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Abstract. An h-adaptive Runge-Kutta discontinuous Galerkin (RKDG) method with a

positivity-preserving technique to simulate classical two-dimensional detonation waves

is developed. The KXRCF troubled-cell indicator is used to detect the troubled cells with

possible discontinuities or high gradients. At each time-level, an adaptive mesh is gen-

erated by refining troubled cells and coarsening others. In order to avoid the situations

where detonation front moves too fast and there are not enough cells to describe detona-

tion front before it leaves, a recursive multi-level mesh refinement technique is designed.

The numerical results show that for smooth solutions, this h-adaptive method does not

degrade the optimal convergence order of the nonadaptive method and outperforms it

in terms of computational storage for shocked flows.
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1. Introduction

The proper understanding of the detonation waves propagation plays an important

role in protecting human lives and avoiding property damages. To study detonation phe-

nomena, various numerical methods have been employed, including second order Go-

dunov scheme [1, 27], extended space-time CE/SE method [35], unsplit scheme [23],

non-MUSCL-type TVD scheme [31], classical weighted essentially non-oscillatory (WENO)

scheme [11, 32], optimal WENO-Z scheme [14, 15], hybrid central-WENO scheme [13],

Runge-Kutta discontinuous Galerkin (RKDG) method [3,33,34] and adaptive finite volume

methods [17] .

It is known that discontinuous Galerkin (DG) finite element method [4,6–8] can handle

complicated geometry and h-p adaptation, and can be efficiently implemented on parallel

computers. As the result, it finds various applications [5,36,41]. One can relatively easily
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choose an h-adaptive strategy to develop a DG method since the mesh refinement or coars-

ening does not use the continuity through cell interfaces. Moreover, compared to finite

volume or finite difference adaptive mesh refinement schemes, DG methods are extremely

convenient and computationally efficient in data prolongation and data projection at dif-

ferent mesh levels and in preservation of cell averages for conservation. On the other hand,

they are more flexible than continuous finite element methods if there are hanging nodes

in adaptive meshes. For more details on h-adaptive discontinuous Galerkin methods we

refer the reader to [10,16,26,29,38–40].

Let us note that although there is an h-adaptive RKDG method for one-dimensional det-

onation waves [37], all realistic detonation phenomena are essentially three-dimensional.

Nevertheless, many important detonation structures can be detected during two-dimen-

sional simulations — e.g. regular or irregular cellular structures and triple-shock Mach

intersection in shock interface. Therefore, here we consider an h-adaptive RKDG method

with troubled-cell indicators for various classical two-dimensional detonation waves. Com-

paring this method with fixed-mesh RKDG method, we note significant advantage with

respect to computational storage and solution quality. In particular, the multi-level mesh

refinement technique guaranties that the finest mesh is generated in the neighbourhoods

of discontinuities. In addition, the KXRCF troubled-cell indicator is used to detect the dis-

continuity regions and a high order positivity-preserving technique [33] is adopted to avoid

the potential occurrence of negative pressure, density or mass fraction.

This paper is organised as follows. In Section 2, we introduce the RKDG method. An

h-adaptive RKDG method for the two-dimensional reactive Euler equations and its im-

plementation are considered in Section 3. The performance of this adaptive technique

is demonstrated on several classical examples in Section 4 and our concluding remarks are

in Section 5.

2. Review

We consider the system of two-dimensional conservation laws with a source term

wt + f(w)x + g(w)y = s(w), t > 0, (x , y) ∈ Ω, (2.1)

where w is the conserved variable vector, s(w) the source vector and f(w) and g(w) are

the flux vectors. The two-dimensional governing equations for modeling the ideal gaseous

detonation has the form
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where ρ is the density, (u, v) the velocity vector, P the pressure, and f1 ∈ [0,1] the reactant

mass fraction. Let us also note that the total energy E of the system can be expressed in
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the form

E =
P

γ− 1
+

1

2
ρ(u2 + v2) +ρ f1q0,

where ρ f1q0 is the energy, generated through a chemical reaction, q0 the heat-release pa-

rameter and γ the ratio of specific heats. We denote by K(T ) the reaction rate. It can be

written in the Arrhenius form

K(T ) = Ke−Ea/T , (2.3)

where T = P/(ρR) is the temperature, R a suitably normalised specific gas constant — e.g.

throughout this study R = 1, Ea the activation-energy parameter, and K a pre-exponential

factor (stiffness coefficient) defining spatial and temporal scales. The reaction rate K(T )

could be also expressed in the Heaviside form — viz.

K(T ) =

¨
1/σ, T ≥ Ea,

0, T < Ea

(2.4)

with the reaction time σ such that 1/σ ≈ K . Having defined the reaction time K , we

consider the source term

ω = −K(T )ρ f1,

for the rate of species production due to chemical reaction.

Let us now introduce an RKDG method for the model problem (2.1). Using a rectan-

gular meshMh on the domain Ω, we seek an approximate solution wh(x , y, t) in the finite

element space of discontinuous piecewise polynomials

Vk
h
= {v ∈ [L2(Ω)]5 : v|K ∈ [P

k(K)]5 for any K ∈Mh},

where Pk(K) is the set of polynomials of total degree at most k on the element K . It is

known that the dimension of the space Vk
h

is Qk+1 with Qk = k(k+3)/2. On the reference

cell [−1/2,1/2]× [−1/2,1/2], we consider the following orthogonal basis for Vk
h
:

k = 1 : φ0 = 1, φ1 = x , φ2 = y,

k = 2 : φ0,φ1,φ2,φ3 = x2 − 1/12, φ4 = x y, φ5 = y2 − 1/12.

Let (xK , yK) be the center of the rectangle K and ∆xK and ∆xK be the side lengths of K in

the directions x and y, respectively. Then the local orthogonal basis over cell K is given by

φ
(K)

l
(x , y) := φl

�
x − xK

∆xK

,
y − yK

∆yK

�
, l = 0, · · · ,Qk.

The numerical solution wh(x , y, t) ∈ Vk
h

of the problem (2.1) is sought in the form

wh(x , y, t)|K =
Qk∑

l=0

w
(l)
K (t)φ

(K)

l
(x , y), (2.5)
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where w
(l)
K
(t), l = 0, · · · ,Qk are the degrees of freedom. In particular, w

(0)
K
(t) is the vector

of cell averages of wh over K .

We now can describe the RKDG scheme. Replacing w by wh in the Eq. (2.1), we succes-

sively multiply the results by the local bases of every element and integrate the correspond-

ing products over the computational cells. The integration by parts leads to the following

weak formulation of the problem (2.1):

Find a wh in Vk
h

such that for all test functions φ
(K)

l
with l = 0, · · · ,Qk and all K ∈Mh

the relations

d

d t

∫

K

whφ
(K)

l
d xd y −

∫

K

F(wh) · ∇φ
(K)

l
d xd y

+
∑

e∈∂ K

∫

e

F(wh) · ne,Kφ
(K)

l
ds =

∫

K

s(wh)φ
(K)

l
d xd y, (2.6)

where F(wh) = (f(wh),g(wh)) and ne,K is the outward unit normal to the edge e, hold.

We note that for h-adaptive meshes method with hanging nodes, it is important that

the intervals e ⊂ ∂ K in the Eq. (2.6) are elementary edges without sub-edges. It guaranties

the mass conservation.

The volume integrals
∫

K
F(wh) · ∇φ

(K)

l
d xd y and
∫

K
s(wh)φ

(K)

l
d xd y can be computed

by numerical quadratures, providing a sufficient accuracy level. The line integral in the

Eq. (2.6) is usually discretised by the Gaussian quadratures

∫

e

F(wh) · ne,Kφ
(K)

l
ds ≈ |e|

m∑

l=1

ωlF(wh(Gl , t)) · ne,Kφ
(K)

l
(Gl , t)

with F(wh(Gl , t))·ne,K replaced by a monotone numerical flux. In this work, we use a simple

Lax-Friedrichs flux — viz.

F(wh(Gl , t)) · ne,K ≈
1

2

�
(F(w−

h
(Gl , t)) + F(w+

h
(Gl , t))) · ne,K

− α(w+
h
(Gl , t)−w−

h
(Gl , t))
�

, (2.7)

where α is an upper bound for the eigenvalues of the Jacobian (∂ F(wh)/∂w) · ne,K , and

w−
h

and w+
h

are the traces of wh at the Gaussian point Gl inside and outside the cell K

respectively.

Using (2.5), we write the first term in (2.6) in the form cl∆xK∆yK(dw
(l)
K (t)/d t) with

the constants

cl =

∫ 1/2

−1/2

∫ 1/2

−1/2

φ2
l
(x , y)d xd y, l = 0, · · · ,Qk.

Thus the semi-discrete scheme (2.6-2.7) is a system of ordinary differential equations for

w
(l)
K
(t), l = 0, · · · ,Qk, K ∈ Mh. This system, combined with a suitable time discretisation

— e.g. with total variation diminishing RK method [28], forms an RKDG scheme. Here,
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we use the following third order RK time stepping

Φ
(1) = Φn +∆tL (Φn),

Φ
(2) =

3

4
Φ

n +
1

4
Φ
(1) +

1

4
∆tL (Φ(1)),

Φ
n+1 =

1

3
Φ

n +
2

3
Φ
(2) +

2

3
∆tL (Φ(2))

for the ODE system Φt =L (Φ).

3. Algorithm and Implementation Details

In this section, we develop and employ an h-adaptive RKDG scheme to two-dimensional

detonation wave problems.

3.1. Grid and data structure

For h-adaptive rectangular meshes, there are two types of data structures — viz. block-

based and cell-based, each with own advantages. Here, we prefer to use the cell-based

structures because of their high flexibility in refinement and coarsening. More exactly,

each cell in the initial partition of the computational domain is considered as the root of

a tree. Mesh refinement is achieved by dividing a cell into four new cells — children, of

equal size. These four new cells simultaneously generated by a single division, are called

GROUP and the only cells from the same GROUP can be used in mesh coarsening. Fig. 1

shows the sketches of both operations.

✲ ✲

coarsening refinement

K1 K2

K3 K4

K ′1 K ′
2

K ′3 K ′4
K ′ K

Figure 1: Loal mesh transformation. Left: oarsening. Right: re�nement.

A cell is called a leaf cell if it does not have any children. All the leaf cells constitute a

computational mesh. Each leaf cell has a variable L denoting its mesh-level, defined by the

number of divisions needed to obtain this cell. For roots, the parameter L is set to zero and

it grows by 1 after a division and diminishes by 1 after a merger. We also need a maximal

mesh-level, denoted by LEV , to restrict the fineness of the mesh. Finally, we describe

the data structure associated with each leaf cell and non-leaf cell. For non-leaf cells, the

associated data contain the cell coordinates, a mesh-level and the pointers to the parent

and children in the tree. For leaf cells, there are additional data stored — e.g. the degree

of freedom for solutions, pointers for neighboring cells, indicators for mesh refinement and

coarsening, and indicator for boundary cells [39].
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3.2. Limiter and solution reconstruction method

The solutions of detonation waves contain discontinuities and sharp gradients. There-

fore, a nonlinear limiter in the RKDG method to detect discontinuities and control the

corresponding spurious oscillations during the solution reconstruction is needed. We note

that the troubled-cell indicators for the detection of discontinuous regions, also control the

mesh adaptation.

The complexity of two-dimensional h-adaptive meshes with hanging nodes causes prob-

lems with the solution reconstruction part of the limiter. Thus, the cells can have different

number of neighbors, which can be of different size. Moreover, the cell can have different

neighbors at different time levels. The mesh varies not only in time but also in space. In

this work, we use the approach [39]. If a cell K requires a solution reconstruction, we build

a local uniform mesh of (2k+ 1)× (2k+ 1) cells such that K is located in the center of the

mesh constructed — cf. Fig. 2.
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Figure 2: Dotted lines: Imaginary loal uniform mesh of K, k = 2.

These imaginary cells are used in the reconstruction of the solution in K instead of the

real ones. Since the imaginary local mesh is uniformly rectangular, the WENO solution

reconstruction [25] can be applied directly. The only problem left is to derive the cell

averages for the imaginary local mesh. But they can be easily found from the L2-projection

formula (3.1).

Since the initial mesh and the imaginary local one are uniformly rectangular, a cell K̃ in

the imaginary local mesh either coincides with a real cell K , or is a subcell of a real cell, or

a union of several real cells K1, · · · , Km. In the first case, the cell averages of K̃ are equal to

the cell averages of K . In the second, the cell averages of K̃ can be found from the Eq. (3.1).

In the remaining case, we can use the Eq. (3.1) to obtain w
(0)

K̃
=
�∑m

i=1 w
(0)
Ki

SKi

�
/SK̃ , where

SKi
and SK̃ are, respectively, the areas of Ki and K̃ .
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3.3. Troubled-cell indicator

Many troubled-cell indicators, including widely-used in TVB scheme [8], involve cell av-

erages of wh over neighboring cells. However, they cannot be directly applied to h-adaptive

meshes. Instead, one can use the shock-detection technique based indicator KXRCF, intro-

duced by Krivodonova et al. [20]. As numerical tests in [24, 38] show, it is usually more

efficient and reliable.

The KXRCF troubled-cell indicator works as follows. Let ∂ K− and ∂ K+ be the parts of

the cell K boundary, where the flow is directed in or out of K , respectively. We say that K

is a troubled cell, if ��∫
∂ K−

�
ηh|K −η

h|Kn

�
ds
��

h
(k+1)/2
K |∂ K−|‖ηh|K‖

> 1,

where hK is the radius of the circumscribed circle for K , Kn the neighbor of K at ∂ K− and

|| · || is the maximum norm related to the quadrature points. The term η can mean the

density, pressure, energy or their projected variables in local characteristic field. Moreover,

the combinations of these variables can also be used to identify a troubled cell. Here, η is

the density and this lead to satisfactory numerical results.

3.4. Algorithm

In h-adaptive methods, it is important to identify where and how the corresponding

mesh should be refined or coarsened. In particular, for the detonation waves simulating

here, the meshes should be refined near the discontinuities in order to catch their sharp

transitions. Therefore, following the ideas of [37], we coarse the mesh over untroubled

cells and refine it for troubled cells. In order to avoid the situations where detonation front

moves too fast and there are not enough cells to describe detonation front before it leaves,

mesh refinement is performed in a recursive way. More specifically, the target cell K is

refined if it satisfies the conditions:

(R1) K is a troubled cell.

(R2) The mesh-level L on K is lower than the maximum mesh-level LEV .

In this case, each of the newly generated four cells is further refined. The procedure is

recursively applied to every new cell, provided it satisfies the conditions above. Thus, the

finest mesh can be generated within one time step whenever needed.

Unfortunately, at the moment, there are no errorless troubled-cell indicators and if a cell

is falsely identified as a troubled cell, an extra mesh refinement occurs. On the other hand,

if a cell is falsely identified as an untroubled cell, it may be falsely coarsened. The former is

acceptable while the latter is not. Extra refinements can simply increase the computational

cost, but a false merger often diminishes the resolution of numerical solutions. Let N F L

denote the number of merger-forbidden time-levels after a division — i.e. a GROUP of cells

cannot be merged in the following NFL time-levels from the time-level they are generated.

To achieve this, for each computational cell we need a new variable AI ∈ [0, N F L + 1],
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called adaptive indicator, to record the difference between the current time-level and the

time-level where it was generated by a division. At each time-level, the AI is initially set to

min(AI + 1, N F L + 1). For every new cell, arising in a division we let AI = 0, and we set

AI = N F L for the new merged cells. We now can provide coarsening criteria — viz. four

cells are merged if:

(C1) They form a GROUP.

(C2) They all are untroubled.

(C3) AI = N F L + 1 for all of them.

Let us now describe the full h-adaptive algorithm in more details.

Algorithm 3.1 (h-adaptive RKDG scheme)

Given a maximum mesh-level LEV , the number of merger-forbidden time-levels N F L:

• The initial set up. The algorithm starts from a uniform rectangular meshM 0
h

as

the root grid. Consider the L2-projection of initial data w(x , y, t = 0) onM 0
h

. For

every root cell K ∈M 0
h

we have

{w(l),0K : l = 0, · · · ,Qk}, {L
0
K} = 0, {AI0

K}= N F L + 1.

• Solution evolution from tn to tn+1, for n= 0,1, · · · .

1. For all leaf cells, set AIn
K
=min(AIn

K
+ 1, N F L + 1).

2. Mesh refinement and coarsening: Each cell in the current mesh is marked to

be refined, coarsened, or kept unchanged via troubled-cell indicator.

– Each cell is recursively quartered, stopping when conditions (R1)-(R2)

fail. At every quartering, there are four newly generated cells (chil-

dren), with their mesh-level increased by one from the parent cell and

AI = 0. On the new cells the corresponding polynomial is obtained by

the data prolongation mechanism from Section 3.5.

– If four cells satisfy conditions (C1)-(C3) they are removed, the mesh-

level L is decreased by one and AI is set to N F L for the new leaf cell.

The corresponding polynomial on it is obtained by the data projection

discussed in Section 3.5.

3. Evolve solution: Evolve the solution on the current mesh from tn to tn+1 to

update {w(l),n+1 : l = 0, · · · ,Qk,∀K ∈ M n+1
h
} by applying the RKDG proce-

dure.
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Remark 3.1. At the initial time, the projection of initial conditions on a new adaptive mesh

is used instead of the approximate solution on the initial mesh. This helps to resolve the

features of initial conditions.

Compared to the standard RKDG scheme, the proposed h-adaptive technique adds

a mesh-adaptation step immediately after the solution at each time-level is obtained. The

limiter is applied after each RK inner stage except the case when it is applied to the projected

solution after the mesh adaptation when the whole RK time step is completed. Adaptive

time stepping treatment [9, 19, 22] can improve the time discretisation efficiency, but it

is not considered here. In the RK method, global time steps proportional to the smallest

cell size at each time step are used. To avoid the potential appearance of negative density,

negative pressure or mass fraction and to make the algorithm more robust, the high order

positivity-preserving technique [33] for reactive Euler equations is applied immediately af-

ter the limiter.

Let wK = (ρK , (ρu)K , (ρv)K , EK , (ρ f1)K)
T and wK =
�
ρK ,ρuK ,ρvK , EK ,ρ f1K

�T
denote

respectively the DG polynomial and the cell average of w on a cell K . Choose a small number

ǫ (10−13 in the computation) such that ρK ≥ ǫ for all K . Let SK be the set of all numerical

quadrature points on K in the DG scheme. For each computational cell K ∈Mh, the density

positivity is enforced by

bρK(x , y) = θ1
K[ρK(x , y)−ρK] +ρK , θ1

K = min
(x ,y)∈SK

�
1,

����
ρK − ǫ

ρK −ρK(x , y)

����
�

.

Similarly, we enforce the reactant mass fraction by

dρ f1K(x , y) = θ2
K[(ρ f1)K(x , y)−ρ f1K]+ρ f1K , θ2

K = min
(x ,y)∈SK

¨
1,

�����
ρ f1K

ρ f1K − (ρ f1)K(x , y)

�����

«
,

and the pressure positivity by

ewK(x , y) = θK[ÒwK(x , y)−wK] +wK , θK = min
(x ,y)∈SK

�
1,

����
p(wK)

p(wK)− p(ÒwK(x , y))

����
�

,

where ÒwK =
�
bρK , (ρu)K , (ρv)K , EK ,dρ f1K

�T
.

3.5. Data prolongation and data projection

An L2-projection is used for data prolongation between the different mesh levels. Sup-

pose we already know wh on the mesh Mh, and have to determine its L2-projection on

a new cell K ′. This will be a new polynomial function w′
h
, which satisfies the equations

∫

K ′

w′
h
φ
(K ′)

l
(x , y)d xd y =

∫

K ′

whφ
(K ′)

l
(x , y)d xd y, l = 0, · · · ,Qk.
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Similar to the Eq. (2.5), we denote by w
(l)

K ′
, l = 0, · · · ,Qk the degree of freedom associated

with w′
h

on the cell K ′, so that

w
(l)

K ′
=

1

cl∆xK ′∆yK ′

∫

K ′

whφ
(K ′)

l
(x , y)d xd y. (3.1)

For l = 0, this formula implies the conservation. The integral in Eq. (3.1) can be computed

exactly, since wh is a piecewise polynomial. Now we can provide the formulas of data

projection and data prolongation between fine and coarse meshes.

• Data projection: If four cells K1, K2, K3, K4 are merged to a new cell K ′— cf. the left

graph in Fig. 1, then for the DG scheme with P2 polynomial space, the new degrees

of freedom obtained from (3.1) are

w
(0)

K ′
=

1

4

�
w
(0)
K1
+w

(0)
K2
+w

(0)
K3
+w

(0)
K4

�
,

w
(1)

K ′
=

3

4

�
−w

(0)
K1
+w

(0)
K2
−w

(0)
K3
+w

(0)
K4

�
+

1

8

�
w
(1)
K1
+w

(1)
K2
+w

(1)
K3
+w

(1)
K4

�
,

w
(2)

K ′
=

3

4

�
−w

(0)
K1
−w

(0)
K2
+w

(0)
K3
+w

(0)
K4

�
+

1

8

�
w
(2)
K1
+w

(2)
K2
+w

(2)
K3
+w

(2)
K4

�
,

w
(3)

K ′
=

15

16

�
−w

(1)
K1
+w

(1)
K2
−w

(1)
K3
+w

(1)
K4

�
+

1

16

�
w
(3)
K1
+w

(3)
K2
+w

(3)
K3
+w

(3)
K4

�
,

w
(4)

K ′
=

9

4

�
w
(0)
K1
−w

(0)
K2
−w

(0)
K3
+w

(0)
K4

�
+

3

8

�
−w

(1)
K1
−w

(1)
K2
+w

(1)
K3
+w

(1)
K4

�

+
3

8

�
−w

(2)
K1
+w

(2)
K2
−w

(2)
K3
+w

(2)
K4

�
+

1

16

�
w
(4)
K1
+w

(4)
K2
+w

(4)
K3
+w

(4)
K4

�
,

w
(5)

K ′
=

15

16

�
−w

(2)
K1
−w

(2)
K2
+w

(2)
K3
+w

(2)
K4

�
+

1

16

�
w
(5)
K1
+w

(5)
K2
+w

(5)
K3
+w

(5)
K4

�
.

For the DG scheme with P1 polynomial space, only the first three formulas are needed.

• Data prolongation: If a cell K is divided equally into four subcells K ′1, K ′2, K ′3, K ′4 —

cf. the right graph in Fig. 1, the new degrees of freedom for k = 2 and l = 1,2,3,4

can be computed as follows:

w
(0)

K ′
l

=w
(0)
K
+λ(l)

x
w
(1)
K
+λ(l)

y
w
(2)
K
+λ(l)

x
λ(l)

y
w
(4)
K

,

w
(1)

K ′
l

=
1

2
w
(1)
K
+λ(l)

x
w
(3)
K
+

1

2
λ(l)

y
w
(4)
K

,

w
(2)

K ′
l

=
1

2
w
(2)
K
+

1

2
λ(l)

x
w
(4)
K
+λ(l)

y
w
(5)
K

,

w
(3)

K ′
l

=
1

4
w
(3)
K

, w
(4)

K ′
l

=
1

4
w
(4)
K

, w
(5)

K ′
l

=
1

4
w
(5)
K

,

where λ(l)x = (−1)l/4, l = 1, · · · , 4 and λ(1)y = λ(2)y = −1/4, λ(3)y = λ(4)y = 1/4. For

k = 1, one can use the same formulas with w
(3)
K
=w

(4)
K
=w

(5)
K
= 0.
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4. Numerical Results

In this section, the performance of the proposed two-dimensional h-adaptive RKDG

method is illustrated by the series of benchmark examples and the comparison with the

fixed-mesh RKDG method. For convenience, fixed-mesh RKDG method and h-adaptive

RKDG method are called nonadaptive and adaptive methods, respectively. Moreover, we

use N F L = 2 and LEV = 4. Other sets of these parameters are also tested. The corre-

sponding results are not presented since the parameters chosen already demonstrate the

power of the adaptive method.

Example 4.1 (Smooth solutions. Convergence — cf. Toro & Titarev [30]). We first test

the grid convergence of the method in the case of smooth solutions. Consider the two-

dimensional inviscid Burgers’ equation with a time-dependent source term

wt +

�
1

2
w2

�

x

+

�
1

2
w2

�

y

= s(x , y, t, w),

s(x , y, t, w) = π(w− 1)[cos(π(x − t)) sin(π(y − t)) + sin(π(x − t)) cos(π(y − t))],

the initial conditions

w(x , y, 0) = w0(x , y) = sin(πx) sin(πy), x , y ∈ [−1,1],

and periodic boundary conditions. The exact solution of this problem is w(x , y, t) = w0(x−
t, y − t).

Since solution is continuous, it is highly likely that KXRCF troubled-cell indicator will

discover no troubled cell, so that no mesh adaptation will be needed. Therefore, we carry

out random mesh refinement and coarsening without the limiter. Every computational

cell is randomly identified as a troubled cell with the probability p. Besides, the random

mesh adaptation is only implemented in the region [−0.5,0.5]× [−0.5,0.5]. This does not

influence the effectiveness of the test but help to treat the boundary conditions.

For t = 1.0, the initial meshes N0 ×M0 = 8× 8,16× 16, · · · , 128× 128 and probability

p = 0.1 the errors and convergence orders are listed in Table 1. We note (k+1)-th order of

accuracy for P1 — i.e. for k = 1 and for P2 — i.e. for k = 2. This shows that the adaptive

method proposed does not reduce the optimal order of accuracy of the nonadaptive method.

In addition, Fig. 3 demonstrates an adaptive mesh generated by random mesh adaptation

with an 8× 8 initial mesh in P2-case.

Example 4.2 (Discontinuous solutions. Convergence — cf. Wang et al. [33]). Here, we test

the grid convergence of the adaptive method in the case of discontinuous solutions. The

Eq. (2.2) is considered on the domain [0,2]× [0,2] along with the initial conditions

(ρ,u, v, p, f1) =

¨
(1,0,0,80,0), x2 + y2 ≤ 0.36,

(1,0,0,10−9, 1), otherwise,

with reflective boundary conditions on the bottom and the left boundary and with the

final time t = 0.2. In the adaptive method, we start with the uniform rectangular mesh
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Table 1: Example 4.1. Errors and onvergene orders of numerial solution, t = 1.0.

N0 ×M0 L1 error order L2 error order L∞ error order

P1 8× 8 1.89E-01 1.21E-01 2.51E-01

16× 16 3.62E-02 2.36 2.41E-02 2.31 5.25E-02 2.24

32× 32 6.90E-03 2.38 4.95E-03 2.27 1.28E-02 2.02

64× 64 1.45E-03 2.24 1.13E-03 2.12 3.36E-03 1.92

128× 128 3.34E-04 2.12 2.75E-04 2.04 8.56E-04 1.97

P2 8× 8 1.54E-02 1.00E-02 4.15E-02

16× 16 1.76E-03 3.12 1.19E-03 3.07 5.30E-03 2.96

32× 32 2.14E-04 3.02 1.53E-04 2.93 7.73E-04 2.75

64× 64 2.68E-05 2.99 2.01E-05 2.92 1.01E-04 2.93

128× 128 3.41E-06 2.97 2.64E-06 2.93 1.38E-05 2.87

Figure 3: Example 4.1. Adaptive mesh history, P2-ase with 8× 8 initial mesh. Left: t = 0.0. Middle:

t = 0.5. Right: t = 1.0.

N0 ×M0 = 20× 20, the reaction rate (2.3) and the parameters γ = 1.2, q0 = 50, Ea = 50,

K = 2566.4.

The colored contours in Fig. 4 show the density computed by the adaptive method and

by nonadaptive methods. The adaptive method results are consistent with nonadaptive

ones obtained with an N0 × M0 = 160× 160 uniform rectangular mesh. Fig. 5 shows the

adaptive mesh at the time t = 0.2. It is easily seen that the mesh refinement and coarsening

follow the shock front. Moreover, compared to P1-case, much more meshes got involved in

the adaptive procedure in P2-case. Note that P1 and P2 cases demonstrate similar features

of the adaptive methods. Therefore, the case P1 is omitted in what follows.

Example 4.3 (Stable ZND detonation — cf. Gao et al. [15]). Here, we model a stable ZND

detonation up to the final time t = 30 with the reaction rate (2.3) and the parameters

γ = 1.1, q0 = 2, Ea = 20, K = 1134363.64. As a computational domain we use the

rectangle [130,230]×[−5,5] and the detonation front is initially located at xd = 225. The

initial condition in the y-component of velocity is perturbed by a transversely sinusoidal

planar ZND wave
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Figure 4: Example 4.2. Density ontour, t = 0.2. Top: Nonadaptive method. Bottom: Adaptive

method. Left: P1-ase. Right: P2-ase.

Figure 5: Example 4.2. Adaptive mesh, t = 0.2. Left: P1-ase. Right: P2-ase.

density (adaptive) mesh (adaptive)

x

y

205 210 215 220 225

-4
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2

4

density (nonadaptive)

Figure 6: Example 4.3. P2-ase, t = 30. Left: Density ontours, adaptive method. Middle: Adaptive

method mesh with a 500×50 initial mesh. Right: Density ontours, nonadaptive method with 2000×200
mesh.
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v(x , y, t = 0) =






1

10
sin

�
4π

5
y

�
, 224≤ x ≤ 225,

0, otherwise.

The initial free stream and periodical boundary conditions are imposed in the x - and y-

directions respectively — cf. [14,15,37].

The colored contours in Fig. 6 display the density computed by the P2 adaptive and

non-adaptive methods. The initial 500× 50 mesh in the adaptive method is shown in the

left panel. The middle panel demonstrates the corresponding adaptive mesh. The non-

adaptive method uses 2000× 200 uniform mesh. Both methods established comparable

regular cellular structures, but the resolution in the adaptive solution is slightly lower, since

the corresponding mesh is refined along detonation front only.

Example 4.4 (Detonation diffraction problem — cf. Wang et al. [33]). The detonation

diffraction phenomena is numerically challenging, especially for the high order schemes,

mainly because the pressure or density may be very close to zero. To illustrate the good

performance of the adaptive method, we consider a gaseous detonation waves passing

through an obstacle with an 90o angle turn. The initial conditions are

(ρ,u, v, E, f1) =

¨
(11,6.18,0,970,1), x < 0.5,

(1,0,0,55,1), otherwise,

and the final time is t = 0.6. The boundary conditions are reflective, except the one at

x = 0, (ρ,u, v, E, f1) = (11,6.18,0,970,1). The parameters are γ = 1.2, q0 = 50, Ea = 50,

K = 2566.4 with the reaction rate (2.3).

The colored contours in Fig. 7 display the density computed by the adaptive method

initially based on N0 × M0 = 50 × 50 uniform cells at the time instants t = 0.2,0.4,0.6.

The results are consistent with nonadaptive method using N0 × M0 = 400× 400 uniform

cells and also with [33]. The corresponding temperature contours are presented in Fig. 8.

They clearly expose the chemical reaction front. The corresponding adaptive mesh in Fig. 9

shows that the KXRCF troubled-cell indicator captures the shock location very well. The

finest mesh along the shock generated by the adaptive method and the coarsest mesh used

in the smooth region are also clearly visible.

Example 4.5 (Triple points problem — cf. Bao & Jin [2]). The triple points travelling in

the transverse direction and reflecting from the upper and lower walls are simulated —

cf. [12,18,21]. The initial conditions are chosen as

(ρ,u, v, P, f1) =

¨
(ρl , 8.162 · 104, 0, Pl , 0), x ≤ ξ(y),

(1.201 · 10−3, 0,0,8.321 · 105, 1), x > ξ(y),

where

ξ(y) =

¨
0.004, |y − 0.0025| ≥ 0.001,

0.005− |y − 0.0025|, |y − 0.0025|< 0.001,
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Figure 7: Example 4.4. Density ontours at di�erent time instants, P2-ase. Top: Nonadaptive method.

Bottom: Adaptive method.

t = 0.2 t = 0.4 t = 0.6

Figure 8: Example 4.4. Temperature ontours, adaptive method for P2-ase at di�erent time instants.

t = 0.2 t = 0.4 t = 0.6

Figure 9: Example 4.4. Adaptive mesh temporal history, P2-ase.
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and Pl , ρl have the form

Pl = −b+ (b2 − c)1/2,

ρl =
ρu[Pl(γ+ 1)− Pu]

γPl

,

where

b = −Pu −ρuq0(γ− 1),

c = P2
u + 2(γ− 1)Puρuq0/(γ+ 1).

Besides, we use the reaction rate (2.4) and the parameters γ = 1.4, q0 = 0.5196× 1010,

1/σ = 0.5825× 1010, Ea = 0.1155× 1010.

The colored contours in Fig. 10 display the density computed by the adaptive and non-

adaptive methods at the time instants t = 2×10−8, 4×10−8, 6×10−8, 8×10−8, 10×10−8.

The adaptive method based on the initial N0 ×M0 = 200× 40 uniform cells is comparable

with the nonadaptive one on N0×M0 = 1600× 320 uniform grid. It is easily seen that the

complex structures are generated by propagation of triple points and reflective waves from

walls. The corresponding adaptive mesh temporal history is presented in Fig. 11. It shows

the finest mesh used to resolve the complex structures.

To demonstrate other features of the adaptive method, the corresponding mesh data are

presented in Fig. 12. We note that in the adaptive method, the number of cells increases

with the time. It is consistent with the evolution of shock waves, which grows as time

increases. Moreover, for comparable solutions in Examples 4.2, 4.3 and 4.4, the adaptive

method outperforms the nonadaptive one in terms of computational storage. However, in

Example 4.5 the number of cells in the adaptive method becomes larger than in nonadaptive

ones. This happens because a complicated solution structure appears in the region where

the detonation front passes through and a fully refined mesh shall be generated almost

everywhere there — cf. Fig. 11. For P2-case, much more grid points than for P1-case

got involved in the adaptive procedure, since the KXRCF indicator usually detects more

troubled cells in P2-case [24,39].

5. Concluding Remarks

We developed an h-adaptive Runge-Kutta discontinuous Galerkin (RKDG) method with

a positivity-preserving technique to simulate several classical two-dimensional detonation

waves. The KXRCF troubled-cell indicator is used to detect the troubled cells with possi-

ble discontinuities or high gradients. At each time-level, an adaptive mesh is generated

by refining troubled cells and coarsening others. In order to avoid the situations where

detonation front moves too fast and there are not enough cells to describe detonation front

before it leaves, a recursive multi-level mesh refinement technique is designed. The nu-

merical results show that for smooth solutions this h-adaptive method does not degrade

the optimal convergence order of the nonadaptive method and outperforms it in terms of

computational storage for shocked flows.
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Figure 10: Example 4.5. Density ontours at di�erent time instants, P2-ase. Left: Nonadaptive method.

Right: Adaptive method.
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Figure 11: Example 4.5. Adaptive mesh history, P2-ase.
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Example 4.2 Example 4.3

Example 4.4 Example 4.5

Figure 12: Number of ells at di�erent time instants.
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