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Abstract. We investigate traveling fronts, including pulsating ones, of a forced curva-
ture flow in a plane fibered medium. The main topic of this note is an uniqueness issue
of such traveling fronts. In addition to line-shaped profiles, we also consider traveling
fronts in the form of V-shaped parabolas.
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1 Introduction

In this note, we will be interested in traveling fronts of a forced curvature flow equation

Vn = R + K (1.1)

in the plane containing periodic striations. Vn is the normal velocity of a propagating
interface Γ(t), K is its mean curvature and R is the driving force. For example if Γ is a
flame front, then R corresponds to the combustion rate of the burning material. In all
cases, we will suppose that the function R is smooth and verifies

0<Rm ≤R≤RM. (1.2)

Before going further, let us give a definition of a traveling front of Eq. (1.1).

Definition 1.1. Γ(t), solution of (1.1) will be called a traveling front if there exists a con-
stant vector v∈R2 such that

Γ(t)=Γ0+v t

for all t∈R. Then Γ0 is the (constant) profile of the traveling front and |v|, its speed, see
Figure 1.
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Note that if Γ(t) can be represented by the graph of a function u in the x-y plane, for
example

Γ(t)={(x,y)/y=u(x,t)},

then Vn is given by

Vn =
ut√

1+u2
x

,

so that Equation (1.1) becomes

ut−R
√

1+u2
x =

uxx

1+u2
x

, t∈R, x∈R. (1.3)

Now if Γ(t) is a traveling front in the plane, we can suppose without loss of generality
that v is parallel to the y-axis i.e. v=t(0,c). Then u(x,t) will be given by

u(x,t)= c t+φ(x),

so that Equation (1.3) becomes

c−R
√

1+φ2
x =

φxx

1+φ2
x

, x∈ R. (1.4)

In the above, c is the speed and φ the constant profile of the wave. The pair (c,φ) will
be called a traveling wave solution (TWS) of Eq. (1.3). Note that every solution φ of (1.4)
is defined up to an additive constant.

Figure 1: A TWS: a constant profile moving with a constant speed in some given direction.
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In [9], the authors gave a complete classification of smooth traveling fronts in the
plane in the case of a constant R i.e. for propagations in homogeneous media. They
notably showed that a non stationary traveling front in the plane can only be a graph in
the form of a line or of a V-shaped parabola. Different results have also been proved in
the case of an interface propagating in a fibered medium with periodic striations (i.e. R
is periodic in one direction). In this case, one of course expects the lines and V-shaped
fronts to become undulated, the results depending also on the angle of inclination of the
striations. Let us precise what we mean by an undulated line-shaped front.

Definition 1.2. An undulated front will be termed line-shaped if there exists an angle
α∈ (−π/2,,π/2) such that the front is at a finite distance from the line y= tanα x for all
x∈R.

The line-shaped fronts can therefore be inclined (when α ̸=0) or horizontal (α=0).
Essentially two types of solutions have been put forward in the case of a periodic

fibered medium : traveling wave solutions (TWS) and pulsating traveling wave solutions
(PTWS). Besides having some periodicity in space, these pulsating fronts also display a
time periodicity namely there exists a period T and some constant Y such that

u(x,t+T)=u(x,t)+Y, for all t∈R and x∈R.

Let us point out that equations of type (1.1) may exhibit PTWS in other contexts where
the periodicity is not necessarily carried by the function R. See for example [7] and the
references therein where it is the boundary of the corresponding domain which has peri-
odic or quasi-periodic undulations while R remains constant.

In [2], which deals with vertical striations (R(x,y)=R(x),1-periodic), it is shown that
there exists a unique ’horizontal’ line-shaped traveling front (c,φ), φ being 1-periodic
and c the speed of the wave in the y direction. The latter traveling front corresponds
therefore to the undulated version of the horizontal line in the case of a constant R.

In the more recent work [6], the above result has been generalized to inclined fronts.
The existence of inclined traveling fronts in the case of vertical striations is studied in
an almost periodic context i.e. with R almost periodic in x. Among other results, it is
shown that for any α∈ (−π/2,π/2), α being the angle between the front line and the x-
axis, there exists a unique (cα,φα), φα

x almost periodic in x, solution of (1.4). The previous
result easily leads to the existence of a unique traveling front Γα given by the pair (cα,φα),
with φα

x periodic in the case of a periodic function R. Therefore we have a traveling front
with Γ0={y= φα(x)} and v=t (0,cα).

In the case of oblique striations treated in [8] and [3], the authors put in evidence the
fact that periodicity in space generates a time periodic regime. More precisely, let us consider
periodically disposed oblique striations of period 1 and inclined by an angle β∈ (0,π/2)
from the y-axis. Set

Xβ =1/cosβ and Yβ =1/sinβ,



4 G. Namah / J. Math. Study, 52 (2019), pp. 1-17

so that R is Xβ-periodic in x and Yβ-periodic in y. Then there exists a unique Tβ and a
unique function φβ(x,t), Tβ-periodic in time and Xβ-periodic in x such that

uβ(x,t)= cβt+φβ(x,t),

is a solution of (1.3),with cβ =Yβ/Tβ. We thus have (see Figure 2)

uβ(x,t+Tβ)=uβ(x,t)+Yβ.

Note that the uniqueness holds up to addition of constants in space and translations
in time. The pair (cβ,φβ) or the moving front uβ will be called a pulsating traveling wave
solution (PTWS) of (1.3). Here cβ represents the mean speed (over one time period) of the
wave propagation in the y direction.

Figure 2: A horizontal line-shaped pulsating front : there exists Tβ such that for all t, Γ(t+Tβ)=Γ(t)+Yβ.

Note also that, as uβ does not have a constant profile, it is not clear here whether this
pulsating front is a traveling wave solution. That this is the case will be the object of the
following result :

Claim 1. Let Γ(t)={y=u(x,t)} be a space-periodic solution of (1.1) in a periodic fibered
medium such that

u(x,t+T)=u(x,t)+Y, x∈R, t∈R,

for some given T>0 and Y∈R. Then Γ(t) slides with a constant speed along the direction
of the striations.

The above result implies that any periodic pulsating front is a traveling wave solution
i.e. propagating with a constant speed in a given direction, here that of the striations.

Now we want to enquire about the ’uniqueness’ of these TWS. More precisely, consid-
er a vertically striated medium in the x-y plane. Recall that for any given α∈(−π/2,π/2),
there exists a line-shaped traveling front Γα in the form of a graph {y = φα(x)} trav-
eling with speed cα in the y-direction. Can there exist a line-shaped traveling wave
Γ′(t) = (Γ′

0,v′) other than the (Γα)α? For example Γ′ may be a graph in some frame x′-
y′ other than x-y and/or v′ may not be parallel to the y axis.

Our aim in this paper is to clarify this uniqueness issue. We will notably show
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Theorem 1.1. Let R=R(x), 1-periodic in the x-y frame. Let Γ′(t) be a traveling wave solution of
(1.1) in the form of a line-shaped graph in some x′-y′ frame. Then there exists α∈ (−π/2,π/2),
such that Γ′=Γα.

Therefore the (Γα)α are the only line-shaped traveling fronts which can exist. But as
pointed out before, there exist also traveling fronts in the form of V-shaped graphs. Let
us recall that in the homogeneous case (R= constant), (c.f. [9]), for any α∈ (0,π/2) there
exists a unique function ψα in the form of a V-shaped parabola which has as asymptotes
ψ+(x)= tanα x and ψ−(x)=−tanα x when x−→±∞, such that

Γ0={y=ψα(x)} and cα =R/cosα.

Note that such a Γ0 is symmetrical wrt the y axis and ψα
x(0)=0. The result corresponding

to a striated medium goes as follows:

Theorem 1.2. Let R = R(x) be 1-periodic. Let α ∈ (0,π/2) satisfy RM cosα < Rm. Then for
any s∈R, (1.4) admits a unique V-shaped traveling wave solution ψα such that ψα(0)= s and
ψα

x(0)=0.

In Section 2, we will deal with line-shaped traveling fronts. We will notably show
that periodic pulsating fronts (other than straight lines) in a periodic fibered medium are
just traveling fronts which slide down along the direction of the striations (Claim 1) and
then prove Theorem 1.1. In Section 3, we will prove Theorem 1.2 concerning V-shaped
traveling fronts.

2 Line-shaped traveling fronts

2.1 The case of a homogeneous medium

Let us start by noting that when R is a constant, there is an infinite number of lines which
are traveling fronts. Indeed for any α∈(−π/2,π/2), the moving line Γ(t)=Γ0+v t with

Γ0={y= tanα x)} and v= t(−Rsinα,Rcosα),

is a solution. Moreover the velocity v is not unique. In the above, we see that the line
propagates perpendicular to itself but we could also have considered propagations in
other directions. For example if we consider the line to be propagating in the y-direction,
then v= t(0,R/cosα). Likewise v= t(−R/sinα,0) for a propagation in the x-direction.
Also, in this simple case, Γ0 can also be written as a function of y i.e. Γ0 = {x= cotα y)}
for any α ̸=0.

2.2 The case of a periodic striated medium

Let us now suppose that R is 1-periodic in some direction in the plane, which can be taken
to be the x direction without any loss of generality, and is constant along the y direction.
We look for line-shaped traveling wave solutions of (1.4). We state the following
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Proposition 2.1. Let R=R(x), 1-periodic. For any α∈ (−π/2,π/2), there exists a unique
line-shaped TWS Γα in the form of a graph y = u(x,t), with u satisfying Equation (1.3)
and the shifted periodic condition

u(x+1,t)=u(x,t)+tanα for all real t. (2.1)

In other words, there exists a unique pair (c,φ) solution of

c−R
√

1+φ2
x =

φxx

1+φ2
x

, x∈R,

such that
φ(x+1)= φ(x)+tanα.

Moreover we have the following estimates on c and φ :

Rm

cosα
≤ c ≤ RM

cosα
,

|φx(x)|<

√
R2

M
R2

m cos2 α
−1.

Of course, c and φ depend on α. We have omitted the superscript α as there is no
ambiguity. As usual, the uniqueness of φ is to be understood up to an additive constant.
The traveling front is therefore either periodic (when α=0) or shifted-periodic in which
case φ is not periodic but it is φx which is a 1-periodic function with

∫ 1
0 φx dx= tanα.

Proof. Consider the ode satisfied by h= φx and set

f (x,h,c)= c(1+h2)−R(1+h2)3/2.

Then showing the above proposition comes to proving that
h′= f (x,h,c), x∈ (0,1)
h(0)=h(1)∫ 1

0 h dx= tanα

(2.2)

admits a unique solution (c,h). The proof will be omitted as it goes almost along the same
lines as in [2] which was run for α=0.

We can further estimate h and give a monotonicity result on c under some restrictions
on α. We state

Proposition 2.2. Let (c,h) be the solution of (2.2). Then if RM cosα<Rm, we have

h(x)≥
√

R2
m

R2
M cos2 α

−1, for all x∈ [0,1],

c′(α)>0.
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Proof. Here too, we will omit the proof as it is similar to the one given in [6] in the case of
almost periodic striations.

Remark 2.1. Let us remark that the result of Proposition 2.1 excludes the case of α=±π/2.
In fact, we know that for α=π/2 (see, e.g., [1]), there exists no TWS but a unique pulsating
front which is a straight line propagating with an effective speed given by the harmonic
mean R of R. We thus have a front of the form x=U(t) with U(t+T)=U(t)+1 with T
given by T=1/R.

2.3 Proof of Claim 1

Consider a propagation through a 1-periodic fibered medium with the striations inclined
by some angle β∈ (−π/2,π/2) from the y axis, see Figure 2. Here Eq. (1.3) reads

ut−R(x,y=u(x,t))
√

1+u2
x =

uxx

1+u2
x

, t∈R, x∈R (2.3)

with
R(x,y)=R(ysinβ−xcosβ). (2.4)

Then we know (see, e.g., [3, 8]) that there exists a unique cβ >0 and a unique space-time
periodic function φβ such that

u(x,t)= cβt+φβ(x,t) (2.5)

is a solution of (2.3). The front u is therefore a periodic pulsating one i.e. there exists Tβ=
Yβ/cβ such that

u(x,t+Tβ)=u(x,t)+Yβ.

We proceed by the following

Lemma 2.1. Let u be a periodic pulsating front solution of (2.3)-(2.4). Then there exists a Xβ-
periodic function W and a positive constant c such that

u(x,t)=W(x−c tsinβ)+c tcosβ.

Note that Lemma 2.1 implies that the front slides along the direction of the striations
with the constant speed c without changing its profile as in Figure 2. We are therefore in
the presence of a traveling front with

Γ0={y=W(x)} and v=t(csinβ,ccosβ),

in the x-y plane.
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Proof. So let u= u(x,t) be a PTWS of (2.3)-(2.4). Note that in the present case, R is also
given by

R(x,y)=R(x+ssinβ,y+scosβ), for all s∈R. (2.6)

Consider now, for s∈R, the function

Ws(x,t)=u(x−ssinβ,t)+scosβ. (2.7)

It is then not difficult to verify that Ws satisfies Equation (2.3). Indeed, by taking the
Equation (2.3) at the point (x= x−ssinβ, t= t), we get

Ws
t (x,t)−R(x−ssinβ,y=u(x−ssinβ,t))

√
1+Ws2

x =
Ws

xx
1+Ws2

x
, t∈R,x∈R.

But as R is constant in the direction of the striations, we have

R(x−ssinβ,y=u(x−ssinβ,t))
=R(x,u(x−ssinβ,t)+scosβ)=R(x,Ws(x,t)),

so that finally Ws satisfies

Ws
t (x,t)−R(x,Ws(x,t))

√
1+Ws2

x =
Ws

xx
1+Ws2

x
, t∈R,x∈R.

Moreover we have
Ws(x,t+Tβ)=Ws(x,t)+Yβ.

Therefore Ws is PTWS of (2.3). By the uniqueness result of [8], we deduce that for any
real s, Ws is just a shift in time of u, i.e. there exists (a constant) τ(s) such that

Ws(x,t)=u(x,t+τ(s)).

We conclude from (2.7) that for all s∈R, we have the following oblique shift for u :

u(x,t+τ(s))=u(x−ssinβ,t)+scosβ.

Now due to the continuity of τ with respect to s and the fact that τ(s)−→±∞ when
s goes to ±∞, we can deduce that for any real τ, there exists a real s such that the above
equation holds. Then for all real τ, the front at time t+τ is just an oblique shift of the
front at time t along the direction of the striations.

Let W=W(z) be the profile of the pulsating front at some reference time set to zero for
simplicity. Then the front at any time t>0 is obtained by a shift of W along the direction
of the striations by a quantity s= s(t), i.e.

u(x,t)=W(x−s(t)sinβ)+s(t)cosβ.
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As u satisfies (2.3), W is therefore a solution of

s′(t){cosβ−sinβWz}−R(z+s(t)sinβ,W(z)+s(t)cosβ)
√

1+W2
z =

Wzz
1+W2

z
,

which from (2.6) gives

s′(t){cosβ−sinβWz}−R(z,W(z))
√

1+W2
z =

Wzz
1+W2

z
, t>0, z∈R.

But as W is independent of time, we deduce that s′(t) is a constant so that there exists
some real c with s(t)= c t. We finally end up with

u(x,t)=W(x−c tsinβ)+c tcosβ,

and the proof of the Lemma is done and so is that of Claim 1. Note that in terms of
cβ (which we recall was the mean speed in the y direction), we have cβ = ccosβ so that
v=t(cβ tanβ,cβ).

2.4 Proof of Theorem 1.1

Let Γ′(t) be a TWS of (1.3) in the form of a line-shaped graph in some tilted x′-y′ frame
and let β∈(−π/2,π/2), β ̸=0, be the angle between the x′ and the x axes, i.e. between the
two frames. We will deal with the case β=±π/2 afterwards. Recall that the striations
are vertical in the original x-y frame so that they will be oblique inclined by an angle β
from the y′-axis.

Set Γ′(t)={y′=u(x′,t)}. The front u is therefore a solution of (2.3)-(2.4). Now we can
have a ’horizontal’ front in the x′-y′ frame in which case u will be periodic in x′, or an
’inclined front’. We will first show that the traveling wave front Γ′(t) is in fact a PTWS
which propagates along the direction of the striations and then prove that it coincides
with one of the fronts Γα of Proposition 2.1. Let us start by considering the case of a
horizontal front.

2.4.1 Case 1 : Γ′ horizontal in the tilted frame

Note that as Γ′ is a TWS, it propagates with a constant speed |v| but we do not know
at this stage whether the direction of v is the same as that of the striations. But since u
is periodic in x′, we can say that there exists some T> 0 (in fact here T will be given by
Xβ/vx′ where vx′ is the component of the velocity v in the x′ direction) such that

u(x′,t+T)=u(x′,t)+Y

with Y = vy′T. There is therefore a vertical shift (in the direction of y′) of the front after
time T. But as u satisfies Eq. (2.3), we conclude that Γ′(t) is a PTWS of (2.3). Then we
deduce by Claim 1 that v is parallel to the direction of the striations. Moreover by the
uniqueness of the PTWS, we know that v=t(cβ tanβ,cβ) with cβ as previously defined.
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Now in the context of the original x-y frame, Γ′ is a traveling line-shaped front in-
clined by an angle β from the x axis and propagating with a constant speed in the y
direction. Now it suffices to prove that Γ′ is a graph in the x-y frame and conclude by the
uniqueness result of Proposition 2.1 that Γ′ coincides with Γβ.

Take t= 0 as a reference time and set Γ′
0 = Γ′(0). Define u0(x′)= u(x′,0) so that Γ′

0 =
{y′= u0(x′)}. We will prove that Γ′

0 is a graph in the x-y coordinate frame. Indeed any
point (x′,y′) in the x′-y′ frame has as coordinates

x=cosβ x′−sinβ y′,
y=sinβ x′+cosβ y′

in the x-y coordinate frame so that any point (x′,u0(x′)) on Γ′
0 reads

x=cosβ x′−sinβ u0(x′)= f (x′), (2.8a)
y=sinβ x′+cosβ u0(x′)= g(x′) (2.8b)

in the x-y frame. A sufficient condition to be able to write y as a function of x is that
fx(x′) ̸= 0 for all x′. This ensures that we cannot have two values of x′ corresponding to
the same x. Otherwise, one can easily verify that this latter situation would lead to the
case of having one value of x corresponding to two different values of y.

We see from (2.8a) that showing that fx(x′) does not vanish comes to proving that
u0x′(x′) ̸= cotβ for all x′. We therefore look for estimates on u0x′ . As we know that Γ′(t)
slides in the direction of the striations with the speed c=cβ secβ, we have for all t>0 (t=0
being the reference time)

u(x′,t)=u0(x′−c tsinβ)+c tcosβ,

that is
u(x′,t)=u0(x′−cβttanβ)+cβt.

We remark that the space-time periodic function φβ(x′,t) given in (2.5) is constant along
the line y′= x′−cβttanβ and is given by

φβ(x′,t)=u0(x′−cβttanβ).

By setting z= x′−cβttanβ, we see from (2.3) that u0 satisfies

cβ−cβ tanβu0z−R(z,u0(z))
√

1+u2
u0z

=ν
u0zz

1+u2
0z

,

subject to the periodic conditions

u0(0)=u0(Xβ) and u0z(0)=u0z(Xβ).
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Setting h=u0z, we obtain
h′=(1+h2)(cβ−cβ tanβ h−R

√
1+h2), z∈ (0,Xβ)

h(0)=h(Xβ)∫ Xβ

0 h dz=0.

Set hM = maxz h(z) = h(zM), the existence of zM is ensured by the periodicity of h. By
writing the equation at z= zM, we have

0=(1+h2
M)(cβ(1−tanβ hM)−R

√
1+h2

M).

Suppose now that hM≥cotβ. As cβ and R are positive, the RHS will be negative which is
not possible. Therefore we end up with h(z)<cotβ for all z∈R.

We have thus proved that Γ′(t) can be written as a line-shaped graph in the x-y co-
ordinate frame sliding in the direction of the striations with a constant speed. From the
uniqueness result of Proposition 2.1, we conclude that Γ′(t) is a traveling front which
coincides with one of the Γα(t) and here precisely with Γβ.

2.4.2 Case 2: Γ′ inclined in the tilted frame

Now let us consider the case where Γ′(t) = {y′ = u(x′,t)} is an ’inclined’ TWS in some
x′-y′ coordinate frame traveling with velocity v′=(v′

x′ ,v
′
y′). Let β be, as before, the angle

between the tilted and the original frame and denote by γ, the angle of inclination of the
front with respect to the x′-axis, see Figure 3.

Figure 3: An inclined pulsating front in the tilted frame x′–y′: there exists T such that Γ(t+T)=Γ(t)+Y.

Recall that u satisfies the same equation

ut−R(x′,y′=u(x′,t))
√

1+u2
x′ =

ux′x′

1+u2
x′

, t∈R, x′∈R, (2.9)
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as for the previous case but this time with shifted periodic conditions, namely

u(x′+Xγ,t)=u(x′,t)+tanγ Xγ (2.10)

for some Xγ. Here too, the periodicity in space (even if it is a shifted periodicity) will lead
to a vertical shift of the front’s profile after some time T′, i.e. Γ′(t+T′) is a vertical shift of
Γ′(t) for all t, so that

u(x′,t+T′)=u(x′,t)+Y′, (2.11)

for some Y′ which depends a priori on γ and on the velocity v′. Here T′ will be given by
T′=Xγ/v′

x′ . Let us start by remarking that, due to the periodicity of R, if T′ exists then Y′

is necessarily a multiple of Yβ. Indeed, consider the Equation (2.9) at the point (x′,t+T′).
We have

ut(x′,t+T′)−R(u(x′,t+T′)sinβ−xcosβ)
√

1+u2
x′(x′,t+T′)=

ux′x′

1+u2
x′
(x′,t+T′).

But as ut(x′,t+T′)=ut(x′,t) and likewise for the derivatives in x′, we have

ut(x′,t)−R(u(x′,t)sinβ−xcosβ+Y′sinβ)
√

1+u2
x′(x′,t)=

ux′x′

1+u2
x′
(x′,t),

so that necessarily Y′sinβ∈Z. Thus Y′=m/sinβ=mYβ for some m∈Z.
The next step will be to verify that the inclined pulsating front slides along the direc-

tion of the striations with a constant speed (given by Claim 1 for the ’horizontal’ case).
Suppose this is true. Then we can run the proof almost along the same lines as that for
the horizontal case to show that Γ′(t) is a graph in the original x-y frame. Then from the
uniqueness result of Proposition 2.1, we can again conclude that Γ′(t) coincides with one
of the Γα(t), namely Γβ+γ(t) here. It now remains to verify that Claim1 is also valid for an
inclined front. What is important is the uniqueness result for pulsating fronts. In Claim
1, the uniqueness result called for had been proved for periodic fronts (see, e.g., [4, 8]).
Also in [8], the analysis was carried out for viscous Hamilton-Jacobi equations. In fact,
the result holds in the present case too. For completeness sake, let us give a proof of the
uniqueness of the pulsating front in the inclined case.

Suppose therefore that there exist two inclined pulsating fronts u1 and u2 solutions of
(2.9)-(2.10). We know that we can write

u1(x′,t)= c1t+φ1(x′,t),
u2(x′,t)= c2t+φ2(x′,t),

with φ1, T′
1-periodic (resp. φ2, T′

2-periodic) in time and both satisfying the shifted peri-
odic condition (2.10). Let

t1=sup{t∈R / u1(.,t)<u2(.,0)},
t2= inf{t∈R / u1(.,t)>u2(.,0)}.
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The quantity t1 appears therefore as the first time that u1(.,t) touches u2(.,0) from below
and t2 is the last time that u1(.,t) touches u2(.,0) from above. We therefore have

u1(x′,t1)≤u2(x′,0) and u1(x′,t2)≥u2(x′,0).

The weak maximum principles then lead to

u1(x′,t1+t)≤u2(x′,t)≤u1(x′,t2+t) for all t∈R,

that is
c1(t1+t)+φ1(x′,t1+t)≤ c2t+φ2(x′,t)≤ c1(t2+t)+φ1(x′,t2+t).

Note that in the inclined case, the profiles φ1 and φ2 remain bounded in time from the
line y′= tanγ x′. Substract then tanγ x′ from each term, divide by t and then let t go to
infinity. We obtain

c1≤ c2≤ c1,

so that c1 = c2. The two fronts have therefore the same effective speeds. This in turn
implies that the two time periods T′

1 and T′
2 are equal up to a multiplicative integer. More

precisely, as we know that Y′
2=mY′

1 for some m∈N (here we have supposed without loss
of generality that Y′

2≥Y′
1), then we will have T′

2=mT′
1.

Now let x′1 be such that u1(x′1,t1)=u2(x′1,0). We have at the point x′= x′1 and t= t1,,

u1(x′1,t1+T′
2)= c1t+c1T′

2+φ1(x′1,t1+T′
2)= c1T′

2+u1(x′1,t1).

Likewise at the point x′= x′1 and t=0, we have

u2(x′1,T′
2)= c2T′

2+u2(x′1,0),

so that u1(x′1,t1+T′
2) = u2(x′1,T′

2). This situation is not allowed by the strong maximum
principles applied to the linear parabolic equation satisfied by the function w(x′,t) given
by

w(x′,t)=u1(x′,t+t1)−u2(x′,t),

unless w is a constant.

2.4.3 The case β=π/2

Note that Proposition 2.1 does not concern TWS in the form of line-shaped graphs x =
W(y,t). In fact, this comes to considering a tilted frame (x′-y′) with y′ = x and x′ =−y,
that is the angle β between the two frames equals to −π/2. So suppose there exists a
TWS Γ′(t) in the form of a line-shaped graph x=W(y,t) inclined by some angle α from
the x-axis. We propose to show that Γ′ coincides with the Γα given by the Proposition 2.1.

We know by Claim 1 that if it exists, Γ′(t) slides along the direction of the striations
(here in the y-direction) with a speed c, which without loss of generality can be taken to
be positive. Let us continue our analysis for α∈ (0,π/2), the case for negative values of
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α can be carried out in a similar way. We proceed by writing down the equation satisfied
by W :

Wt+R(W)
√

1+V2
y =

Vyy

1+V2
y

, t∈R, y∈R.

Note the positive sign before R in the above equation. Indeed as α> 0, a motion of the
line y = tanα x in the upward direction corresponds to a propagation in the negative
x-direction. This gives a negative speed of the line in the x-direction. The sign would
change for α<0. Now as Γ′(t) has a constant profile moving with the speed c there exists
a function ψ such that

W(y,t)=ψ(y−c t),

and where ψ satisfies the following system :
−cψ′+R(ψ)

√
1+ψ′2= ψ′′

1+ψ′2 , z∈R,
ψ(z+tanα)=ψ(z)+1, z∈R,
ψ′(z+tanα)=ψ′(z), z∈R.

(2.12)

Without loss of generality, as usual, we can normalize ψ such that ψ(0)= 0. We then
state

Lemma 2.2. Let α∈ (0,π/2). If ψ is a solution of (2.12) then ψ′(z)>0 for all z∈R.

Proof. As ψ′ is tanα-periodic, there exists z∗∈ (0,tanα] such that

ψ′(z∗)=max
R

ψ′(z)

with ψ′′(z∗)=0. As the first condition on ψ implies that
∫ tanα

0 ψ′(z)dz=1 (>0), necessarily
we must have ψ′(z∗)>0. By the equation of ψ, we recover the fact that c>0. Now let z∗
correspond to the minimum i.e. ψ′(z∗)=minR ψ′(z). Again by using the equation of ψ,
we deduce that ψ′(z∗)>0.

From the above lemma, we see that if a traveling front exists in the form of a graph
x=V(y,t), we will have V(y,t)=ψ(y−c t) with ψ invertible. Thus Γ′(t) may be written
as Γ′(t)={y=c t+ψ−1(x)}. We then conclude by the uniqueness result of Proposition 2.1
that Γ′=Γα and we are done with the proof of Theorem 1.1.

3 V-shaped TWS

As mentioned before, there exist also traveling wave solutions in the form of V-shaped
parabola. Let us first review the homogenous case before going to the uniqueness result
in the fibered medium.
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3.1 The homogeneous case

Let α∈ (0,π/2) and consider the two lines ψ+(x) = tanα x and ψ−(x) =−tanα x. Then
there exists a unique V-shaped TWS

Γ(t)=Γ0+c t,

with c= R/cosα and Γ0 = {y=ψ(x)} a V-shaped parabola which has ψ+(x) and ψ−(x)
as asymptotes when x−→±∞ (cf. [9]). Note that Γ0 is symmetrical with respect to the y
axis with ψ′(0)=0.

3.2 The periodic case

Let us now consider the case where the forcing term R(x,y) = R(x) is 1-periodic. We
know from Proposition 2.1 that for every α ∈ (−π/2,π/2), there exists a unique line-
shaped TWS (c,φ) solving the problem

Pα :


c−R

√
1+φ2

x =
φxx

1+φ2
x

, x∈ R

φ(0)=0, φ(1)= tanα
φ′(0)= φ′(1).

Remark 3.1. Note that the above boundary conditions are equivalent to the shifted peri-
odic condition (2.1) of Proposition 2.1. Indeed if (c,φ) solves Pα, then we have

φ(x+1)= φ(x)+tanα.

To see this, consider w(x)= φ(x+1)−tanα. We then have w(0)=0 and w′(0)= φ′(0).
As R is 1-periodic, w also satisfies the first equation of Pα. Then by uniqueness results for
initial value problems for second order ode’s, we know that w≡ φ.

We now define for any function φ, the symmetrical function with respect to the y-axis
φsym i.e. φsym(x)= φ(−x) and prove the following lemma:

Lemma 3.1. Let (c1,φ1) and (c2,φ2) be the respective line-shaped TWS of Pα1 and Pα2 with α1>0
and α2<0 and both satisfying the condition

RM cosα<Rm. (3.1)

Then α1=−α2 iff c1= c2.

Proof. (i) α1=−α2 =⇒ c1= c2.
In the homogeneous case, it’s trivial because c=R/cosα. When R is periodic, without

loss of generality, we can consider R(x)= R(−x) for all x. Consider then ψ= φ
sym
1 . It is

not difficult to verify that ψ satisfies
c1−R

√
1+ψ2

x =
ψxx

1+ψ2
x

, x∈ R,

ψ(0)=0, ψ(1)=−tanα1,
ψ′(0)=ψ′(1),
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so (c1,ψ) is a solution of Pα for α= −α1 i.e. for α= α2. By uniqueness of line-shaped TWS,
we deduce that c1= c2 and ψ= φ2= φ

sym
1 .

(ii) c1= c2 =⇒α1=−α2.
Set β=−α2. We know that there exists a unique pair (cβ,φβ) solution of Pβ. By (i), we

then have cβ = c2 and φβ = φ
sym
2 . As c1 = c2 by assumption, then cβ = c1. Now as α1 and β

satisfy assumption (3.1) and under the latter condition c(α) is strictly increasing in α (by
Proposition 2.2), we have necessarily β=α1.

So for α∈ (0, π/2), the above lemma shows that the profile of the line-shaped TWS
Γ−α is symmetrical to that of Γα, both having the same speed of propagation. It says a bit
more notably that the only line-shaped TWS having the same speed as Γα is Γ−α. Now
we are ready to give the result for V-shaped TWS.

Theorem 3.1. Let α∈ (0, π/2) satisfy assumption (3.1) and let (c,φ) be the solution of Pα and
φsym be defined as above. Then for any s∈R, (1.4) admits a unique V-shaped TWS ψ such that
ψ(0)= s and ψ′(0)=0. Moreover the solution satisfies the following estimates

(i) φ′ sym(x)<ψ′ (x)< φ′ (x),

(ii) there exist a unique s0>0 and positive constants L and δ such that ψ(0)= s0 and

φ(|x|)<ψ(x)< φ(|x|)+Lexp(−δ|x|).

Note that ψ has φ and φsym as asymptotes when x goes to ±∞. Note also that under
assumptions (3.1) we can show that φ′ sym(x)< 0 and φ′ (x)> 0. We will omit the proof
of the theorem as it goes along the same lines as Theorem B of [6] by remarking that in
the periodic case, α2 is necessarily equal to −α1 by Lemma 3.1. It suffices then to do the
neccessary modifications.
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