(s))| ds

≤ M

∫ x

0

|λ(s; x)|ds ≤
M

2(m+ 1)
x2 ≤

M

2(m+ 1)
.

Since f (x , y) is an analytic function in R and (x , yn) ∈ R, there is a constant K =

||∂ f (x , y)/∂ y||C[0,1]
such that

| f (x , y)− f (x , yn)| ≤ K |y(x)− yn(x)| , x ∈ [0,1].
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The Eq. (2.10) implies that
�

�

�

�

�

∞
∑

k=n+1

Ak(u0,u1, · · · ,uk)

�

�

�

�

�

≤ K |y(x)− yn(x)| , x ∈ [0,1].

Analogously, if x ∈ [0,1], then

|y(x)− y1(x)| ≤

∫ x

0

|λ(s; x)|

�

�

�

�

�

∞
∑

k=1

Ak(u0,u1, · · · ,uk)

�

�

�

�

�

ds

≤ K

∫ x

0

|λ(s; x)| |y(s)− y0(s)|ds

≤
MK

2(m+ 1)

∫ x

0

�

�λ(s, x)s2
�

�ds ≤
MK

2!22(m+ 1)(m+ 3)
x4

≤
MK

2!22(m+ 1)(m+ 3)
.

Continuing in this way, we eventually arrive at the estimate

|y(x)− yn(x)| ≤
MKn

(n+ 1)!2n+1(m+ 1)(m+ 3) · · · (m+ 2n+ 1)

valid for all x ∈ [0,1]. Therefore, the inequality (2.11) holds and En→ 0 as n→∞.

3. Applications

In this section, we consider approximate solution of several boundary value problems

(1.1) found with the assistance of MATHEMATICA 5.2 on a laptop with a Pentium M 1.4GHz

and 256 MB of RAM.

Example 3.1. The nonlinear singular boundary value problem

y ′′ +
1

x
y ′ + ey = 0,

y ′(0) = 0, y(1) = 0

(3.1)

arises in the theory of thermal explosions [10].

For m= 1, the correction functional has the form

yn+1(x) = yn(x) +

∫ x

x0

s ln
�

s

x

�
�

y ′′n (s) +
1

s
y ′n(s) + ey(s)

�

ds.

Choosing a constant a as the initial approximation y0, we obtain

y1(x) = a−
ea

4
x2.



158 S.-H. Chang

However, the second and further consecutive iterations cannot be computed in a closed

form due to complicated integrands. This is a common complication in the implementation

of the variational iteration method for strongly nonlinear problems. In contrast, in the

variational iteration-Adomian method, the term yn+1(x) is calculated by the formula

yn+1(x) = yn(x) +

∫ x

0

s ln
�

s

x

�

�

y
′′

n(s) +
1

s
y
′

n(s) +

n
∑

k=0

Ak(s)

�

ds.

According to the algorithm (2.6), the first four Adomian polynomials are

A0 = eu0 , A1 = eu0u1,

A2 =
1

2
eu0u2

1 + eu0u2,

A3 =
1

6
eu0u3

1 + eu0u1u2 + eu0u3

produce the following approximations of the solution y:

y1(x) = a −
ea

4
x2,

y2(x) = a −
ea

4
x2 +

e2a

64
x4,

y3(x) = a −
ea

4
x2 +

e2a

64
x4 −

e3a

768
x6,

y4(x) = a −
ea

4
x2 +

e2a

64
x4 −

e3a

768
x6 −

e4a

8192
x8.

It follows from the Eq. (2.3) that y ′(x) ≤ 0 for all x ∈ [0,1]. Hence, y(x) is a non-

increasing function (0 ≤ y(x) ≤ a for 0 ≤ x ≤ 1), which implies M = K = ea. Thus the

sequence yn(x) converges to the exact solution of the problem (3.1) in the space C[0,1] and

En ≤
ea(n+1)

22(n+1)(n+ 1)!(n+ 1)!
. (3.2)

The unknown constant a is to be determined by imposing a boundary condition on yn

at x = 1 to obtain a transcendental equation, yn(1) = 0. MATHEMATICA has a built-in

command to solve this transcendental equation. Once the unknown constant a has been

determined, the corresponding maximum absolute error is obtained from the Eq. (3.2).

A sequence of approximations for a and the corresponding maximum absolute errors for

n=5, 10 and 12 are shown in Table 1. As expected, this sequence converges to a with the

high convergence rate.

Table 1: Example 3.1. Constant a and maximum absolute errors (MAEs).

n 5 10 12 Exact [39]

a 0.3167048552978 0.316694366798 0.3166943676198 0.3166943676407

MAE 3.15×10−9 4.88×10−21 2.36×10−26 –



A Variational Iteration Method for a Strongly Nonlinear Problem 159

Example 3.2. The nonlinear singular boundary value problem

y ′′ +
2

x
y ′ + e−y = 0,

y ′(0) = 0, 0.1y(1) + y ′(1) = 0

(3.3)

is used in a heat conduction model of the human head [26].

In this case, the variational iteration algorithm II is

yn+1(x) = y0(x) +

∫ x

0

s(s − x)

x

n
∑

k=0

Ak(s)ds,

and the corresponding first four Adomian polynomials are

A0 = e−u0 , A1 = −e−u0u1,

A2 =
1

2
e−u0u2

1
− e−u0u2,

A3 = −
1

6
e−u0u3

1 + e−u0u1u2 − e−u0u3.

Taking y0 = a as the initial approximation, produces

y1(x) = a−
e−a

6
x2,

y2(x) = a−
e−a

6
x2 −

e−2a

120
x4,

y3(x) = a−
e−a

6
x2 −

e−2a

120
x4 −

e−3a

1890
x6,

y4(x) = a−
e−a

6
x2 −

e−2a

120
x4 −

e−3a

1890
x6 −

61e−4a

1632960
x8.

In this case, M = K = 1 — cf. Ref. [17]. Consequently, the sequence yn(x) converges to

the exact solution in the space C[0,1] and

En ≤
1

(2n+ 3)!
.

The approximations of a and the corresponding maximum absolute errors are presented in

Table 2. It shows the rapid convergence of the approximation sequence.

Table 2: Example 3.2. Constant a and maximum absolute errors (MAEs).

n 1 5 9 10

a 1.130289326974 1.147039006534 1.14703901933 1.14703901933

MAE 8.34×10−3 1.61×10−10 1.96×10−20 3.87×10−23
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Example 3.3. Consider the following nonlinear boundary value problem:

y ′′ + ex+y = 1,

y ′(0) = −1, y(1) = −1.
(3.4)

The corresponding variational iteration algorithm II has the form

yn+1(x) = y0(x) +

∫ x

0

(s− x)

n
∑

k=0

Ak(s)ds,

and the first four Adomian polynomials are

A0 = ex+u0 − 1, A1 = ex+u0u1,

A2 =
1

2
ex+u0u2

1
+ ex+u0u2,

A3 =
1

6
ex+u0u3

1 + ex+u0u1u2 + ex+u0u3.

Taking y0 = a − x as the initial approximation, we obtain

y1(x) = a− x −
ea − 1

2
x2,

y2(x) = a− x −
ea − 1

2
x2 +

ea(ea − 1)

24
x4,

y3(x) = a− x −
ea − 1

2
x2 +

ea(ea − 1)

24
x4 −

3ea − 7e2a + 4e3a

720
x6,

y4(x) = a− x −
ea − 1

2
x2 +

ea(ea − 1)

24
x4 −

3ea − 7e2a + 4e3a

720
x6

−
15ea − 63e2a + 82e3a − 34e4a

40320
.

Arguments analogous to those in Example 3.1 show that M = ea+1 − 1, K = ea+1 and

En ≤
en(a+1)(ea+1 − 1)

(2n+ 2)!
.

Proceeding as before, the values of a for n =1, 10 and 20 are found to be the same as 0.

This leads to function y(x) = −x , which is the exact solution of the problem.

4. Conclusion

We apply a variational iteration method using Adomian polynomials to strongly nonlin-

ear boundary value problems. This approach involves the calculation of symbolic integrals

connected with variational iteration methods. Error estimates have been derived and the

convergence of the method established. Illustrative examples demonstrate the efficiency of

the algorithm.



A Variational Iteration Method for a Strongly Nonlinear Problem 161

Acknowledgments

This work was supported by the Ministry of Science and Technology, Taiwan, R.O.C

under Grant No. MOST 105-2221-E-269-003.

A. Appendix

Define a function g(x) by

g(x) =

∫ x

0

λ(s; x)skds, k ≥ 0, (A.1)

where λ(s; x) is the Lagrange multiplier (2.2) such that

λ(s = x ; x) = 0,

∂ λ(s; x)

∂ x

�

�

�

�

s=x

= −1,

∂ 2λ(s; x)

∂ x2
+

m

x

∂ λ(s; x)

∂ x
= 0.

(A.2)

Calculating the derivative of g in x and using Leibnitz formula yields

g′(x) =

∫ x

0

∂ λ(s; x)

∂ x
skds,

g′′(x) =

∫ x

0

∂ 2λ(s; x)

∂ x2
skds− x k.

(A.3)

It follows that

g′′(x) +
m

x
g′(x) + x k = 0,

or
d

dx

�

xmg′(x)
�

= −x k+m.

Integrating the above expression twice and using the conditions g(0) = g′(0) = 0, one

obtains

g(x) =

∫ x

0

λ(s; x)skds =
−1

(k +m+ 1)(k+ 2)
x k+2. (A.4)
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