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Abstract. We develop a non-overlapping domain decomposition method (DDM) for
scalar wave scattering by periodic layered media. Our approach relies on robust boun-
dary-integral equation formulations of Robin-to-Robin (RtR) maps throughout the fre-
quency spectrum, including cutoff (or Wood) frequencies. We overcome the obsta-
cle of non-convergent quasi-periodic Green functions at these frequencies by incor-
porating newly introduced shifted Green functions. Using the latter in the defini-
tion of quasi-periodic boundary-integral operators leads to rigorously stable computa-
tions of RtR operators. We develop Nyström discretizations of the RtR maps that rely
on trigonometric interpolation, singularity resolution, and fast convergent windowed
quasi-periodic Green functions. We solve the tridiagonal DDM system via recursive
Schur complements and establish rigorously that this procedure is always completed
successfully. We present a variety of numerical results concerning Wood frequencies
in two and three dimensions as well as large numbers of layers.
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1 Introduction

Simulation of electromagnetic wave propagation in periodic layered media has numer-
ous applications in optics and photonics (photovoltaic devices, computation of plasmons,
etc.). The use of periodic structures, such as diffraction gratings, which transmit and
reflect waves along a discrete set of propagating directions, opens up interesting possi-
bilities to guide and direct waves in unusual ways. Volumetric discretizations (finite-
difference (FD) [46], finite element (FE) [32]), that constitute the vast majority of numer-
ical methods, require very large numbers of unknowns to suppress their inherent pollu-
tion effect, and thus produce very large linear systems requiring good preconditioners,
which may not be readily available. Furthermore, such methods must enforce radiation
conditions in infinite domains by means of absorbing boundary conditions (ABC) or per-
fectly matched layers (PML) (see, for example, [3, 27, 29]), both of which meet difficulties
in the treatment of surface waves and evanescent modes [33].

In the technologically relevant case of piecewise constant periodic layered media, sim-
ulation methods based on boundary-integral equations (BIE) and quasi-periodic Green
functions are attractive candidates. Radiation conditions are enforced automatically, and
discretizations of material interfaces are much smaller than volumetric discretizations
and do not suffer from the pollution effect. Quasi-periodic Green functions are infinite
sums of free-space Green functions with periodically distributed monopole singularities.
These double sums converge, although very slowly, for all but a discrete set of “cutoff”
frequencies, for a given quasi-periodicity parameters (Bloch wavevector). These are cut-
off frequencies at which a Rayleigh diffraction mode transitions between propagating
and evanescent and the number of propagating directions jumps. Around these frequen-
cies, the energy is rapidly redistributed along emerging new directions and is associated
with anomalous scattering behavior. These frequencies are often referred to as Wood fre-
quencies (or Wood configurations of wavevector and frequency) because their problem-
atic association in the literature to Wood’s anomaly; see the works [30,41,45,48], [39, Ch. 1]
and references therein for discussions on this phenomenon. Popular methods for accel-
erating the slow convergence at non-Wood frequencies include Ewald summation [25]
and lattice sums [37]. At very high frequencies, asymptotic methods help to accelerate
computation; see for example [34].

While the underlying scattering problems are, with regard to the PDE, generically
stable at Wood configurations of wavevector and frequency, the latter pose a challenge
to BIE for quasi-periodic problems. In three dimensions, they become increasingly close
together at high frequency, and this puts the solution of quasi-periodic problems based
on the quasi-periodic Green function out of reach. For periodic layered media with large
numbers of layers, such as thin films used in photovoltaic cells, the probability of encoun-
tering Wood frequencies is high. Another difficulty is the need for an efficient algorithm
for the evaluation of quasi-periodic Green functions and their integration into existing
fast BIE solvers. In the solution of the ensuing dense linear systems, the BIE formula-
tions of periodic layered media give rise to tridiagonal solvers, whose structure can be
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exploited to lead to efficient direct solvers [18].

The above challenges faced by BIE-based quasi-periodic solvers were addressed in
two recent computational methods. Alternative periodization schemes for boundary-
integral formulations of quasi-periodic problems that do not rely on the classical quasi-
periodic Green functions were proposed in [2, 18]. These methods have ideas in com-
mon with the work presented in [28] as well as kernel-independent FMM methods [49]
and rely on representations of fields as sums of layer potentials and linear combina-
tions of free-space fundamental solutions (radial basis functions) [28] whereby the quasi-
periodicity and radiations conditions are enforced numerically and are not intrinsically
satisfied. This approach gives rise to efficient direct solvers for transmission problems
in two-dimensional periodic layered media, and can yield results even at Wood frequen-
cies [18, 36]. Its rigorous analysis appears to be absent in the literature, and we are not
aware of evidence that these methods are capable of handling Wood frequencies in three
dimensions.

For the first time in this arena, a rigorous solution was provided to the problem of
boundary-integral equation formulations of quasi-periodic problems at Wood frequen-
cies in both two and three dimensions through a new method, in which the well-posed-
ness of the formulation and the stability of the numerical scheme were proven, each
in its own right [10, 15, 16]. Smooth windowed truncations of the lattice sums for the
Green functions were introduced and analyzed in [16]. It was first shown in the same
reference [16] that the windowed Green functions (WGF) converge to their correspond-
ing quasi-periodic Green functions superalgebraically away from Wood frequency/wave
vector configurations as the radius of truncation increases. The incorporation of WGF
in existing fast boundary-integral solvers is relatively straightforward. Remarkably, the
WGF method can be adapted to handle scattering problems in layered media whose infi-
nite interfaces are no longer periodic [12,13]. Then, shifted Green functions that converge
at and around Wood anomalies were used in a boundary-integral equation setting to pro-
vide accurate solutions of scattering problems for perfectly reflecting gratings throughout
the frequency spectrum. The shifted Green functions converge algebraically fast at Wood
frequencies, and the rate of convergence grows with the number of shifts. However, the
shifted Green functions introduce new singularities (poles) in addition to those already
present in the quasi-periodic Green functions. Remarkably, these additional singularities
turn out to be benign in the case of perfectly reflecting periodic gratings as they can be ar-
ranged to be outside the computational domain if one uses indirect formulations [10,15].

In this article, we extend the shifted Green function method to the case of scalar
transmission problems in periodic layered media. By using a domain decomposition
method (DDM), we overcome the difficulty of poles of the shifted Green function inside
the computational domain, and we establish the well-posedness of the ensuing system of
boundary-integral equations. There is a vast literature on DDM; the reader is referred to
the seminal works of B. Després [21, 22] and the expository books [24, 47]. DDM is well
suited to the Helmholtz/Maxwell equations in periodic layered media because of the ro-
bustness of the Robin-to-Robin (RtR) operator for each layer [40,44]. For a given periodic
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layer, it maps incoming (interior boundary) Robin data to outgoing (exterior boundary)
Robin data on the interfaces that bound that layer. In this way, Robin data are matched
on each interface of material discontinuity. This procedure produces a tridiagonal system
whose unknowns are the Robin data on interfaces, and whose non-zero blocks consist of
RtR operators. If a particular layer has constant material properties, the RtR operators
can be computed robustly in terms of boundary-integral operators that use the ordinary
quasi-periodic Green function for frequencies that are not Wood frequencies, and shifted
Green functions for wavenumbers that are near or at Wood frequencies. Interestingly, the
computations of RtR do not require use of hypersingular boundary-integral operators.
We establish rigorously in this work two important facts.

1. The computations of RtR maps via boundary-integral operators are robust through-
out the frequency spectrum if shifted Green functions are employed at Wood fre-
quencies.

2. The DDM for solution of scalar transmission problems in periodic layered media
with piecewise constant material properties presented in this paper is equivalent to
the original PDE, assuming that the PDE problem is well-posed.

We develop a high-order discretization of the tridiagonal DDM system based on Nyström
discretizations of periodic boundary-integral operators. The latter, in turn, rely on trigo-
nometric interpolation, logarithmic singularity extraction in two dimensions and ana-
lytic resolution of singularity in three dimensions, and the windowed Green function
method [10, 15]. We solve the DDM system using recursive Schur complements to elim-
inate sequentially the discretized Robin data corresponding to each layer in a top-down
sweep, a procedure that leads to a computational cost that is linear in the number of
layers. We also present theoretical arguments to explain why the Schur complement
elimination procedure can be always completed successfully. The variety of two- and
three-dimensional numerical results presented in this paper showcase the capability of
our DDM solver to handle large numbers of layers, challenging Wood configurations,
and inclusions in a periodic layered medium. The DDM solvers presented in this paper,
being built on quasi-periodic Green functions, must be re-assembled when the quasi-
periodic parameter changes. Also, the computations of RtR operators require inversions
of boundary-integral operators. In summary, the DDM solvers developed in this paper
enjoy the following attractive features.

• The computations of the RtR maps are stable across the frequency spectrum.

• The DDM system can be solved via recursive Schur complements, leading to a com-
putational cost and memory usage that are linear in the number of layers; and it can
be shown rigorously that this procedure does not break down.

• The DDM approach, being modular, allows for use of heterogeneous discretiza-
tions such as FE and BIE and use of non-conforming discretizations on interfaces
pertaining to layers with different material properties.
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• DDM are easily parallelizable.

The integration of WGF and shifted Green functions in existing three-dimensional boun-
dary-integral operator discretizations presented in this contribution is relatively seamless
and results in a rigorous treatment of Wood configurations in three dimensions. DDM
approaches will be feasible for the solution of three-dimensional electromagnetic trans-
mission problems in periodic layered media based on quasi-optimal transmission condi-
tions [7, 8, 31] that renders them amenable to Krylov subspace iterative solvers. Quasi-
optimal transmission conditions arise from a judicious choice of the complex wavenum-
ber in the transmission operator that gives rise to a DDM whose rate of convergence is
practically independent of frequency [5].

The RtR DDM that employs a shifted Green-function scheme can handle interfaces
between layers that are very general (including those that are not the graph of a function)
and general frequencies. There are of course situations in which other methods would
be superior or should be used in combination with the RtR DDM. In the case of small,
smooth perturbations of flat interfaces, the method of variation of boundaries would pro-
vide increased acceleration [14], even if the perturbations are not that small [40, 42]. And
as noted above, at high frequencies, asymptotic methods should be used to accelerate the
computation [34].

The paper is organized as follows. In Section 2 we present the scalar scattering prob-
lem in two-dimensional layered media and we review the main results about the well-
posedness of these problems. In Section 3 we present a DDM formulation of the transmis-
sion problems that uses matching of classical Robin boundary conditions of the material
interfaces, and we present computations of ensuing RtR maps that are shown to be stable
throughout the frequency spectrum. We continue in Section 4 with a description of the
Nyström discretization of the RtR maps and we provide and analyze a recursive Schur
complement elimination algorithm for the direct solution of the discrete DDM system.
Finally, we present in Section 6 a variety of numerical results of wave scattering at mostly
Wood frequency configurations in periodic layered media.

2 Scalar transmission problems

We consider the problem of quasi-periodic scattering by penetrable homogeneous peri-
odic layers. For the sake of simpler notations, we present the two-dimensional case. We
mention that all the derivations that we present are easily translatable to three-dimen-
sional configurations. The periodicity of the layers is taken to be in the horizontal x1

direction, that is the layers are given by Ωj = {(x1,x2)∈ R2 : Fj(x1)≤ x2 ≤ Fj−1(x1)} for
0< j<N and Ω0={(x1,x2)∈R2 :F0(x1)≤x2} and ΩN+1={(x1,x2)∈R2 :x2≤FN(x1)}, and
all the functions Fj are periodic with principal period d, that is Fj(x1+d)= Fj(x1) for all
0≤ j≤ N. We assume that the medium occupying the layer Ωj is homogeneous and its
permittivity is ε j; the wavenumber kj in the layer Ωj is given by kj=ω

√
ε j. A plane wave

uinc(x)=exp(i(αx1+iβx2)) where α2+β2=k2
0 impinges on the layered structure. We seek
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α-quasi-periodic fields uj (i.e. uj(x1+d,x2)= eiαdu(x1,x2) for all (x1,x2)∈R2) that satisfy
the following system of equations:

∆uj+k2
j uj =0 in Ω

per
j :={(x1,x2)∈Ωj : 0≤ x1≤d},

uj+δ0uinc =uj+1 on Γj={(x1,x2) : 0≤ x1≤d, x2=Fj(x1)},
γj(∂nj

uj+δ0∂nj
uinc)=−γj+1∂nj+1

uj+1 on Γj,

(2.1)

where δ0 is the Dirac distribution supported on Γ0 and nj denote the unit normals to the
boundary ∂Ωj pointing to the exterior of the subdomain Ωj. Note that we assigned to the
partial derivatives on a given interface the index of the domain on whose side the partial
derivative is taken; thus, on the interface Γj we have nj =−nj+1. We also assume that u0

and uN in Eqs. (2.1) are radiative in Ω0 and ΩN+1 respectively. The latter requirement
amounts to expressing the solutions u0 and uN+1 in terms of Rayleigh series

u0(x1,x2)= ∑
r∈Z

C+
r eiαrx1+iβ0,rx2 , x2>maxF0 (2.2)

and

uN+1(x1,x2)= ∑
r∈Z

C−
r eiαr x1−iβN+1,rx2 , x2<minFN (2.3)

in which αr =α+ 2π
d r and β0,r =(k2

0−α2
r )

1/2 and β2
N+1,r =(k2

N+1−α2
r )

1/2, where the square

is root chosen such that
√

1= 1 with branch cut along the negative imaginary axis. We
assume that the wavenumbers kj and the quantities γj in the subdomains Ωj are positive
real numbers.

Wood frequencies are those values of k for which there exist indices r0 such that
α2

r0
= k2. The well posedness of the Eqs. (2.1) was established in [17] in the case of two

domains Ω0 and Ω1 separated by the periodic interface Γ0 with γ0 =γ1=1 and any real
wavenumbers k0 and k1, including Wood frequencies. The techniques presented in [17]
are easily applicable to periodic configurations with arbitrary number of layers. To the
best of our knowledge, any attempt at establishing uniqueness of solutions of Eqs. (2.1)
was based on the aforementioned techniques. However, certain requirements [1] must
be imposed on the material parameters (kj,γj), 0≤ j≤N in order to establish rigorously
the uniqueness of solutions of Eqs. (2.1) using those techniques. For the sake of complete-
ness, we provide in Appendix A a proof of uniqueness of solutions of Eqs. (2.1) under the
assumption of monotonicity of the wavenumber kj, 0≤ j≤N+1 and γj=1, 0≤ j≤N+1. In
general, for a fixed periodic layered configuration with material properties ε j, the trans-
mission problem (2.1) has a unique solution with the exception of a discrete set of fre-
quencies ω whose only accumulation point is infinity [1, 4, 23]. The same comprehensive
reference [1] contains a proof of existence of solutions for the transmission problem (2.1)
using both variational and boundary-integral equation arguments.
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Figure 1: Typical periodic layer structure with N=2; the x1-axis is horizontal, and the x2-axis is vertical.

3 Domain decomposition approach

We present a domain decomposition method (DDM) based on boundary-integral equa-
tions (BIEs) for the numerical solution of transmission problems (2.1). Just like BIE for-
mulations, DDM formulations recast the original PDEs in terms of unknown quantities
defined on the interfaces of material discontinuity. A non-overlapping domain decom-
position approach for the solution of Eqs. (2.1) consists of solving Helmholtz subdomain
problems in Ωj, j = 0,··· ,N+1 with matching Robin transmission boundary conditions
on the common subdomain interfaces Γj for j= 0,··· ,N. The main motivation for using
DDM is the seamless treatment of periodic configurations at Wood frequencies via BIE
formulations, as well the ease with which it can handle inclusions in the periodic layers.
Specifically, DDM amount to computing α-quasi-periodic subdomain solutions:

∆uj+k2
j uj=0 in Ω

per
j ,

γ0(∂n0 u0+∂n0 uinc)−iη(u0+uinc)=−γ1∂n1
u1−iη u1 on Γ0,

γ1∂n1
u1−iη u1=−γ0(∂n0 u0+∂n0 uinc)−iη(u0+uinc) on Γ0, (3.1)

γj∂nj
uj−iη uj=−γj+1∂nj+1

uj+1−iη uj+1 on Γj, 1≤ j≤N,

γj+1∂nj+1
uj+1−iη uj+1=−γj∂nj

uj−iη uj on Γj, 1≤ j≤N.

In addition, we require that u0 and uN+1 be radiative and that η > 0. The latter require-
ment ensures that the Robin problems in the semi-infinite domains Ω0 and ΩN+1 are well
posed; see Theorem 3.1.

The essence of the domain decomposition (3.1) is solving a Robin boundary-value
problem in each layer subdomain and connecting the Robin boundary data across in-
terfaces via the so-called Robin-to-Robin (RtR) maps [19] — also see below. For a given
layer subdomain Ωj with 1≤ j≤N we seek wj α-quasi-periodic solutions of the following
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Helmholtz boundary-value problem

∆wj+k2
j wj =0 in Ω

per
j ,

γj∂nj
wj−iη wj= gj−1,j on Γj−1, (3.2)

γj∂nj
wj−iη wj= gj,j on Γj,

where gj−1,j and gj,j are generic α-quasi-periodic functions defined on Γj−1 and Γj. The

RtR map S j is defined as

S j

[
gj−1,j

gj,j

]
=

[
(γj∂nj

wj+iη wj)|Γj−1

(γj∂nj
wj+iη wj)|Γj

]
. (3.3)

The computation of the RtR maps S j requires solving the Helmholtz boundary value
problem (3.2). Of the two indices of the boundary data g in Eqs. (3.2), the first index is the
index of the interface and the second index is the index of the subdomain. Thus, gj−1,j

refers to boundary data on the interface Γj−1 on the side of the subdomain Ωj. The block

structure of the RtR operators S j defined in Eq. (3.3) is

S j

[
gj−1,j

gj,j

]
=

[
S j

j−1,j−1 S j
j−1,j

S j
j,j−1 S j

j,j

][
gj−1,j

gj,j

]
. (3.4)

For the semi-infinite subdomain Ω0 w0 is the α-quasi-periodic outgoing solution of the
Helmholtz boundary value problem

∆w0+k2
0w0=0 in Ω

per
0 , (3.5)

γ0∂n0 w0−iη w0= g0,0 on Γ0,

in which g0,0 is a α-quasi-periodic function defined on Γ0, and we define the RtR map S0

by

S0g0,0 :=(γ0∂n0 w0+iη w0)|Γ0
. (3.6)

The RtR map SN+1 corresponding to the semi-infinite subdomain ΩN+1 is defined in a
similar manner to S0 but for boundary data gN−1,N defined on ΓN .

In DDM formulations (3.1), the unknown Robin data associated with each interface
Γj

f j =

[
f j,j

f j,j+1

]
:=

[
(γj∂nj

uj−iη uj)|Γj

(γj+1∂nj+1
uj+1−iη uj+1)|Γj

]
, 0≤ j≤N

are matched via the subdomain RtR maps S j,0≤ j≤N+1 giving rise to a (2N+2)×(2N+
2) operator linear system. The unknown Robin data f =[ f0 f1 ··· fN ]

⊤ are the solution of
the following linear system

A f = f inc, (3.7)
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in which the DDM matrix A is a tridiagonal block matrix whose first two rows, and
the rows indexed by 2j+1 and 2j+2 (corresponding to the unknown Robin data f j,j and
f j,j+1), and the last two rows, are given in explicit form

A=




I S1
0,0 S1

0,1 ··· 0 0 0 0 0 0 ··· 0 0

S0 I 0 ··· 0 0 0 0 0 0 ··· 0 0
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
0 0 0 ··· 0 0 I S j+1

j,j S j+1
j,j+1 0 ··· 0 0

0 0 0 ··· 0 S j
j,j−1 S j

j,j I 0 0 ··· 0 0

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· I SN+1

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· SN
N,N−1 SN

N,N I




and in which the right-hand-side vector f inc =[ f inc
0 f inc

1 ··· f inc
N ]⊤ has zero components f inc

ℓ
=

[0 0]⊤, 1≤ ℓ≤N, with the exception of the first component

f inc
0 =

[−(γ0∂n0 uinc−iη uinc)|Γ0

−(γ0∂n0 uinc+iη uinc)|Γ0

]
.

In what follows, we study spectral properties of the RtR operators S j,0≤ j≤N+1, prop-
erties that will shed light onto the solvability of the DDM system (3.7).

3.1 Spectral properties of the RtR operators

The first question that arises is whether the RtR operators are properly defined under the
assumptions on wavenumbers kj and coefficients γj >0, j=0,··· ,N+1. We establish the
following result, whose proof is essentially a simple extension of arguments presented
in [17].

Theorem 3.1. Let w0 be the α-quasi-periodic outgoing solution of the following Helmholtz equa-
tion

∆w0+k2
0w0=0 in Ω

per
0 ,

∂n0 w0−iηγ−1
0 w0=0 on Γ0.

Then w0 is identically zero in Ω
per
0 .

Remark 3.1. A similar uniqueness result holds for the homogeneous problem

∆wN+1+k2
N+1wN+1=0 in Ω

per
N+1,

∂nN+1
wN+1−iηγ−1

N+1wN+1=0 on ΓN .
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Proof. Consider again h>maxF0 and the domain Ω
per
0,h :={(x1,x2)∈Ω

per
0 : F0(x1)≤x2≤h}.

A simple application of Green’s identities leads to

∫

Ω
per
0,h

(|∇w0|2−k2
0|w0|2)dx=

∫

Γ0

∂n0 w0w0 ds+
∫

Γ0,h

∂x2 w0w0 dx1

= iηγ−1
0

∫

Γ0

|w0|2 ds+
∫

Γ0,h

∂x2 w0w0 dx1,

where Γ0,h :={(x1,x2) :0≤x1≤d, x2=h}. Taking into account the fact that w0 is radiating,
we can express w0 on the line segment Γ0,h in terms of the following Rayleigh series

w0(x1,h)= ∑
r∈Z

C+
r eiαrx1+iβ0,rh,

from which it follows that
∫

Γ0,h

∂x2 w0w0dx1 = id ∑
r∈Z,β0,r>0

β0,r|C+
r |2.

Consequently,

∫

Ω
per
0,h

(|∇w0|2−k2
0|w0|2)dx= iηγ−1

0

∫

Γ0

|w0|2ds+id ∑
r∈Z,β0,r>0

β0,r|C+
r |2.

The left-hand-side of this identity is real, whereas the right-hand side is a sum of non-
negative imaginary terms, and thus each of these terms vanishes. This implies that w0=
0 on Γ0, and thus ∂n0 w0 = 0 on Γ0 as well. The result now follows from Holmgren’s
uniqueness theorem [26].

Consider now the following Helmholtz equation. Let w0 be the α-quasi-periodic out-
going solution of

∆w0+k2
0w0=0 in Ω

per
0 ,

∂n0 w0−iηγ−1
0 w0= g0 on Γ0,

where g0 is a α-quasi-periodic function defined on Γ0. The matter of existence of such
a solution will be settled in the next section through boundary-integral equation argu-
ments. We are interested in estimating the norm of the RtR operator S0 as a continuous
operator from L2

per(Γ0) to itself. We have

‖g0‖2
2 =

∫

Γ0

(|∂n0 w0|2+η2γ−2
0 |w0|2)ds−2ηγ−1

0 ℑ
∫

Γ0

∂n0 w0 w0 ds

and

‖S0g0‖2
2 =

∫

Γ0

(|∂n0 w0|2+η2γ−2
0 |w0|2)ds+2ηγ−1

0 ℑ
∫

Γ0

∂n0 w0w0 ds.
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Again, we have that

∫

Ω
per
0,h

(|∇w0|2−k2
0|w0|2)dx=

∫

Γ0

∂n0 w0w0 ds+
∫

Γ0,h

∂x2 w0w0dx1.

Assuming the Rayleigh series expansion

w0(x1,h)= ∑
r∈Z

C+
r eiαrx1+iβ0,rh,

we derive

ℑ
∫

Γ0

∂n0 w0w0ds=−d ∑
r∈Z,β0,r>0

β0,r|C+
r |2,

and hence
‖S0g0‖2

2<‖g0‖2
2

for all g0 is a α-quasi-periodic function defined on Γ0. It follows that ‖S0‖L2
per(Γ0)→L2

per(Γ0)

≤1. Similar arguments lead to the estimate ‖SN+1‖L2
per(ΓN+1)→L2

per(ΓN+1)≤1. Green’s iden-

tities establish the following theorem.

Theorem 3.2. The RtR operators S j are unitary in the space L2
per(Γj)×L2

per(Γj+1) for all j : 1≤
j≤N.

This unitarity can be used to establish the pointwise convergence of the Jacobi fixed-
point iterations for the solution of the DDM formulation (3.7) by a relatively straightfor-
ward adaptation of the arguments presented in [19] to the quasi-periodic setting.

3.2 Calculations of RtR operators in terms of boundary-integral operators
associated with quasi-periodic Green functions

Implementation of DDM requires computation of RtR maps. We present in this section
explicit representations of RtR maps in terms of boundary-integral operators associated
with quasi-periodic Green functions that will serve as the basis of the implementation of
the DDM algorithm.

3.2.1 Quasi-periodic Green functions, layer potentials and integral operators

For a given free-space wavenumber (normalized frequency) k, define the α-quasi-periodic
Green function

G
q
k(x,x2)= ∑

n∈Z

e−iαndGk(x1+nd,x2), (3.8)

where Gk(x1,x2)=
i
4 H

(1)
0 (k|x|),x=(x1 ,x2). Define αr :=α+ 2π

d r and βr=βr(k):=(k2−α2
r )

1/2,
where the branch of the square roots in the definition of βr is chosen in such a way that√

1 = 1, and that the branch cut coincides with the negative imaginary axis. It can be
shown that the series in the definition of the Green function G

q
k in Eq. (3.8) converge for
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wavenumbers k for which none of the coefficients βr is equal to zero. In such cases it can
be shown that G

q
k can be expressed in the frequency domain in the form

G
q
k(x,x2)=

i

2d ∑
r∈Z

eiαrx1+iβr|x2|

βr
. (3.9)

When the wavenumber k is a Wood frequency, the set W=W(k) :={r0∈Z :βr0 (k)=0}
is nonempty. For wavenumbers that are Wood frequencies, the series in the definition
of the Green function G

q
k in Eq. (3.8) does not converge. In the case when k is a Wood

frequency, we introduce the following shifted Green functions [10]

G
q,j
k,h(x,x2)= ∑

n∈Z

e−iαnd
j

∑
ℓ=0

(−1)ℓ
(

j

ℓ

)
Gk(x1+nd,x2+ℓh)+ ∑

r∈W

creiαrx1+i(signh)βrx2 (3.10)

for shifts h 6= 0, integers j > 0, and non-zero coefficients cr ∈ C. The functions G
q,j
k,h are

radiating α-quasi-periodic Green function in the halfplane x2>0 for h>0 and respectively
in the halfplane x2<0 for h<0; these functions have poles at x1=0 and x2=−ℓ h,0<ℓ≤ j.

We note that the quantities G
q,j
k,h defined in Eq. (3.10) still make sense when k is not a Wood

frequency, in which case the set W can be defined as W := {r0 ∈Z : |βr0 |< ε}, where ε is
chosen to be sufficiently small; obviously, the set W can be empty in some cases.

Assume now that the interface Γper is defined as Γper :={(x1,F(x1)) : 0≤x1≤d} where
F is a C2 periodic function of principal period equal to d. Given a density ϕ defined on
Γper (which can be extended by α-quasi-periodicity to arguments (x1,F(x1)),x1 ∈R) we
define the single-layer potentials corresponding to a wavenumber k

[SL
q
k ϕ](x) :=

∫

Γper
G

q
k(x,y)ϕ(y)ds(y), [SL

q,j
k,h ϕ](x) :=

∫

Γper
G

q,j
k,h(x,y)ϕ(y)ds(y) (3.11)

for x /∈ Γper and x=(x1,x2) such that 0≤ x1 ≤ d. The quantities SL
q
k ϕ can be extended by

α-quasi-periodicity to define α-quasi-periodic outgoing solutions of the Helmholtz equa-
tion corresponding to wavenumber k in the domains {x : x2>F(x1)} and {x : x2<F(x1)}.

Similarly, the quantities SL
q,j
k,h ϕ can be extended by α-quasi-periodicity to define α-quasi-

periodic outgoing solutions of the Helmholtz equation corresponding to wavenumber k
in the domains {x :x2>F(x1)} for h>0 and respectively in the domain {x :x2<F(x1)} for
h<0. Assuming that n is the unit normal to Γper pointing into the domain {x : x2>F(x1)}
one obtains the single layer potential on the interface Γper,

[S
q
k(ϕ)](x) := lim

ε→0
[SL

q
k ϕ](x±εn(x))=

∫

Γper
G

q
k(x,y)ϕ(y)ds(y), x∈Γper, (3.12)

and

[S
q,j
k,h(ϕ)](x) := lim

ε→0
[SL

q,j
k,h ϕ](x+εn(x))=

∫

Γper
G

q,j
k,h(x,y)ϕ(y)ds(y), x∈Γper, h>0, (3.13)
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as well as

[S
q,j
k,h(ϕ)](x) := lim

ε→0
[SL

q,j
k,h ϕ](x−εn(x))=

∫

Γper
G

q,j
k,h(x,y)ϕ(y)ds(y), x∈Γper, h<0. (3.14)

Also, we have

lim
ε→0

∇[SL
q
k ϕ](x±εn(x))·n(x)=∓1

2
ϕ(x)+[(K

q
k)

⊤(ϕ)](x), x∈Γper (3.15)

and

lim
ε→0

∇[SL
q,j
k,h ϕ](x+εn(x))·n(x)=−1

2
ϕ(x)+[(K

q,j
k,h)

⊤(ϕ)](x), x∈Γper, h>0, (3.16)

as well as

lim
ε→0

∇[SL
q,j
k,h ϕ](x−εn(x))·n(x)= 1

2
ϕ(x)+[(K

q,j
k,h)

⊤(ϕ)](x), x∈Γper, h<0. (3.17)

In Eqs. (3.15), the adjoint double-layer operators can be defined explicitly as

[(K
q
k)

⊤(ϕ)](x)=
∫

Γper

∂G
q
k(x,y)

∂n(x)
ϕ(y)ds(y), x∈Γper (3.18)

with similar definitions for the operators defined in Eqs. (3.16) and (3.17) respectively.

3.2.2 Boundary-integral representation of RtR maps

Having defined the α-quasi-periodic boundary-integral operators above, we are now in
a position to compute the various RtR operators S j. We start with the RtR operator S0

corresponding to problem (3.5). We define Z0= iηγ−1
0 and seek w0 in the form

w0 :=SL
q
k0

ϕ0,

in which the single-layer potential SL
q
k0

is defined in (3.11) integrating on the curve Γ0.

We obtain an explicit formula for the RtR operator S0 defined in Eq. (3.6),

S0= I+2Z0S
q
Γ0,k0

(
1

2
I+(K

q
Γ0,k0

)⊤−Z0S
q
Γ0,k0

)−1

, (3.19)

in which the operators (K
q
Γ0,k0

)⊤ are defined just as in Eqs. (3.18) but with unit normal n0

pointing into Ω−
0 (exterior of Ω0). Here and in what follows we introduce an additional

subscript to make explicit the curve that is the domain of integration of the boundary-
integral operators.

The invertibility of the operator featured in Eqs. (3.19) can be established in a straight-
forward manner.
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Theorem 3.3. Under the assumptions that F0 is C2, and k0 is not a Wood frequency, the operator

A0 :=
1

2
I+(K

q
Γ0,k0

)⊤−Z0S
q
Γ0,k0

, A0 : L2
per(Γ0)→ L2

per(Γ0)

is invertible with continuous inverse.

Proof. Because of the regularity of the boundary Γ0, both operators (K
q
Γ0,k0

)⊤ : L2
per(Γ0)→

L2
per(Γ0) and S

q
Γ0,k0

: L2
per(Γ0)→L2

per(Γ0) are compact. Thus, the conclusion of the Theorem

follows once we establish the injectivity of the operator A0. Let ϕ0∈Ker(A0) and define
v0 :=SL

q
k0

ϕ0 in R2\{(x1,F0(x1)),x1 ∈R)}. The function v0 is a radiating α-quasi-periodic
solution of the Helmholtz equation in Ω0 with impedance boundary conditions ∂n0 v0−
Z0v0 = 0 on Γ0, and thus, by Theorem 3.1, we have that v0 is identically zero in Ω0. In
particular, it follows that v0=0 on Γ0. Thus, v0 is a radiating, α-quasi-periodic solution of
the Helmholtz equation with wavenumber k0 in the domain Ω−

0 :={(x1,x2) : x2<F0(x1)}
with zero Dirichlet boundary conditions on Γ0. This implies that v0 is identically zero in
the domain Ω−

0 by uniqueness the Dirichlet problem. Finally, the jump conditions of the
normal derivatives of single-layer potentials imply that ϕ0=0 on Γ0.

Alternatively, we can seek w0 in the form

w0 :=SL
q,j
k0,h ϕ,

from which we obtain a representation of the RtR operators S0 in the form

S0= I+2Z0S
q,j
Γ0,k0,h

(
1

2
I+(K

q,j
Γ0,k0,h)

⊤−Z0S
q,j
Γ0,k0,h

)−1

, h>0. (3.20)

The invertibility of the operators that feature in Eq. (3.20) is much more subtle. It can
be established by modification of arguments presented in a recent paper of some of the
authors [15]. The proof is presented there for doubly periodic layered media in three
dimensions. The theorem below is also valid in three dimensions; its proof in the two-
dimensional reduction is given in Appendix B.

Theorem 3.4. Under the assumption that F0 is C2 and that k0 is a Wood frequency, the operator

A0,h :=
1

2
I+(K

q,j
Γ0,k0,h)

⊤−Z0S
q,j
Γ0,k0,h, j≥1, A0,h : L2

per(Γ0)→ L2
per(Γ0)

is invertible with continuous inverse for all but a discrete set of values of the shift h>0.

Note that the calculations of the RtR maps SN+1 can be performed similarly to arrive
at

SN+1= I+2ZN+1S
q
ΓN ,kN+

(
1

2
I+(K

q
ΓN ,kN+1

)⊤−ZN+1S
q
ΓN ,kN+1

)−1

, (3.21)

SN+1= I+2ZN+1S
q,j
ΓN ,kN+1,h

(
1

2
I+(K

q,j
ΓN ,kN+1,h)

⊤−ZN+1S
q,j
ΓN ,kN+1,h

)−1

, h<0, (3.22)
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Γt

Γb

n

n

Figure 2: Typical middle-layer structure.

where ZN+1= iηγ−1
N+1 and the adjoint double-layer operators are defined with respect to

the unit normal nN+1 pointing outside of the domain ΩN+1. The invertibility of the oper-
ators in Eqs. (3.21) and (3.22) can be established analogously to the results in Theorems 3.3
and 3.4.

Finally, the RtR maps for the domains Ωj,1≤ j< N can be expressed in closed form
via boundary-integral equations. Indeed, consider a generic domain Ωper :={(x1,x2) :0≤
x1 ≤ d,Fb(x1)≤ x2 ≤ Ft(x1)} where Ft and Fb are d-periodic C2 functions. Let us denote
by Γt := {(x1,x2) : 0≤ x1 ≤ d,x2 = Ft(x1)}, Γb := {(x1,x2) : 0≤ x1 ≤ d,x2 = Fb(x1)}, and let n
denote the unit normal to Γt∪Γb pointing outside of the domain Ωper — see Fig. 2. Then
the Helmholtz problems (3.2) can be all expressed in the generic form

∆w+k2w=0 in Ωper, (3.23)

∂nw−Zw= gt on Γt,

∂nw−Zw= gb on Γb,

where gt and gb are α-quasi-periodic functions and ℑZ>0. The RtR operators S j,1≤ j<N
are related to the following RtR operator associated with the Helmholtz problems (3.23):

S
[

gt

gb

]
:=

[
(∂nw+Z w)|Γt

(∂nw+Z w)|Γb

]
. (3.24)

Seeking the solution w of Eqs. (3.23) in the form

w=SL
q
k,tϕt+SL

q
k,b ϕb,

in which SL
q
k,t (SL

q
k,b) denotes the quasi-periodic single-layer potential whose domain of

integration in Γt (Γb), we arrive at the following expression for the RtR operator S :

S=

[
I 0
0 I

]
+2Z

[
S

q
k,t,t S

q
k,b,t

S
q
k,t,b S

q
k,b,b

][
(1/2)I+(K

q
k,t,t)

⊤+ZS
q
k,t,t (K

q
k,b,t)

⊤+ZS
q
k,b,t

(K
q
k,t,b)

⊤+ZS
q
k,t,b (1/2)I+(K

q
k,b,b)

⊤+ZS
q
k,b,b

]−1

.

(3.25)
We note that in Eq. (3.25), the subscripts in the notation S

q
k,b,t signify that in Eq. (3.12) the

target point x∈ Γt and the integration point y∈ Γt, whereas in the notation S
q
k,b,t signify
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that in Eq. (3.12) the target point x ∈ Γt and the integration point y ∈ Γb. All the other
additional subscripts in Eq. (3.25) have similar meanings related to the locations of target
and integration points for single and adjoint double-layer boundary-integral operators.
The invertibility of the operators featuring in Eq. (3.25) can be established using similar
reasoning to that in the proof of Theorem 3.3.

In the case when k is a Wood frequency, an equivalent representation of the RtR op-
erator S can be obtained if we replace the quasi-periodic boundary-integral operators in
Eq. (3.25) by shifted quasi-periodic boundary-integral operators, provided the shift h>0
is chosen larger than the width of the domain Ωper; the latter requirement is needed to
ensure that no poles of the shifted quasi-periodic functions are contained in the domain
Ωper. The invertibility of the ensuing matrix operator is the subject of the following theo-
rem:

Theorem 3.5. Assume k is a Wood frequency. Then the operator

Ah :=

[
(1/2)I+(K

q,j
k,h,t,t)

⊤+ZS
q,j
k,h,t,t (K

q,j
k,h,b,t)

⊤+ZS
q,j
k,h,b,t

(K
q,j
k,h,t,b)

⊤+ZS
q,j
k,h,t,b (1/2)I+(K

q,j
k,h,b,b)

⊤+ZS
q,j
k,h,b,b

]

is invertible with continuous inverse in the space L2
per(Γt)×L2

per(Γb) for all but a discrete set of
values of the shift h>0.

Proof. Given that all the boundary-integral operators that enter the definition of the ma-
trix operator Ah are compact in L2

per(Γt)×L2
per(Γb), the result follows once we establish

the injectivity of the operator Ah. Let (ϕt,ϕb)∈Ker(Ah) and define

w=SL
q,j
k,h,tϕt+SL

q,j
k,h,bϕb in R

2\(Γt∪Γb).

Clearly w is a α-quasi-periodic solution of Eq. (3.23) with zero Robin boundary conditions
on Γt and Γb, and as such w=0 in Ωper. In particular, w vanishes on Γt. Also, given that

the shift h is chosen so that the poles of G
q,j
k,h are in the domain Ω−

b := {(x1,x2) : 0 ≤ x1

≤ d,x2 ≤ Fb(x1)}, w is a radiating α-quasi-periodic solution of the Helmholtz equation in
the domain Ω+

t ={(x1,x2) : 0≤ x1≤d,Ft(x1)≤ x2}, which vanishes on Γt. This means that
w = 0 in Ω+ [17]. Using the jump conditions of the normal derivatives of single-layer
potentials across Γt, we get that ϕt=0 on Γt. Accordingly, we have that

w=SL
q,j
k,h,bϕb in R

2\Γb

vanishes in the domain Ω+
b ={(x1,x2) :0≤x1≤d,Fb(x1)≤x2}. The arguments in the proof

of Theorem 3.4 can be repeated verbatim to conclude that ϕb=0 on Γb.

Remark 3.2. The computation of the layer RtR maps described in Eqs. (3.25) can be ex-
tended in a straightforward manner to the case when impenetrable or penetrable inclu-
sions are present in the domain Ωper. In this case, the matrix S in Eqs. (3.25) needs be
augmented by blocks that account for the interactions of the inclusions D with Γt and Γb,
as well as its self-interactions that account for the boundary conditions to be imposed on
∂D.
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4 DDM Nyström discretization

Our numerical solution of Eqs. (3.7) relies on Nyström discretizations of the boundary-
integral operators featured in the computation of the RtR operators given in Section 3.2.
In order to speed up the notoriously slow convergence of the quasi-periodic Green func-
tion G

q
k defined in Eq. (3.8) for frequencies that are away from Wood frequencies, we make

use of the recently introduced windowed Green function Method [10,15,16]. Specifically,
let χ(r) be a smooth cutoff function equal to 1 for r<r1 and equal to 0 for r>r2 (0<r1<r2)
and define the windowed Green functions

G
q,A
k (x,x2)= ∑

n∈Z

e−iαndGk(x1+nd,x2)χ(rn/A), rn =((x1+nd)2+x2
2)

1/2 (4.1)

and

G
q,j,A
k,h (x,x2)= ∑

n∈Z

e−iαnd
j

∑
ℓ=0

(−1)ℓ
(

j

ℓ

)
Gk(x1+nd,x2+ℓh)χ(rn,ℓ/A)

+ ∑
r∈W

creiαrx1+i(signh)βrx2 ,

rn,ℓ=((x1+nd)2+(x2+ℓh)2)1/2.

(4.2)

On account of the windowed function χ, the summations in Eqs. (4.1) and (4.2) are over a

finite range of indices n. The functions G
q,A
k were shown to converge superalgebraically

fast to G
q
k as A→∞ when k is not a Wood frequency [10, 15, 16], whereas the functions

G
q,j,A
k,h were shown to converge algebraically fast to a α-quasi-periodic Green function as

A→∞ (the rate increases as the number of shifts j grows) in the half-plane x2 >0 when
h > 0 and respectively x2 < 0 when h < 0 for all frequencies k, including at and around
Wood frequencies [10].

Our Nyström discretizations rely on trigonometric collocation in two dimensions. As
such, we reformulate the DDM system in terms of periodic quantities by extracting the
phase e−iαx1 from all Robin data, the right-hand side, as well as RtR maps. The calculation
of the RtR maps is performed via boundary-integral operators acting on periodic densi-
ties ϕ̃ defined as ϕ̃(x1,x2) := ϕ(x1,x2)e−iαx1 and periodic kernels eiα(x1−y1)G

q
k(x1,x2;y1,y2).

Furthermore, the discretization of the boundary-integral operators featured in Section 3.2

is done by replacing the Green functions G
q
k and G

q,j
k in their definitions by the fast con-

vergent windowed approximations G
q,A
k and G

q,j,A
k,h defined in Eqs. (4.1) and (4.2) respec-

tively. Finally, our numerical scheme requires a simple modification of the Martensen-
Kussmaul (MK) periodic logarithmic splitting Nyström approach [35, 38] in order to en-
able high-order evaluations of boundary-integral operators whose kernels are windowed
periodic Green functions — full details of this approach are given in [10]. In a nutshell,

boundary-integral operators that feature the windowed Green functions G
q,A
k and G

q,j,A
k,h

defined in Eqs. (4.1) and (4.2) respectively are recast in a form that involves integration
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around target points x but with domains of integration that span the whole real axis —
the latter is achieved via the windowing functions χ and by periodic extensions of the
densities ϕ̃. This setting allows for a direct extension of the periodic logarithmic split-
ting of the Green functions that is central to MK Nyström approach. In three dimensions,
our Nyström discretizations also rely on global trigonometric interpolation, use of floating
partitions of unity and analytic resolution of singularities, as well as the use of windowed
Green functions [15]. Interestingly, using global trigonometric interpolation in conjunc-
tion with changes of variables to polar coordinates in the resolution of Green function
singularities allows for straightforward constructions of Nyström collocation matrices
of three-dimensional boundary-integral operators via two-dimensional Discrete Fourier
Transform matrices. The availability of such Nyström collocation matrices in three di-
mensions plays an important role in the efficient computations of RtR maps, as we ex-
plain next.

Following the prescriptions outlined above, a boundary-integral operator whose ker-
nel is a windowed Green function (or its normal derivative) acting on a periodic density
ϕ̃ and whose domain of integration is a generic curve Γper per the definition given in
Section 3.2 (i.e. Γper :={(x1,F(x1)) : 0≤ x1 ≤d}, where F is a C2 periodic function of prin-
cipal period d) is Nyström discretized as a M×M matrix where the periodic density ϕ̃ is
trigonometrically collocated at the equi-spaced mesh {(tℓ,F(tℓ)) : tℓ= ℓd/M,0≤ ℓ< M=
2m}. For a fixed M = 2m,m> 0, assuming that the Robin data f j = [ f j,j f j,j+1]

⊤ on each
interface Γj,0≤ j ≤ N is collocated at the mesh Lj := {(tℓ,Fj(tℓ)) : tℓ = ℓd/M,0 ≤ ℓ < M},

it follows that the RtR maps S0 and SN+1 are discretized as M×M Nyström matrices
S0

M and SN+1
M via Nyström discretizations of the boundary-integral operators featured

in Eqs. (3.19) and (3.21) respectively in the case when neither k0 nor kN+1 are Wood fre-
quencies or in Eqs. (3.20) and (3.22) respectively in the case when k0 and kN+1 are Wood
frequencies (same considerations apply in three dimensions). We note that according
to Eqs. (3.19) and (3.21) (and their analogues (3.20) and (3.22)), the calculation of the
Nyström matrices S0

M and SN+1
M require inversions of M×M matrices, which is done us-

ing LU factorizations. Similarly, the RtR maps S j,1≤ j≤N are discretized as (2M)×(2M)

Nyström matrices S j
M via Nyström discretizations of the boundary-integral operators

featured in Eqs. (3.25), and their calculations require, in turn, inversions of (2M)×(2M)
matrices; these inversions are also performed through LU factorizations. It is also pos-
sible to employ Schur complements to perform the inversion of the matrices needed in
the calculations of the RtR maps S j,1≤ j≤N — see the proof of Theorem 5.1; in that case

matrices of size M×M need be inverted. The Nyström discretization matrices S j
M are

further expressed in M×M block form

S j
M =

[
S j

j−1,j−1,M S j
j−1,j,M

S j
j,j−1,M S j

j,j,M

]
,

where each of the matrices above constitutes a Nyström discretization matrix of the op-
erators on the right-hand-side of Eq. (3.4).
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Based on these Nyström discretizations of RtR maps, the DDM algorithm computes
matrix approximations of all the RtR maps needed. Clearly, the procedure outlined above
allows us to assemble a block tridiagonal 2M(N+1)×2M(N+1) Nyström discretization
matrix AM of the operator matrix A in Eq. (3), where each operator block in Eq. (3) is
replaced by its corresponding Nyström discretization matrix. The computation of col-
located Robin data f j,M at the grids Lj for 0≤ j ≤ N requires solution of a linear system
featuring the matrix AM. We present in what follows an efficient algorithm for the solu-
tion of this system that eliminates sequentially the unknowns f j,M,0≤ j≤ N using N+1
stages of recursive Schur complements; storage of all of the non-zero blocks in the ma-
trix AM is not required by this algorithm. The key technical ingredient is that in the case
when matrices

D :=

[
I A
B I

]

are invertible, then their inverses can be computed explicitly

D−1=

[
I+A(I−BA)−1B −A(I−BA)−1

−(I−BA)−1B (I−BA)−1

]
. (4.3)

The Schur complement elimination algorithm begins with

Stage 1: Elimination of the unknowns f0,M. We express the discrete DDM system in the
following block form that separates the contribution of the Robin data f0,M from the rest
of the Robin data. In detail,

[
D0,M A0,M

B0,M C0,M

]
,

[
f0,M

f̃0,M

]
=

[
f inc
0,M

02NM,1

]
,

D0,M =

[
IM S1

0,0,M

S0
M IM

]
,

A0,M=

[S1
0,1,M 0M 0M,2(N−1)M

0M 0M 0M,2(N−1)M

]
,

B0,M =




0M 0M

0M S1
1,0,M

02(N−1)M,M 02(N−1)M,M


,

C0,M=




IM S2
1,1,M ···

S1
1,1,M IM ···
··· ··· ···


,

where f̃0,M = [ f1,M f2,M ··· fN,M]⊤. In the notations above and in what follows, we make
explicit the matrix size of various zero matrices; for instance, the notation 0p,q denotes a
zero matrix with p rows and q columns, and 0p denotes the zero p×p matrix. We have

f0,M =−D−1
0,MA0,M f̃0,M+D−1

0,M f inc
0,M,
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and hence

(C0,M−B0,MD−1
0,MA0,M) f̃0,M = f inc

1,M, f inc
1,M :=−B0,MD−1

0,M f inc
0,M,

which can be written in expanded form using formula (4.3) to compute the inverse of
D0,M:

[
D1,M A1,M

B1,M C1,M

][
f1,M

f̃1,M

]
=

[
f inc
1,M

02(N−1)M,1

]
,

f inc
1,M =−B0,MD−1

0,M f inc
0,M,

D1,M =

[
IM S2

1,1,M

S top
1,M IM

]
,

S top
1,M =S1

1,0,M(IM−S0
MS1

0,0,M)−1S0
MS1

0,1,M+S1
1,1,M,

A1,M=

[S2
1,2,M 0M 0M,2(N−2)M

0M 0M 0M,2(N−2)M

]
,

B1,M =




0M 0M

0M S2
2,1,M

02(N−2)M,M 02(N−2)M,M


,

C1,M =




IM S3
2,2,M ···

S2
2,2,M IM ···
··· ··· ···


,

where f̃1,M =[ f2,M f3,M ··· fN,M]⊤.

Stage j: elimination of the unknowns f j−1,M. Repeating the same steps outlined above
we continue the elimination process until we arrive at the following linear system

[Dj−1,M Aj−1,M

Bj−1,M Cj−1,M

][
f j−1,M

f̃ j−1,M

]
=

[
f inc

j−1,M

02(N−j+1)M,1

]
,

Dj−1,M =

[
IM S j

j−1,j−1,M

S top
j−1,M IM

]
,

Aj−1,M =

[
S j

j−1,j,M 0M 0M,2(N−j)M

0M 0M 0M,2(N−j)M

]
,

Bj−1,M =




0M 0M

0M S j
j,j−1,M

02(N−j)M,M 02(N−j)M,M


,

Cj−1,M =




IM S j+1
j,j,M ···

S j
j,j,M IM ···
··· ··· ···


,
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where f̃ j−1,M = [ f j,M f j+1,M ··· fN,M]⊤. We proceed by eliminating the unknowns f j−1,M

from the linear system above. First, we have that

f j−1,M =−D−1
j−1,M Aj−1,M f̃ j−1,M+D−1

j−1,M f inc

j−1,M

and thus

(Cj−1,M−Bj−1,MD−1
j−1,M Aj−1,M) f̃ j−1,M = f inc

j,M, f inc

j,M :=−Bj−1,MD−1
j−1,M f inc

j−1,M.

The last linear system can be in turn written in expanded form if we make use of for-
mula (4.3) to compute the inverse of Dj−1,M,

[Dj,M Aj,M

Bj,M Cj,M

][
f j,M

f̃ j,M

]
=

[
f inc
j,M

02(N−j)M,1

]
,

f inc

j,M =−Bj−1,MD−1
j−1,M f inc

j−1,M,

Dj,M =

[
IM S j+1

j,j,M

S top
j,M IM

]
,

S top
j,M =S j

j,j−1,M(IM−S top
j−1,MS j

j−1,j−1,M)−1S top
j−1,MS j

j−1,j,M+S j
j,j,M,

Aj,M =

[
S j+1

j,j+1,M 0M 0M,2(N−j−1)M

0M 0M 0M,2(N−j−1)M

]
,

Bj,M =




0M 0M

0M S j+1
j+1,j,M

02(N−j−1)M,M 02(N−j−1)M,M


,

Cj,M =




IM S j+2
j+1,j+1,M ···

S j+1
j+1,j+1,M IM ···
··· ··· ···


,

where f̃ j,M =[ f j+1,M f j+2,M ··· fN,M]⊤.
The algorithm ends with a linear system involving only the Robin data fN,M corre-

sponding to the last interface ΓN ,

[
IM SN+1

M

S top
N,M IM

]
fN,M = f inc

N,M, f inc
N,M :=−BN−1,MD−1

N−1,M f inc
N−1,M, (4.4)

which is solved using again formula (4.3) and LU factorizations. Once the discretized
Robin data fN,M is computed, all the other discretized Robin data corresponding to the
interfaces Γj,0≤ j<N are computed using backward substitution via the recursions

f j−1,M =−D−1
j−1,M Aj−1,M f̃ j−1,M+D−1

j−1,M f inc

j−1,M, 1≤ j≤N,
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where we recall that f̃ j−1,M = [ f j,M f j+1,M ··· fN,M]⊤. In order to streamline the recursions

above, we store in the elimination process the quantities D−1
j−1,M f inc

j−1,M and the non-zero

blocks of the matrices D−1
j−1,M Aj−1,M (for each index j there are only two M×M such

blocks). Thus, the storage require to perform the elimination algorithm followed by the
backward substitution process is O(2NM2).

We first note that the elimination process presented above consists of N+1 steps, each

step requiring (a) the calculation of the Nyström matrices S j
M whose cost is O(M3), as

well as (b) the inversion of a M×M matrix for the calculation of D−1
j,M per formula (4.3),

which leads to a total computational cost proportional to (N+1)M3. One drawback of
the elimination algorithm presented above is that it is sequential: essentially the Robin
data is peeled off layer by layer from the DDM linear system. We are exploring alter-
native strategies based on hierarchical RtR matrices mergings that could lead to efficient
parallelization strategies [43]. Of course, for a large numbers of layers, iterative solvers
such as GMRES could also provide an alternative strategy for the solution of the DDM
linear system. However, large numbers of layers/subdomains produce large numbers of
DDM iterations [31] if classical Robin conditions are used on subdomain interfaces.

5 Analysis of the Schur complement elimination algorithm

A natural question is why the elimination procedure described in Section 4 does not break
down. This issue has been explored in a different context in [43], where the elimination

process was shown to be equivalent to merging of RtR maps. Indeed, the matrices S top
j,M

are themselves Nyström discretization matrices of the RtR operators

S top,j(ψj) :=(γj∂nj
u+iη u)|Γj

, (5.1)

where u is the solution of the following well posed problem:

∆u+k(x)2u=0 in ∪j
ℓ=0Ωℓ,

k(x)= kℓ , x∈Ωℓ, 0≤ l≤ j,

γj∂nj
u+iηu=ψj on Γj,

with (i) u and γℓ∂nℓ
u continuous across Γℓ for 0≤ l < j; and (ii) u radiating in Ω0. Thus,

the recurrence formula

S top
j,M =S j

j,j−1,M(IM−S top
j−1,MS j

j−1,j−1,M)−1S top
j−1,MS j

j−1,j,M+S j
j,j,M for 1≤ j, (5.2)

where S top
0,M :=S0

M, can be viewed as a means to compute Nyström discretization of the

RtR map S top,j defined in Eq. (5.1) via recursive merging of the Nyström discretization
matrices of the RtR maps S ℓ. We will establish in this section the invertibility of the

operators I−S top
j−1S

j
j−1,j−1 in appropriate functional spaces.
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The matrices IM−S top
j−1,MS j

j−1,j−1,M in (5.2) are high-order Nyström discretizations of

the operators I−S top
j−1S

j
j−1,j−1. As such, the invertibility of the former matrices is a con-

sequence of the invertibility of the latter operators owing to the fact that S top
j−1,M and

S j
j−1,j−1,M can be shown to converge in strong operator norms to S top

j−1 and S j
j−1,j−1 as

M→∞ [20].
We start by analyzing the invertibility of the operators I−S0S1

0,0, on which hinges
Stage 1 of the elimination algorithm. We will make use of the quasi-periodic Sobolev
spaces Hs

per(Γ) of α-quasi-periodic distributions defined on a generic interface Γ that is
the graph of a periodic function of period d. These spaces can be defined in terms of
Fourier series. We use the mapping properties of boundary-integral operators associ-
ated with quasi-periodic Green functions G

q
k and shifted quasi-periodic Green functions

G
q,j
k,h. Since both of these functions have the same singularity as the free space Green

function Gk corresponding to the same wavenumber k, the mapping properties of the
boundary-integral operators associated with quasi-periodic Green functions can be eas-
ily derived by simply translating to the periodic setting the classical mapping properties
of boundary-integral operators whose domain of integration is a closed curve in R2. The
invertibility of the operator I−S0S1

0,0 is established via Fredholm arguments, and it relies

on the explicit representations of the operators S0 and S1 derived in Eqs. (3.19) and (3.25)
in the case when neither k0 nor k1 are Wood frequencies. In the cases when k0 or k1

are Wood frequencies, representations (3.20) and that given in Theorem 3.5 ought to be
used. Nevertheless, given that the shifted quasi-periodic Green functions have the same
singularities as the quasi-periodic Green functions, in the computational domains under
considerations, the arguments in the proof of the result below essentially do not change
in the Wood-frequency case. In what follows, we suppose that (1) kj < kj+1 for all j and
(2) γj=1 for all j (we will show in Appendix A that these two assumptions guarantee the
well-posedness of the transmission problem under consideration). We establish

Theorem 5.1. The operator I−S0S1
0,0 : H−1/2

per (Γ0)→H1/2
per (Γ0) is Fredholm of index 0 under the

assumption that Γ0 is C2.

Proof. Let us assume that k0 is not a Wood frequency. We first establish that, given the
representation

S0= I+2Z0S
q
Γ0,k0

(
1

2
I+(K

q
Γ0,k0

)⊤−Z0S
q
Γ0,k0

)−1

,

the operator S0 can be expressed in the form

S0= I+4Z0S
q
Γ0,k0+iε0

+T0, T0 : H−1/2
per (Γ0)→H3/2

per (Γ0), ε0>0, Z0= iη. (5.3)

The decomposition in Eq. (5.3) can be achieved if we choose the operator T0 in the fol-
lowing manner:

T0=4Z0

(
S

q
Γ0,k0

−S
q
Γ0,k0+iε0

)
+8Z0S

q
Γ0,k0

(
1

2
I+2(K

q
Γ0,k0

)⊤−2Z0S
q
Γ0,k0

)−1(
(K

q
Γ0,k0

)⊤−Z0S
q
Γ0,k0

)
.
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Now, given that

S
q
Γ0,k0

−SΓ0,k0+iε0
: H−1/2

per (Γ0)→H3/2
per (Γ0), S

q
Γ0,k0

: Hs
per(Γ0)→Hs+1

per (Γ0) for −1/2≤s≤1,

and
(K

q
Γ0,k0

)⊤ : Hs
per(Γ0)→Hs+2

per (Γ0) for −1/2≤ s≤0,

it follows that T0 : H−1/2
per (Γ0)→H3/2

per (Γ0). The role of the complex wavenumber k0+iε0 in
the definition of the quasi-periodic single-layer operators in Eq. (5.3) will be made clear
in what follows.

We establish next a decomposition of the operator S1
0,0 similar in spirit to that in

Eq. (5.3). To this end, we revisit representation (3.25), valid for a general periodic layer
and a wavenumber k that is not a Wood frequency. Let us define

A :=

[
(1/2)I+(K

q
k,t,t)

⊤+ZS
q
k,t,t (K

q
k,b,t)

⊤+ZS
q
k,b,t

(K
q
k,t,b)

⊤+ZS
q
k,t,b (1/2)I+(K

q
k,b,b)

⊤+ZS
q
k,b,b

]
=

[
At,t At,b

Ab,t Ab,b

]
.

We have

A−1=

[A−1
t,t +A−1

t,t At,bDAb,tA−1
t,t −A−1

t,t Atb
D

−DAb,tA−1
t,t D

]
=

[
Ãt,t Ãt,b

Ãb,t Ãb,b

]
,

where
D=(Ab,b−Ab,tA−1

t,t At,b)
−1.

The invertibility of the operator At,t needed in formulas above can be established simi-
larly to the result in Theorem 3.3. The invertibility of the operator D, in turn, can be seen
to be equivalent to the invertibility of the matrix operator A. Given that the kernels of
the boundary-integral operators that enter in the definition of At,b and Ab,t are regular,
we have At,b : Hs

per(Γt)→Hs+2
per (Γb) and Ab,t : Hs

per(Γb)→Hs+2
per (Γt). Since

S=

[
I 0
0 I

]
+2Z

[
S

q
k,t,t S

q
k,b,t

S
q
k,t,b S

q
k,b,b

]
A−1=

[St,t St,b

Sb,t Sb,b

]
,

we have

St,t= I+2ZS
q
k,t,tÃt,t+2ZS

q
k,b,tÃb,t= I+4ZS

q
k0+iε0,t,t+S̃t,t, (5.4)

S̃t,t : H−1/2
per (Γt)→H3/2

per (Γt), (5.5)

taking into account the fact that S
q
k,b,t : Hs

per(Γb)→Hs+2
per (Γt). In addition, we obtain

Sb,b= I+2ZS
q
k,t,bÃt,b+2ZS

q
k,b,bÃb,b= I+4ZS

q
k0+iε0,b,b+S̃b,b, (5.6)

S̃b,b : H−1/2
per (Γb)→H3/2

per (Γb) (5.7)
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as well as the following smoothing properties of the cross operators St,b and Sb,t,

St,b : H−1/2
per (Γt)→H3/2

per (Γb), Sb,t : H−1/2
per (Γb)→H3/2

per (Γt). (5.8)

Combining the results in (5.3) and (5.4), we obtain

I−S0S1
0,0=−8Z0S

q
Γ0,k0+iε0

+T0,1, T0,1 : H−1/2
per (Γ0)→H3/2

per (Γ0).

Classical arguments [6] can be adapted to the periodic setting to establish

ℑ(Sq
Γ0 ,k0+iε0

ϕ,ϕ)≥ c0‖ϕ‖2
H−1/2

per (Γ0)
, c0>0,

from which we obtain

ℜ(−8Z0S
q
Γ0,k0+iε0

ϕ,ϕ)≥8ηc0‖ϕ‖2
H−1/2

per (Γ0)
, c0>0, η>0.

Finally, given that T0,1:H−1/2
per (Γ0)→H3/2

per (Γ0), it follows that the operator T0,1:H−1/2
per (Γ0)→

H1/2
per (Γ0) is compact, and thus the operator I−S0S1

0,0 : H−1/2
per (Γ0)→H1/2

per (Γ0) can be seen
to satisfy a Gårding inequality. The result of the Theorem is thus established. The case
when k0 and/or k1 are Wood frequencies can be treated similarly.

We are now in the position to prove

Theorem 5.2. The operator I−S0S1
0,0 : H−1/2

per (Γ0)→ H1/2
per (Γ0) is invertible with continuous

inverse.

Proof. Owing to the Fredholm alternative, the theorem follows once we establish the in-
jectivity of the operator I−S0S1

0,0. Let ϕ ∈ Ker(I−S0S1
0,0) and consider the following

α-quasi-periodic Helmholtz equation

∆w1+k2
1w1=0 in Ω

per
1 ,

∂n1
w1−Z0w1= ϕ on Γ0,

∂n1
w1−Z0w1=0 on Γ1,

where Z0= iη. Then
S1

0,0 ϕ=(∂n1
w1+Z0w1)|Γ0

.

Consider also the α-quasi-periodic Helmholtz equation

∆w0+k2
0w0=0 in Ω0,

∂n0 w0−Z0w0=S1
0,0ϕ on Γ0,

with w0 radiating. Then using the fact that S0S1
0,0ϕ= ϕ on Γ0, we obtain

S0S1
0,0 ϕ=∂n0w0+Z0w0=∂n1

w1−Z0w1 on Γ0.
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Thus, we have derived the following system of equations on Γ0

∂n0 w0−Z0w0=∂n1
w1+Z0w1,

∂n0 w0+Z0w0=∂n1
w1−Z0w1,

from which we obtain

w0|Γ0
=−w1|Γ0

, ∂n0 w0|Γ0
=∂n1

w1|Γ0
. (5.9)

Recall from the proof of Theorem 3.1 the following identity for w0:

lim
h→∞

∫

Ω
per
0,h

(|∇w0|2−k2
0|w0|2)dx=

∫

Γ0

∂n0 w0w0ds+id ∑
r∈Z,β0,r>0

β0,r|C+
r |2.

On the other hand,

∫

Ω
per
1

(|∇w1|2−k2
1|w1|2)dx=

∫

Γ0

∂n1
w1w1ds+iη

∫

Γ1

|w1|2ds.

Adding the last two identities and taking into account Eq. (5.9), we derive

lim
h→∞

∫

Ω
per
0,h

(|∇w0|2−k2
0|w0|2)dx+

∫

Ω
per
1

(|∇w1|2−k2
1|w1|2)dx

= id ∑
r∈Z,β0,r>0

β0,r |C+
r |2+iη

∫

Γ1

|w1|2ds.

This implies that w1 = 0 on Γ1, and hence w1 = 0 in Ω1 by Holmgren’s theorem [26].
Using (5.9) again we obtain that w0 =0 and ∂n0 w0 =0 on Γ0, which, in turn, implies that
w0=0 in Ω0. From this we finally conclude that ϕ=0 on Γ0.

As a consequence of the results in Theorem 5.1 and Theorem 5.2 we obtain

Corollary 5.1. The operator S top
1 defined in Eq. (5.1) can be expressed in the form

S top
1 = I+4Z0S

q
Γ1,k1+iε1

+T1, T1 : H−1/2
per (Γ1)→H3/2

per (Γ1), ε1>0.

Proof. Consider the following Helmholtz scattering problem with Robin boundary con-
ditions on Γ1: Find α-quasi-periodic solutions u0 and u1 such that

∆u0+k2
0u=0 in Ω0,

∆u1+k2
1u1=0 in Ω1,

u0=u1 on Γ0,
∂n0 u0=−∂n1

u1 on Γ0,
γ1∂n1

u+iηu1=ψ1 on Γ1,
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and u0 is radiating in Ω0. The arguments in the proof of Theorem 5.2 can be applied
to show the well-posedness of the this problem. Reformulating it in terms of matching
Robin data on Γ0 and applying the same arguments as in Section 4 but at the operator
(continuous) level, we obtain

S top
1 =S1

1,0(I−S0S1
0,0)

−1S0S1
0,1+S1

1,1.

Using the representation above together with the properties recounted in Eqs. (5.6) and
(5.6) with Γt=Γ0, Γb=Γ1, and Z=Z0= iη, the result follows.

The procedure presented above can be repeated inductively at the operator level, and

can be viewed as means to recursively merge the RtR operators S top
j−1 and S j in order to

obtain the RtR operator S top
j according to the formula

S top
j =S j

j,j−1(I−S top
j−1S

j
j−1,j−1)

−1S top
j−1S

j
j−1,j+S j

j,j, 2≤ j. (5.10)

Eq. (5.10) constitutes the continuous analogue of Eq. (5.2). The invertibility of the opera-

tors I−S top
j−1S

j
j−1,j−1 for 2≤ j≤N can be established similarly to the results in Theorem 5.1

and Theorem 5.2 using the link in Corollary 5.1. Indeed, it is straightforward to establish
by induction that

S top
j−1= I+4Z0S

q
Γj−1,k1+iε j−1

+Tj−1, Tj−1 : H−1/2
per (Γj−1)→H3/2

per (Γj−1), ε j−1>0, 3≤ j≤N.

We note that this latter representation suffices to establish the Fredholm property of the

operator I−S top
j−1S

j
j−1,j−1 for all j : 3≤ j≤N; see Theorem 5.1. The arguments in the proof

of Theorem 5.2 also translate almost verbatim to obtain the invertibility of the operators

I−S top
j−1S

j
j−1,j−1 for all j : 3≤ j≤N. It is the very last step in the algorithm when we merge

S top
N and SN+1 that is markedly different on account of the fact that the layer ΩN+1 is

semi-infinite and thus the arguments in the proof of Theorem 5.2 have to be modified
according to those in Theorem A.1 in Appendix A.

Theorem 5.3. The operator I−S top
N SN+1:H−1/2

per (ΓN)→H1/2
per (ΓN) is invertible with continuous

inverse.

Proof. Note that the Fredholm property of the operator I−S top
N SN+1 essentially follows

via the same arguments as in Theorem 5.1. Owing to the Fredholm alternative, the result

follows once we establish the injectivity of the operator I−S top
N SN+1. Let ϕ ∈ Ker(I−

S top
N SN+1) and consider the following α-quasi-periodic Helmholtz equation

∆wN+1+k2
N+1wN+1=0 in Ω

per
N+1,

∂nN+1
wN+1−Z0wN+1= ϕ on ΓN
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with wN+1 radiating in ΩN+1 and Z0= iη. Then

SN+1ϕ=(∂nN+1
wN+1+Z0wN+1)|ΓN

.

Consider also the following α-quasi-periodic Helmholtz equation

∆w+k(x)2w=0 in ∪N
ℓ=0Ωℓ,

k(x)= kℓ in Ωℓ,
∂nN

w−Z0w=SN+1ϕ on ΓN,

where w and ∂nℓ
w are continuous across the interfaces Γℓ for 0≤ ℓ≤N−1 and w is radi-

ating in the domain Ω0. We have then

S top
N SN+1ϕ=∂nN

w+Z0w=∂nN+1
wN+1−Z0wN+1 on ΓN

using the fact that S top
N SN+1ϕ= ϕ on ΓN . Thus

w|ΓN
=−wN+1|ΓN

, ∂nN
w|ΓN

=∂nN+1
wN+1|ΓN

. (5.11)

Applying Green’s identities in each domain Ω
per
j for 0≤ j≤N+1 and taking into account

the continuity conditions (5.11) together with the continuity of w and its normal deriva-
tives across interfaces Γj, 0≤ j ≤ N−1, we obtain that C+

r = 0 for all indices r such that
β0,r > 0 and C−

r = 0 for all indices r such that βN+1,r > 0. The proof of the Theorem fol-
lows by applying analogous arguments as in the proof of Theorem A.1 to ∂x2 w (which is
continuous across the interfaces Γj for 0≤ j≤N−1) and −∂x2 wN+1.

We presented in this section an explanation of the fact that the Schur complement
elimination process described in Section 4 does not break down. Incidentally, we ob-
tain as a byproduct of the results in this section a proof of the equivalence between the
scattering PDE problem (2.1) and its DDM formulation (3.7) under the assumption that
the former is well posed. According to the Fredholm results established in Theorem 5.1
and Theorem 5.3, the DDM formulation (3.7) requires inversions of operators that are
compact perturbations of single layer boundary integral operators. As such, the DDM
formulation (3.7) is not particularly suitable to Krylov subspace linear algebra solvers,
especially for configurations that involve large numbers of layers. It is possible to derive
DDM formulations that are more amenable to Krylov subspace linear algebra solvers if
more general transmission operators are used instead of the multiplicative factors iη in
the Robin conditions [7]. We are investigating such an approach in the context of periodic
layered media.

6 Numerical results

We present a variety of numerical results regarding transmission scattering problems in
periodic layered media. In all cases we assume that all the coefficients γj that appear in
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Eqs. (2.1) are equal to 1, and all the numerical results presented are at normal incidence.
Qualitatively similar results are obtained in the case of general γj and oblique incidence.
We present two error indicators, one concerning the energy balance and one concerning
errors in the Rayleigh coefficient B+

0 in expansion (2.2). The energy conservation defect
is defined as

εen=

∣∣∣∣∣ ∑
r∈U+

β0,r

β0
|C+

r |2+ ∑
r∈U−

βN+1,r

β0
|C−

r |2−1

∣∣∣∣∣, (6.1)

where U+ :={r∈Z : β0,r ≥0} and U− :={r∈Z : βN+1,r ≥0}. In all the numerical tests pre-
sented in this section, the energy conservation defect turned out to be indicative of the
errors achieved in the Rayleigh coefficients of the scattered/transmitted fields. We also
denote by ε1 the relative error achieved in the Rayleigh coefficient C+

0 , measured against
a reference solution that was produced with refined discretizations and large enough val-
ues of the parameter A in the windowed quasi-periodic functions (4.1) and (4.2) respec-
tively. This parameter is chosen to be large enough so that very small energy conservation
defects were achieved. We do not know of a theoretical way to determine the parameter
A in the various layers that optimizes the balance between accuracy and efficiency. In
practice, this parameter is selected using information gathered from numerical experi-
ments. Particularly, we choose values of A large enough so that the RtR discretizations

S j
M have norms as close to 1 as possible.

At the heart of our DDM algorithm are computations of RtR maps, which rely on eval-
uations of boundary-integral operators involving quasi-periodic Green functions. The
quasi-periodic functions are approximated via windowing functions cf. (4.1) and (4.2).
We discuss the selection of various parameters that enter the definition of the windowed
Green function defined in Eq. (4.1) and the shifted windowed Green function defined in
Eq. (4.2). In cases when the wavenumbers kℓ are not Wood frequencies we had to choose

only the parameter A in the definition of the windowed Green function G
q,A
kℓ

defined in

Eq. (4.1); the windowed Green function G
q,A
kℓ

converge superalgebraically to the quasi-

periodic Green function G
q
kℓ

as A→∞ [16]. On the other hand, in cases when kℓ is a Wood

frequency, we had to select two additional parameters in the definition of G
q,j,A
kℓ,hℓ

(4.2): the
number j of shifts and the value of the shift hℓ. The rate of convergence of the Green func-

tions G
q,j,A
kℓ,hℓ

is algebraic in ℓ as A→∞ [10]. Naively, the cost of evaluating G
q,j,A
kℓ,hℓ

is j+1

times more expensive than that of evaluating G
q,A
kℓ

for a fixed value of A. However, the

quantities G
q,j,A
kℓ,hℓ

can be evaluated at considerably reduced costs via accurate asymptotic
expansions [10]. The values of the shifts hℓ should be such that the poles of the Green

function G
q,j,A
kℓ,hℓ

are outside the computational domain Ωℓ; this requirement entails that
h0>0 and hN+1<0, whereas the shifts hℓ,1≤ℓ≤N should be positive and larger than the
width of the corresponding layer domain Ωℓ measured in the x2 direction. In addition
to these requirements on the shifts hℓ, there are discrete sets of values of the shifts for

which the shifted Green functions G
q,j,A
kℓ,hℓ

do not converge, and those sets can be explicitly
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computed [10]. Indeed, as explained in the proof of Theorem 3.4, in the domain Ωℓ the
forbidden set of shifts consists of values hℓ such that eiβrhℓ =1 for an index r∈Uℓ, where
Uℓ is the set of propagating modes corresponding to the wavenumber hℓ. In practice it is
straightforward to choose the shifts so that all the requirements specified above are met.
Of course, one can use a fixed number of shifts in the shifted Green function for all layers
at all frequencies, and this is guaranteed to work as long as the discrete set of shifts h
is avoided. This set is easy to compute for a given structure. If one wishes to optimize
the computational performance, the Wood frequencies for each layer can be computed a
priori to decide whether the shifted Green function or simply the smoothly windowed
one should be used.

After selection of the parameters that enter the various windowed Green functions,
the DDM algorithm is implemented according to its description in Section 4. We detail in
all the numerical experiments the size M of the discretization points used to approximate
each Robin data f j. The DDM linear system consists of 2(N+1)M unknowns. We men-
tion that it is also possible to use non-conforming discretizations of Robin data, that is to
use different Mj for each layer Ωj; the values of Mj are chosen to resolve the wavenum-
bers kj as well as the profiles Γj [7]–see Table 8. The Schur complement elimination al-
gorithm described in Section 4 allows for solution of large DDM linear systems using
only limited memory storage. For instance, the numerical experiments in Table 9 and
Table 14 involving DDM linear systems with 81920 and respectively 163840 unknowns
were run on a MacBookPro machine with 8Gb of memory. An important drawback of
the elimination algorithm described in Section 4 is its sequential nature.

We organize the presentation of the numerical experiments into four categories. First
we treat the case of one interface Γ0 which is important in its own right for several ap-
plications; then we present results for large numbers of layers; we continue with results
involving periodic layers that contain periodic inclusions, as such configurations are rel-
evant to photonics applications; and we conclude with three-dimensional results. We
emphasize Wood frequencies to demonstrate the versatility of the shifted Green function
method, as such cases are computationally more challenging. We indicate in the headings

of each table whether the windowed Green function G
q,A
k or the shifted Green function

G
q,j,A
k,h were used in the numerical experiments.

Results for periodic transmission problems with one grating interface. We start with an
illustration in Table 1 of the high-order accuracy that can be achieved by the DDM solver
in the case of one periodic interface/grating Γ0 given by the graph of the 2π periodic
function x2 = H/2cosx1 for two values of the height H = 0.6 and H = 2; in this example
we took k0 = 4.1 and k1 = 16.1 and thus the period of the interface Γ0 is respectively 4.1
and 16.1 wavelength across.

We continue in Table 2 and Table 3 with numerical results concerning the convergence
of the DDM algorithm in the case of one grating profile Γ0 given by the graph of the 2π
periodic function x2 = H/2cosx1, H = 0.6 for two values of the wavenumbers k0 and k1

that are simultaneously Wood frequencies. In Table 2 we consider medium frequencies
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Table 1: Convergence of the DDM transmission solver in the case of one interface of material discontinuity Γ0
given by the grating profile x2=H/2cosx1 under normal incidence, with wavenumbers k0=4.1 and k1=16.1, and
M=64. The reference solutions were computed using (1) A=240 in the case H=0.6 — with a corresponding
εen =5.9×10−9 and A=400 in the case H=2 — with a corresponding εen =3.5×10−8, and M=128 in both
cases.

G
q,A
kℓ

, k0 =4.1, k1 =16.1, H=0.6 G
q,A
kℓ

, k0 =4.1, k1=16.1, H=2

A εen ε1 A εen ε1

20 2.4 × 10−5 3.4 × 10−6 40 3.5 × 10−4 8.1 × 10−5

40 3.0 × 10−7 1.2 × 10−7 120 5.6 × 10−5 8.2 × 10−6

80 6.1 × 10−8 1.9 × 10−8 240 8.4 × 10−7 2.0 × 10−6

Table 2: Convergence of the DDM transmission solver in the case of one interface of material discontinuity
Γ0 given by the grating profile x2 = H/2cosx1, H = 0.6, under normal incidence, with k0 = 8 and k1 = 32,
and M= 128. In this case both wavenumbers k0 and k1 are Wood frequencies. The reference solutions were
computed using A=240, j=5 and shifts h0 =−h1 =1.3 with a corresponding εen=1.6×10−11.

G
q,j,A
kℓ,h

, j=3, h0 =−h1=1.3, k0 =8, k1 =32, H=0.6 G
q,j,A
kℓ,h

, j=5, h0 =−h1=1.3, k0=8, k1=32, H=0.6

A εen ε1 A εen ε1

20 1.5 × 10−3 5.7 × 10−4 20 7.9 × 10−4 5.1 × 10−4

40 7.4 × 10−4 1.2 × 10−4 40 1.5 × 10−4 7.5 × 10−5

80 1.3 × 10−4 2.2 × 10−5 80 3.0 × 10−6 1.3 × 10−5

120 4.1 × 10−5 7.2 × 10−6 120 9.7 × 10−8 1.5 × 10−6

Table 3: Convergence of the DDM transmission solver in the case of one interface of material discontinuity Γ0
given by the grating profile x2=H/2cosx1, H=0.6, under normal incidence, with higher frequency wavenumbers
k0=15 and k1=60, and M=256. In this case both wavenumbers k0 and k1 are Wood frequencies. The reference
solutions were computed using A=240, j=5, h0=−h1=0.3, and M=256 with a corresponding εen=2.2×10−10.

G
q,j,A
kℓ,h

, j=3, h0 =−h1=0.3, k0 =15, k1 =60, H=0.6 G
q,j,A
kℓ,h

, j=5, h0 =−h1=0.3, k0=15, k1 =60, H=0.6

A εen ε1 A εen ε1

20 4.8 × 10−4 4.6 × 10−5 20 1.3 × 10−5 2.7 × 10−5

40 5.0 × 10−5 8.0 × 10−6 40 3.0 × 10−7 2.1 × 10−6

80 5.5 × 10−6 1.3 × 10−6 80 2.8 × 10−8 1.6 × 10−7

Table 4: Convergence of the DDM transmission solver in the case of one interface of material discontinuity Γ0
given by the grating profile x2 = H/2cosx1, H = 2, normal incidence, with k0 = 4 and k1 = 16, and M = 192.
In this case both wavenumbers k0 and k1 are Wood frequencies. The reference solutions were computed using
A=240, j=5, h0 =−h1=0.21, and M=256 with a corresponding εen=2.2×10−10.

G
q,j,A
kℓ,h

, j=3, h0 =−h1=0.21, k0=4, k1 =16, H=2 G
q,j,A
kℓ,h

, j=5, h0 =−h1=0.21, k0 =4, k1 =16, H=2

A εen ε1 A εen ε1

20 1.7 × 10−4 3.0 × 10−5 20 3.1 × 10−6 2.8 × 10−6

40 2.5 × 10−5 5.1 × 10−6 40 1.5 × 10−7 2.4 × 10−7

80 3.6 × 10−6 9.3 × 10−7 80 1.4 × 10−8 2.0 × 10−8
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— the set U+ :={r∈Z : β0,r ≥0} consists of 17 propagating modes and the set U− :={r∈
Z : βN+1,r ≥0} consists of 65 propagating modes; in Table 3 higher frequencies — the set
U+ :={r∈Z:β0,r≥0} consists of 31 propagating modes and the set U− :={r∈Z:βN+1,r≥0}
consists of 121 propagating modes. In the configuration in Table 2 the period of the
interface Γ0 is 8 and 32 wavelengths across on each side, whereas in the configuration in
Table 3 the period of the interface Γ0 is 15 and 60 wavelengths across on each side.

In Table 4 we present results concerning a deep grating profile Γ0 given by the graph
of the 2π periodic function x2 = H/2cosx1, H= 2 for two values of the wavenumbers k0

and k1 that are simultaneously Wood frequencies, that is k0 =4 and k1 =16. We note that
high-accuracy results can be achieved in this case by increasing the size of discretization.

We conclude the numerical results in this part with a case in Table 5 with a transmis-
sion experiment involving one interface of material discontinuity Γ0 and two wavenum-
bers such that one of them is not a Wood frequency while the other is a Wood frequency.

Multiple layers. The next set of results concern transmission experiments involving
multiple periodic layers. In the example that follows we consider the first profile Γ0 de-
scribed by (a) x2=F0(x1), F0(x1):=H/2cosx1 and (b) x2=F0(x1), F0(x1):=π H(0.4cos(x1)−
0.2cos(2x1)+0.4cos(3x1)) and the subsequent profiles Γℓ being simple down shifted ver-
sions of the first profile, that is the grating Γℓ is given by x2 = Fℓ(x1),Fℓ(x1) :=−ℓL+
F0(x1),0≤ ℓ≤N. The first set of results in Table 6 concerns the convergence of the DDM
transmission solver in layered configurations consisting of 4 layers (that is N = 2) sepa-
rated by interfaces Γℓ,0≤ ℓ≤2, when each wavenumber kℓ,0≤ ℓ≤3 is a Wood frequency.

In the next set of results in Table 7 we present numerical experiments concerning
periodic configurations that involve large numbers of layers (i.e 10, 20, and 40 layers) and
associated wavenumbers that are all Wood frequencies. We used shifted Green functions
with a number j= 3 of shifts, as this choice leads to small energy conservation defects.
In the examples presented in Table 7, the interface Γj is j+1 wavelengths across, leading
thus to problems that overall are 55, 210, and respectively 820 wavelengths in size.

In applications that involve high-contrast layer media, using non-conforming DDM
discretizations leads to more efficient solvers. We present experiments in Table 8 con-
cerning configurations consisting of layers with alternating high-contrast material prop-
erties. In such settings it is natural to use coarser discretizations to compute the RtR maps
corresponding to layers with smaller wavenumbers as well as restriction/interpolation
Fourier matrices to match non-conforming interface Robin data.

In the last set of results in this part we present in Table 9 numerical experiments con-
cerning very large numbers of layers and associated wavenumbers that are not Wood
frequencies. In such cases, the Schur complement elimination algorithm for the solution
of the DDM algorithm reduces the memory requirements via the forward/backward do-
main sweep. In the examples presented in Table 9, the interface Γj is approximately j+1
wavelengths across, leading thus to problems that overall are about 820 and respectively
3240 wavelengths in size. We mention that all the matrices Dj,M (see Section 4) that need
be inverted in the Schur complement solution of the problems presented in Table 9 are
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Table 5: Convergence of the DDM transmission solver in the case of one interface of material discontinuity Γ0
given by the grating profile x2 = H/2cosx1, H=0.6, normal incidence, with k0 =4.1 and k1 =16, and M=64.
In this case k0 is not a Wood frequency and k1 is a Wood frequencies. The reference solutions were computed
using A=240, j=5, h0 =−h1=0.3, and M=128 with a corresponding εen =1.7×10−9.

G
q,A
k0

, G
q,j,A
k1,h , j=3, G

q,AA
k0

, G
q,j,A
k1,h , j=5,

h0 =−h1=0.3, k0=4.1, k1 =16, H=0.6 h0 =−h1=0.3, k0 =4.1, k1=16, H=0.6

A εen ε1 A εen ε1

20 1.3 × 10−3 5.4 × 10−4 20 5.8 × 10−6 3.4 × 10−6

40 4.4 × 10−4 9.8 × 10−5 40 2.1 × 10−7 2.2 × 10−7

80 8.6 × 10−5 1.7 × 10−5 80 2.0 × 10−8 2.3 × 10−8

Table 6: Convergence of the DDM transmission solver in the case of a periodic configuration consisting of 4
layers (that is N=2), where the interfaces Γℓ, 0≤ℓ≤2 are given by grating profiles Fℓ(x1)=−ℓL+H/2cosx1,
H=0.6, L=1.3, 0≤ℓ≤2—top panel and Fℓ(x1)=−ℓL+π H(0.4cos(x1)−0.2cos(2x1)+0.4cos(3x1)), H=0.1,
L=1.3—bottom panel, under normal incidence, with kℓ=ℓ+1 for 0≤ℓ≤3, and M=64. All of the wavenumbers
kℓ are Wood frequencies. The shifts were chosen h0=0.3, h1=h2=2.7, and h3=−0.3. The reference solutions
were computed using A=120, j=5, and M=128 with a corresponding εen=2.6×10−6 (top) and A=120, j=5,

and M=128 with a corresponding εen=2.9×10−6 (bottom).

G
q,j,A
kℓ,hℓ

, j=3 G
q,j,A
kℓ,hℓ

, j=5

A εen ε1 A εen ε1

20 7.0 × 10−1 7.2 × 10−2 20 7.0 × 10−2 7.2 × 10−2

40 8.7 × 10−4 1.0 × 10−3 40 8.5 × 10−4 1.1 × 10−3

80 1.0 × 10−4 7.2 × 10−5 80 2.7 × 10−5 3.1 × 10−5

20 9.3 × 10−1 2.4 × 10−2 20 9.4 × 10−1 2.4 × 10−2

40 2.6 × 10−3 1.4 × 10−3 40 2.7 × 10−3 1.5 × 10−3

80 1.9 × 10−4 1.6 × 10−4 80 1.9 × 10−6 7.3 × 10−5

Table 7: Energy defect errors produced by the DDM transmission solver for configurations consisting of N+
2 layers for various values of N, where the interfaces Γℓ, 0 ≤ ℓ≤ N are given by grating profiles Fℓ(x1) =
−ℓL+H/2cosx1, H=0.6, L=1.3, 0≤ ℓ≤ N (top panel) and Fℓ(x1)=−ℓL+π H(0.4cos(x1)−0.2cos(2x1)+
0.4cos(3x1)), H=0.1, L=1.3, 0≤ℓ≤N (bottom panel), under normal incidence, with kℓ=ℓ+1 for 0≤ℓ≤N+1,
and various values of the discretization size M. All of the wavenumbers kℓ are Wood frequencies. The shifts
were chosen h0 =0.3, hℓ=2.7, 1≤ ℓ≤ N, and hN+1 =−0.3. The discrete DDM linear system has in each case
1280, 5120, and respectively 15360 unknowns and is solved via the Schur complement elimination procedure.

G
q,3,A
kℓ,hℓ

, N=9 G
q,3,A
kℓ,hℓ

, N=19 G
q,3,A
kℓ,hℓ

, N=39

A M εen A M εen A M εen

40 64 4.1 × 10−3 40 128 3.6 × 10−3 40 192 5.8 × 10−3

80 64 1.2 × 10−3 80 128 8.2 × 10−4 80 192 1.9 × 10−3

80 128 1.3 × 10−3 80 192 7.6 × 10−2 80 256 4.7 × 10−2

120 128 2.9 × 10−4 120 192 3.1 × 10−4 120 256 4.3 × 10−4
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Table 8: Energy defect errors produced by the DDM transmission solver for configurations consisting of N+2
layers for various values of N, where the interfaces Γℓ, 0≤ ℓ≤ N are given by grating profiles Fℓ(x1)=−ℓL+
H/2cosx1, H=2, L=0.3, 0≤ℓ≤N (top panel) and Fℓ(x1)=−ℓL+π H(0.4cos(x1)−0.2cos(2x1)+0.4cos(3x1)),
H=1, L=0.3, 0≤ℓ≤N (bottom panel), under normal incidence, with kℓ=4.2 for ℓ even and kℓ=16.2 for ℓ odd,
and various values of the non-conformal interface discretization size M1 and M2. For the numerical experiments
presented in the top panel the discrete DDM linear system has in each case 1440, 2880, and respectively 5760
unknowns for the coarser discretizations and respectively 1920, 3840 and 7680 for the finer discretizations. For
the numerical experiments presented in the top panel the discrete DDM linear system has in each case 2560,
5120, and respectively 10240 unknowns for the coarser discretizations and respectively 3520, 7040 and 14080 for
the finer discretizations. In each case the DDM linear system is solved via the Schur complement elimination
procedure.

G
q,A
kℓ

, N=9 G
q,A
kℓ

, N=19 G
q,A
kℓ

, N=39

A M1/M2 εen A M1,M2 εen A M1,M2 εen

30 48/96 1.0 × 10−2 30 48/96 1.8 × 10−2 30 48/96 1.6 × 10−2

30 64/128 1.8 × 10−3 30 64/128 1.6 × 10−3 30 64/128 2.0 × 10−3

30 64/192 1.1 × 10−1 30 64/192 4.1 × 10−1 30 64/192 3.9 × 10−1

30 96/256 1.5 × 10−3 30 96/256 8.0 × 10−3 30 96/256 8.1 × 10−3

Table 9: Convergence of the DDM transmission solver for configuration consisting of N+2 layers for various
values of N, where the interfaces Γℓ, 0≤ ℓ≤ N are given by grating profiles Fℓ(x1)=−ℓL+H/2cosx1, H=2,
L=0.3, 0≤ℓ≤N (top panel) and Fℓ(x1)=−ℓL+π H(0.4cos(x1)−0.2cos(2x1)+0.4cos(3x1)), H=1, L=0.3,
0≤ ℓ≤ N (bottom panel), under normal incidence, with kℓ = ℓ+1.2 for 0≤ ℓ≤ N+1, and various values of
the discretization M. None of the wavenumbers are Wood frequencies. In the case N= 39 we used M= 256
resulting in a discrete DDM linear system with 20480 unknowns; in the case N=79 we used M=512 resulting
in a discrete DDM linear system with 81920 unknowns. The large sized DDM systems are solved via the Schur
complement elimination procedure.

G
q,A
kℓ

, N=39, kℓ= ℓ+1.2, 0≤ ℓ≤40 G
q,A
kℓ

, N=79, kℓ= ℓ+1.2, 0≤ ℓ≤80

A εen A εen

20 5.4 × 10−2 20 5.5 × 10−1

40 1.3 × 10−3 40 2.3 × 10−3

80 2.1 × 10−4 80 4.5 × 10−4

20 6.1 × 10−2 20 7.1 × 10−1

40 1.1 × 10−3 40 1.0 × 10−2

80 9.8 × 10−5 80 2.4 × 10−3

well conditioned, with condition numbers in the interval [19,400]; also, the condition
numbers of the matrices Dj,M grow with the layer index j. However, the condition num-
bers of the matrices Dj,M grow with the size M of the discretization cf. Theorem 5.1
and Theorem 5.3, yet not drastically. On the other hand, if the solution of the DDM corre-
sponding to transmission problems with N=9,19,29 layers and wavenumbers kℓ=ℓ+1.2,
0≤ ℓ≤ N+1 were attempted via iterative solvers, the numbers of GMRES iterations re-
quired to reach a relative residual of 10−4 are 270, 718, 1292 for the grating interfaces
Fℓ(x1) =−ℓL+H/2cosx1, H = 2, L = 0.3, 0 ≤ ℓ≤ N, and respectively 318, 814, 1498 for
the grating interfaces Fℓ(x1)=−ℓL+π H(0.4cos(x1)−0.2cos(2x1)+0.4cos(3x1)), H = 1,
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Figure 3: Typical inclusions in a layered medium.

L= 0.3, 0≤ ℓ≤ N when the discretized RtR matrices are of size M2, M= 192 and η = 1.
Despite the large numbers of GMRES iterations required for DDM convergence in the
experiments above, the condition numbers of the DDM matrices (which can be built in
these cases) are reasonable: 99.1, 317.6, 671.4 in the first case, and respectively 119.2, 427.1,
947.6 in the second case.

Inclusions in periodic layers. In the last part of the numerical results section we present
numerical experiments concerning periodic layers with embedded perfectly reflecting
inclusions as presented in Fig. 3. Specifically, we consider perfectly reflecting inclu-
sions D whose boundary ∂D is a smooth closed curve given in parametric form ∂D :=
{(x1(t),x2(t)) : x1(t)=3.3+r(t)cos t,x2(t)=−1+r(t)sin t, r(t)=0.8+0.4cos3t, 0≤ t≤2π}.
The inclusions D are embedded periodically in a layered structure whose top boundary
is explicitly given by either Γt :={(x1,F0(x1)) :F0(x1)=0.6+H/2cosx1, H=0.6} or the flat
interface Γt := {(x1,0.6)}, and the bottom interface is given by shifting the top interface
3 units down the x2 axis. The first set of numerical results presented in Table 10 con-
cerns such configurations in the case when all three wavenumbers k0,k1 and k2 are Wood
frequencies.

Finally, we conclude with a numerical experiment in Table 11 concerning scattering by
a periodic arrays of perfectly reflecting cylinders D described above at Wood frequencies.
We treat this case via fictitious periodic layers bounded by flat interfaces as in the right
panel of Fig. 3, for which we apply the DDM transmission algorithm with k0 = k1 = k2.
The DDM approach for the solution of scattering by array of cylinders at Wood frequen-
cies requires discretization of fictitious boundaries and as such is not as computationally
efficient as alternative approaches that rely on Sherman-Morrison formula [11]. Never-
theless, we believe that the DDM approach is more straightforward and more modular
in the sense that it consists of several black-box solvers that can be easily assembled to
treat complex periodic-layered cases.

3D results. We start our presentation of three-dimensional results with the case of
scalar Helmholtz transmission problems featuring one interface of material discontinuity
given by the doubly periodic grating surface x3 = f (x1,x2)= (1/2)cos(2πx1)cos(2πx2).
For all the numerical experiments presented here, a single patch was used to represent the
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Table 10: Convergence of the DDM algorithm in the case of transmission problems for periodic configurations
with perfectly reflecting inclusions depicted in Fig. 3 with kℓ=ℓ+1, 0≤ l≤2 in the top panel and kℓ=ℓ+4, 0≤2
in the bottom panel, M= 64 in each case. The wavenumbers were chosen to be Wood frequencies, and the
shifts were chosen to be h0=0.4=−h2, and h1=3.3. Each panel in the table (left, center, right) corresponds to
the analogue periodic configuration in Fig. 3. We used reference solutions for which the conservation of energy
balance was of the order 10−5.

G
q,3,A
kℓ,hℓ

G
q,3,A
kℓ,hℓ

G
q,3,A
kℓ,hℓ

A εen ε1 A εen ε1 A εen ε1

40 1.8 × 10−2 2.8 × 10−2 40 1.1 × 10−2 1.8 × 10−1 40 7.8 × 10−3 2.2 × 10−2

80 4.3 × 10−3 4.8 × 10−3 80 2.6 × 10−3 3.0 × 10−3 80 2.4 × 10−3 3.7 × 10−3

120 1.6 × 10−3 1.4 × 10−3 120 3.2 × 10−4 8.0 × 10−4 120 2.6 × 10−4 1.1 × 10−3

40 1.5 × 10−2 4.1 × 10−3 40 1.8 × 10−2 6.0 × 10−3 40 4.1 × 10−3 7.1 × 10−3

80 5.3 × 10−3 6.2 × 10−4 80 5.7 × 10−3 9.4 × 10−4 80 2.1 × 10−3 1.2 × 10−3

120 1.0 × 10−3 2.1 × 10−4 120 1.1 × 10−3 2.1 × 10−4 120 2.7 × 10−4 3.7 × 10−4

Table 11: Scattering by an array of cylinders as presented in the right panel of Fig. 3 with k0 = k1 = k2 = k,
M= 64 in each case. The wavenumbers were chosen to be Wood frequencies, and the shifts were selected to
be h0 =0.4=−h2, and h1 =3.3. We used reference solutions for which the conservation of energy balance was
of the order 10−8 for k=1 and respectively 10−5 for k=2,4.

G
q,3,A
1,hℓ

G
q,3,A
2,hℓ

G
q,3,A
4,hℓ

A εen ε1 A εen ε1 A εen ε1

100 6.4 × 10−5 7.8 × 10−5 100 7.9 × 10−3 2.1 × 10−3 100 8.2 × 10−3 1.2 × 10−3

200 1.0 × 10−5 1.2 × 10−5 200 1.4 × 10−3 3.5 × 10−4 200 1.1 × 10−3 1.5 × 10−4

400 6.7 × 10−7 1.6 × 10−6 400 2.4 × 10−4 4.2 × 10−5 400 1.5 × 10−4 1.5 × 10−5

Table 12: Convergence of the DDM transmission solver in the case of one interface of material discontinuity Γ0
given by the grating profile x3 =(1/2)cos(2πx1)cos(2πx2), normal incidence, and various wavenumbers that

are both Wood frequencies. In both cases we used shifted quasiperiodic Green functions G
q,3,A
kℓ,h

with h=1.4 and

M=1024. The reference solutions were computed using A=100 with corresponding εen of the order 10−6.

k0 k1 A εen ε1

2π 2
√

2π 20 4.5 × 10−3 1.5 × 10−3

2π 2
√

2π 30 1.5 × 10−3 3.1 × 10−4

2π 2
√

2π 40 2.4 × 10−5 2.1 × 10−5

2π 4π 20 7.4 × 10−3 3.4 × 10−3

2π 4π 30 5.7 × 10−4 3.1 × 10−4

2π 4π 40 4.5 × 10−5 3.6 × 10−5

doubly periodic surfaces. We illustrate in Table 12 the high-order convergence achieved
by our DDM solvers in the case of transmission problems involving Wood frequencies in
both semi-infinite domains. For the grating considered, under normal incidence, the first
three Wood frequencies occur at 2π, 2

√
2π, and 4π respectively.
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Table 13: Convergence of the DDM transmission solver in the case of three layers (N=2) separated by grating
profiles grating profile F0(x1,x2) = (1/2)cos(2πx1)cos(2πx2) and F1(x1,x2) = F0(x1,x2)−1.3 under normal

incidence. In both cases we used shifted quasiperiodic Green functions G
q,3,A
k0,h and G

q,3,A
k1,−h with h = 1.4 and

M=1024. The reference solutions were computed using A=100 with corresponding εen of the order 10−6.

k0 k1 k2 A εen ε1

1 2 2π (W) 20 1.2 × 10−1 5.0 × 10−2

1 2 2π (W) 40 2.7 × 10−3 1.7 × 10−2

1 2 2π (W) 60 4.2 × 10−4 6.4 × 10−4

1 2π (W) 2 20 1.1 × 10−1 7.3 × 10−2

1 2π (W) 2 40 7.4 × 10−3 8.7 × 10−3

1 2π (W) 2 60 1.4 × 10−3 6.4 × 10−4

2π (W) 2
√

2π (W) 4π (W) 20 5.3 × 10−2 2.5 × 10−2

2π (W) 2
√

2π (W) 4π (W) 40 7.7 × 10−3 5.7 × 10−3

2π (W) 2
√

2π (W) 4π (W) 60 1.8 × 10−3 6.3 × 10−4

Table 14: Convergence of the DDM transmission solver for configuration consisting of N+2 layers for
various values of N, where the interfaces Γℓ, 0 ≤ ℓ ≤ N are given by grating profiles Fℓ(x1,x2) = −ℓL+
(1/2)cos(2πx1)cos(2πx2), L = 1.3, 0 ≤ ℓ≤ N, under normal incidence, with kℓ drawn randomly from the
interval [1,25], and discretization size M=1032 resulting in discrete DDM linear systems with 40960 unknowns
in the case N=19 and respectively 163840 unknowns in the case N=79. The ensuing DDM systems are solved
via the Schur complement elimination procedure.

G
q,A
kℓ

, N=19 G
q,A
kℓ

, N=79

A εen A εen

40 2.1 × 10−2 40 1.1 × 10−1

60 3.9 × 10−3 60 2.8 × 10−2

We continue in Table 13 with an illustration of the accuracy achieved by our DDM
solvers in the case of three layers separated by two doubly periodic gratings and wave-
number configurations that involve Wood frequencies. Finally, we conclude with an il-
lustration in Table 14 of the ability of the Schur complement DDM solvers to handle
very large numbers of layers in three dimensions that require large discretizations; for
instance, the largest problem considered in Table 14 involves a periodic layered config-
uration consisting of 80 doubly periodic interfaces of material discontinuity, spanning
about 160 wavelengths, whose DDM discretization required 163840 unknowns. We men-
tion that the condition numbers of the matrices Dj,M (see Section 4) that need be inverted
in the Schur complement solution of the problems presented in Table 14 belong to the
interval [102,3.3×103].

While the grating profiles considered in this paper are relatively simple, qualitatively
similar results can be obtained for more geometrically complex profiles. We mention that
extensions to grating profiles that involve corners is straightforward in two dimensions;
graded meshes and weighted versions of RtR maps are needed to treat those cases [31].
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Extensions to three-dimensional gratings with edges and corners can be done by apply-
ing existing technology [31]. The results presented in this section were produced on a
MacBookPro with a 2.7 GHz Intel processor and 8Gb of RAM based on a MATLAB im-
plementation of the DDM algorithm. We did not strive to optimize the code in order to
harness the best sequential computational performance; this is certainly possible, and it
has been done in [9,16] via fast methods based on equivalent sources. Instead, we wanted
to illustrate that, within a DDM approach, the use of windowed Green function method
combined with shifted Green functions leads to a computational method for scattering
by periodic layered media that is accurate and robust at all frequencies, including the
challenging Wood frequencies.

7 Conclusions

We presented analysis and numerical experiments concerning boundary-integral opera-
tors-based DDM for two and three-dimensional periodic layered media scalar scattering
problems. We have shown that the RtR maps that are needed by DDM can be com-
puted in a robust manner at all frequencies, including Wood frequencies. The Wood fre-
quencies configurations were treated via boundary-integral operators that incorporate
shifted quasi-periodic Green functions that converge at Wood frequencies. The tridiago-
nal DDM linear system associated with transmission problems in periodic layered media
was solved via recursive Schur complements resulting in a computational cost that is
linear in the number of layers. Extensions to full three-dimensional electromagnetic con-
figurations are straightforward. We are currently investigating the design of DDM with
quasi-optimal transmission conditions for the solution of transmission problems in peri-
odic layered media.
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Appendix A

Theorem A.1. Under the assumptions that (1) the wavenumbers kj are such that 0≤ kj ≤ kj+1

for all 0 ≤ j ≤ N and (2) the coefficients γj = 1 for all 0 ≤ j ≤ N+1, the system of Helmholtz
equations (2.1) has a unique solution when the functions Fj are C2.

Proof. Clearly, the uniqueness of solutions amounts to showing that when the incident
field is zero, the only solution of the transmission Eqs. (2.1) is the trivial solution. The key
ingredient in the proof is the application of Green’s identities. Let us choose h>maxF0



C. Pérez-Arancibia et al. / Commun. Comput. Phys., 26 (2019), pp. 265-310 303

and define the domain Ω
per
0,h := {(x1,x2)∈Ω

per
0 : F0(x1)≤ x2 ≤ h}. A simple application of

Green’s identities leads to
∫

Ω
per
0,h

(|∇u0|2−k2
0|u0|2)dx=

∫

Γ0

∂n0 u0u0ds+
∫

Γ0,h

∂x2 u0u0dx1,

where Γ0,h := {(x1,x2) : 0≤ x1 ≤ d, x2 = h}. Note that the integrals over the vertical lines
vanish due to the quasi-periodicity of the field. Taking into account the fact that u0 is
radiating, we can express u0 on the line segment Γ0,h in terms of the following Rayleigh
series

u0(x1,h)= ∑
r∈Z

C+
r eiαrx1+iβ0,rh

from which it follows immediately that

lim
h→∞

∫

Γ0,h

∂x2 u0u0dx1 = id ∑
r∈Z,β0,r>0

β0,r|C+
r |2.

Hence, we get

∫

Ω
per
0

(|∇u0|2−k2
0|u0|2)dx=

∫

Γ0

∂n0 u0u0ds+id ∑
r∈Z,β0,r>0

β0,r|C+
r |2.

Taking the imaginary part of the equation above we arrive at

ℑ
∫

Γ0

(∂n0 u0)u0ds=−d ∑
r∈Z,β0,r>0

β0,r|C+
r |2. (A.1)

On the other hand, application of the Green identities in the layers Ω
per
j , 1≤ j≤ N that

have a finite width in the x2 leads to

∫

Ω
per
j

(|∇uj|2−k2
j |uj|2)dx=

∫

Γj−1

∂nj
ujujds+

∫

Γj

∂nj
ujujds.

Taking the imaginary part in the equation above we obtain

ℑ
∫

Γj−1

(∂nj
uj)ujds=−ℑ

∫

Γj

(∂nj
uj)ujds. (A.2)

Applying the same arguments that led to the derivation of Eq. (A.1) in the case of the
semi-infinite layer ΩN+1 we obtain

ℑ
∫

ΓN

(∂nN+1
uN+1)uN+1ds=−d ∑

r∈Z,βN+1,r>0

βN+1,r|C−
r |2. (A.3)
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Adding the left-hand sides as well as the right hand sides of Eqs. (A.1), (A.2), and (A.3)
and taking into account the continuity conditions in the transmission system (2.1) we
obtain

∑
r∈Z,β0,r>0

β0,r|C+
r |2+ ∑

r∈Z,βN+1,r>0

βN+1,r|C−
r |2=0.

The last equation implies that the Rayleigh coefficients of the propagating modes corre-
sponding to u0 and uN+1 are all equal to zero, that is C+

r =0 for all r such that β0,r >0 as
well as C−

r =0 for all r such that βN+1,r >0. We have then

u0(x1,h)= ∑
r∈Z,β0,r=0

C+
r eiαrx1+iβ0,rh+ ∑

r∈Z,ℑβ0,r>0

C+
r eiαrx1+iβ0,rh.

We define v0 := ∂x2 u0 in the domain Ω0 and we apply Green’s third identity to the func-
tions u0 and v0 in the domain Ω

per
0,h and take h→∞ to obtain

∫

Γ0

∂n0 u0v0ds=
∫

Γ0

u0∂n0 v0ds. (A.4)

We similarly define vj := ∂x2 uj in the domains Ωj for 1≤ j≤N and we obtain in a similar
manner

∫

Γj−1

∂nj
ujvjds+

∫

Γj

∂nj
ujvjds=

∫

Γj−1

uj∂nj
vjds+

∫

Γj

uj∂nj
vjds, 1≤ j≤N (A.5)

as well as ∫

ΓN+1

∂nN+1
uN+1vN+1ds=

∫

ΓN+1

uN+1∂nN+1
vN+1ds. (A.6)

Now, using the continuity of the normal derivatives and the tangential derivatives of the
fields uj across interfaces Γj, it follows immediately that the quantities vj are continuous
across the interfaces Γj. Also, as shown in [17], we have that

∂nj
vj+∂nj+1

vj+1=(k2
j+1−k2

j )nj,x2
uj on Γj,1≤ j≤N, (A.7)

where nj,x2
denotes the component of the normal nj along the x2 axis. Taking these last

two facts into account, we add the left-hand sides and right hand sides of Eqs. (A.4), (A.5),
and (A.6) and we get

N

∑
j=0

∫

Γj

(∂nj
uj+∂nj+1

uj+1)vjds=
N

∑
j=0

∫

Γj

uj(∂nj
vj+∂nj+1

vj+1)ds. (A.8)

Now, given that ∂nj
uj+∂nj+1

uj+1=0 on Γj for 0≤ j≤N, and taking into account the conti-
nuity condition in Eq. (A.7), we obtain

N

∑
j=0

(k2
j+1−k2

j )
∫

Γj

nj,x2
|uj|2ds=0. (A.9)
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Now, given the assumption (1) and the fact the normals nj are chosen to point to the
exterior of the domains Ωj and hence nj,x2

<0 for all 0≤ j≤N, it follows in particular that
u0=0 on Γ0. In the light of this fact, we revisit formula (A.4) and we get that

∫

Γ0

∂n0 u0v0ds=0.

Given that u0=0 on Γ0, it follows that its tangential derivative is also equal to zero on Γ0.
Denoting by w0 := ∂x1

u0 in Ω0, the latter fact translates into n0,x2 w0=n0,x1
v0 on Γ0. Since

∂n0 u0 v0=n0,x1
w0 v0+n0,x2 |v0|2=n0,x2 |w0|2+n0,x2 |v0|2, we get

∫

Γ0

n0,x2(|w0|2+|v0|2)ds=0.

Hence, u0 = 0, ∂n0 u0 = 0 on Γ0, which implies that u0 = 0 in Ω0 by Holmgren’s theorem.
Now the use of continuity conditions across interfaces Γj for 1≤ j≤ N and Holmgren’s
theorem leads to the conclusion of the theorem.

Appendix B

We devote this appendix to proving the following result.

Theorem B.2. Under the assumption that F0 is C2 and that k0 is a Wood frequency, the operator

A0,h :=
1

2
I+(K

q,j
Γ0,k0,h)

⊤−Z0S
q,j
Γ0,k0,h, j≥1,A0,h : L2

per(Γ0)→ l2
per(Γ0)

is invertible with continuous inverse for all but a discrete set of values of the shift h>0.

Proof. Since for a given y∈Γ0, the kernels G
q,j
k0,h(·−y) have the same singularity on Γ0 (that

is at x= y) as the kernels G
q
k0
(·−y), then both operators (K

q,j
Γ0,k0,h)

⊤ : L2
per(Γ0)→ L2

per(Γ0)

and S
q,j
Γ0,k0,h :L2

per(Γ0)→L2
per(Γ0) are compact. Thus, the conclusion of the Theorem follows

once we establish the injectivity of the operator A0,h. Let ϕ∈Ker(A0,h) and define

w0 :=SL
q,j
k0,h ϕ in R

2\Γ0.

The function w0 is a radiating α-quasi-periodic solution of the Helmholtz equation in the
domain Ω0 with zero Robin boundary values on Γ0, that is

∂n0 w0−Z0w0=0 on Γ0.

It follows from Theorem 3.1 that w0=0 in Ω0. It is straightforward to see that the shifted

function G
q,j
k0,h has the following frequency domain representation [10]:

G
q,j
k0,h(x1,x2;y1,y2)=

i

2d ∑
r/∈U

eiαr(x1−y1)
(1−eiβrh)j

βr
eiβr|x2−y2|+ ∑

r∈U

creiαr(x1−y1)
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with (x1,x2)∈Ω0, (y1,y2)∈Ω0, where U :={r∈Z : βr =0}; clearly U is not empty since k0

is a Wood frequency. Hence, the solution w0 admits the following representation

w0(x1,x2)=∑
r

w+
0,r(x2)e

iαrx1 , x2>maxF0,

where

w+
0,r(x2)=

{
eiβr x2 (1−eiβrh)j

βr
b+r , r /∈U,

crb+r , r∈U

with

b+r =
i

2d

∫

Γ0

e−iαry1 e−iβry2 ϕ(y1,y2)ds(y1,y2).

Assuming that the shift h is chosen such that 1−eiβrh 6=0 for all r∈U, it follows immedi-
ately that w0=0 in Ω0 implies that all the coefficients b+r =0 for all r.

The key insight in the proof [15] is to introduce the following α-quasi-periodic Green
function that is defined even at Wood frequencies

Bq(x1,x2)=
i

2d ∑
r/∈U

eiαrx1
eiβr|x2|

βr
+

i

2d ∑
r∈U

eiαrx1 i|x2|.

The function Bq is not an outgoing Green function on account of the linear term |x2|. Now
define

v(x) :=
∫

Γ0

Bq(x−y)ϕ(y)ds(y), x /∈Γ0.

Then the function v admits the representation

v(x1,x2)=∑
r

v+r (x2)e
iαr x1 , x2>maxF0,

where

v+r (x2)=

{
eiβrx2

βr
b+r , r /∈U,

ix2b+r −ib′r, r∈U

with

b′r =
i

2d

∫

Γ0

e−iαry1 y2 ϕ(y1,y2)ds(y1,y2), r∈U.

Given that we established the fact that b+r = 0 for all r, we obtain v(x1,x2)=∑r∈U(−ib′r)
×e−iαrx1 for x2>maxF0. Certainly, v(x) is a solution of the Helmholtz equation for x /∈Γ0,
and v(x) is independent of x2 for x2 >maxF0. But v(x) is real analytic for x /∈ Γ0, so it
follows from analytic continuation that v(x) is actually independent of x2 everywhere in
Ω0. Thus, we have

v(x1,x2)= ∑
r∈U

(−ib′r)e
−iαrx1 for x2≥F0(x1).
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We study next the behavior of the function v(x1,x2) for x2 <minF0. We get immediately
that v also admits the representation

v(x1,x2)=∑
r

v−r (x2)e
iαrx1 , x2<minF0,

where

v−r (x2)=

{
e−iβrx2

βr
b−r , r /∈U,

−ix2b−r +ib′r , r∈U

with

b−r =
i

2d

∫

Γ0

e−iαry1 eiβry2 ϕ(y1,y2)ds(y1,y2), r∈Z.

Comparing the definitions of the coefficients b+r and b−r we see that they differ in general
for r /∈U. However, and most importantly, we have that b−r =b+r for r∈U since βr =0 for
r∈U. In conclusion, we have

v−r (x2)=

{
e−iβrx2

βr
b−r , r /∈U,

ib′r, r∈U.

The very last fact we established implies that v is actually a radiating α-quasi-periodic
solution of the Helmholtz equation in the domain Ω−

0 : {(x1,x2) : x2 ≤ F0(x1)}. In the last
step of the proof we define

ṽ(x1,x2) :=v(x1,x2)− ∑
r∈U

(−ib′r)e
−iαrx1 for (x1,x2)∈R

2,

which is a α-quasi-periodic solution of the Helmholtz equation that satisfies the radiation
condition as x2→∞ as well as x2→−∞, while vanishing in Ω0. Clearly, ṽ is a radiating α-
quasi-periodic solution of the Helmholtz equation in the domain Ω−

0 that vanishes on Γ0.
Consequently, ṽ=0 in Ω0 [17]. Using the jump conditions of the normal derivative of the
normal derivative of the single-layer potentials, we get that ϕ=0 on Γ0 which concludes
the proof of the theorem.
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