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Abstract. This paper is concerned with the global well-posedness and regularity of
weak solutions for the 2D non-autonomous incompressible Navier-Stokes equation
with a inhomogeneous boundary condition in Lipschitz-like domain. Using the es-
timate for governing steady state equation and Hardy’s inequality, the existence and
regularity of global unique weak solution can be proved. Moreover, these results also
hold for 2D Navier-Stokes equation with Rayleigh’s friction and Navier-Stokes-Voigt
flow, but invalid for three dimension.
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1 Introduction

The incompressible Navier-Stokes equation is a well-known hydrodynamical model which
plays a important role in understanding continuous medium mechanics. Our objective
in this paper is to study the global well-posedness and its regularity for a 2D incom-
pressible non-autonomous fluid flow with non-homogeneous boundary condition in a
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Lipschitz-like domain:



∂u
∂t

−ν∆u+(u·∇)u+∇p= f (t,x), x∈Ω, t≥τ,

divu=0, x∈Ω, t≥τ,

u= φ, φ·n=0, x∈∂Ω, t≥τ,

u(τ,x)=uτ(x), x∈Ω,

(1.1)

wxhere Ω⊂R2 is a bounded set which is said to be a Lipschitz-like domain if its boundary
∂Ω can be covered by finitely many balls Bi=B(Qi,r0) centered at the point Qi∈∂Ω such
that for each ball Bi, there exists a rectangular coordinate system and a Lipschitz function
Ψ :Rd−1→R with

B(Qi,3r0)∩Ω=
{
(x1,x2,··· ,xd)

∣∣∣ xd >Ψi(x1,x2,··· ,xd−1)
}
∩Ω,

τ ∈ R is an initial time. The variables u represents the fluid velocity field, p denotes
the pressure, and ν is the kinematic viscosity. In addition, n represents the exterior unit
normal vector to ∂Ω, φ= φ(x) is a prescribed tangential boundary velocity, and f (t,x) is
a time-dependent forcing term.

The 2D incompressible Navier-Stokes equations with homogeneous Dirichlet or pe-
riodic boundary in smooth domain, we can refer to literature [3–7, 11]. And the 2D au-
tonomous system with non-homogenous boundary on smooth domain can be found-
ed in [8, 9]. For this problem extended to non-smooth, by an appropriate background
flow, [1] investigated the well-posedness in less regular space and its dynamics. In this
paper, we want to investigate the non-autonomous case. Firstly, we introduce the back-
ground function ψ, which is the solution to following problem that shares the same
boundary condition φ as (1.1):

{
div ψ=0, in Ω,
ψ= φ, φ·n=0 on ∂Ω.

(1.2)

and ψ is a solution for the Stokes problem


−△û+∇q=0, in Ω,
div û=0, in Ω,
û= φ, a.e. on ∂Ω in the sense of nontangential convergence.

(1.3)

The idea comes from [8] and [9], then [1] extended to non-smooth domains of 2D Navier-
Stokes equation by critically invoking estimates of the Stokes problem. Then, writing
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v=u−ψ, problem (1.1) becomes its equivalent form:

∂v
∂t

−ν∆v+(v·∇)v+(v·∇)ψ+(ψ·∇)v+∇p

= f +ν∆ψ−(ψ·∇)ψ, x∈Ω, t≥τ,

divv=0, x∈Ω, t≥τ,

v=0, x∈∂Ω,

v(τ,x)=vτ(x), x∈Ω,

(1.4)

which is a homogeneous problem. If v is a solution of problem (1.4) with initial data
vτ=uτ−ψ, then u=ψ+v is a solution of problem (1.1) with initial data uτ. The Hadamard
well-posedness of problem based on stationary system (see [2, 10]) and the existence of
a global attractor of finite fractal dimension of problem (1.4) were proved in [1], with
respect to weak solutions and f = f (x).

In this presented work, we consider the global well-posedness for problem (1.4) which
has the features and properties:

(1) Estimates of ψ on a Lipschitz-like domain established in [1] have to be critically
invoked, which is necessary for well-posedness of our non-autonomous problem.

(2) The Lipschitz-like boundary requires more delicate estimates which is dependent
on Ω.

(3) For the non-autonomous case, we need some new inequalities to deal the external
force.

(4) The regularity of global weak solution need some new delicate estimate for the
fractional power operator.

The paper is arranged as: some inequalities and main results has been show in Section
2, which has the proof in Section 3.

2 Main results

2.1 Preliminaries

In this paper, we denote E :={u|u∈(C∞
0 (Ω))2,divu=0}, H is the closure of E in (L2(Ω))2,

(·,·) and |·| denote the inner product and norm in H respectively, i.e.,

(u,v)=
2

∑
j=1

∫
Ω

uj(x)vj(x)dx, ∀ u,v∈ (L2(Ω))2 and |u|2=(u,u).

V is the closure of E in (H1(Ω))2 topology, ((·,·)) and ∥·∥ denote the inner product and
norm in V respectively, i.e.,

((u,v))=
2

∑
i,j=1

∫
Ω

∂uj

∂xi

∂vj

∂xi
dx, ∀ u,v∈ (H1

0(Ω))2 and ∥u∥2=((u,u)).
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H′ and V ′ are dual spaces of H and V respectively, where the injections V ↪→H≡H′ ↪→V ′

are dense and continuous. The norm ∥·∥∗ and ⟨·⟩ denote the norm in V ′ and the dual
product between V and V ′ respectively.

Let P be the Helmholz-Leray orthogonal projection operator from (L2(Ω))3 onto H.
We define A :=−P∆ to be the Stokes operator with domain D(A)=(H2(Ω))3∩(H1

0(Ω))3,
then the operator A :V→V ′ has the property ⟨Au,v⟩=((u,v)) for all u, v∈V which is an
isomorphism from V into V ′. {λj}∞

j=1 (0<λ1≤λ2≤···) are eigenvalues of operator A for
the eigenvalue problem Au=λu, u|∂Ω = 0 in L2(Ω). {ωj}∞

j=1 is an orthonormal basis of
operator A corresponding to {λj}∞

j=1, i.e., Aωj =λjωj.
We define the bilinear and trilinear operators as (see [11])

B(u,v) :=P((u·∇)v), ∀ u,v∈E, (2.1)

b(u,v,w)=(B(u,v),w)=
2

∑
i,j=1

∫
Ω

ui
∂vj

∂xi
wjdx (2.2)

respectively. The operators B(u,v) and b(u,v,w) satisfies
b(u,v,v)=0, ∀ u∈V, v∈ (H1

0(Ω))2,

b(u,v,w)=−b(u,w,v), ∀ u,v,w∈V,

|b(u,v,w)|≤C|u| 1
2 ∥u∥ 1

2 ∥v∥|w| 1
2 ∥w∥ 1

2 , ∀ u,v,w∈V.

(2.3)

We also present Hardy’s inequality∫
Ω

|u(x)|2
[dist(x,∂Ω)]2

dx≤C3

∫
Ω
|∇u(x)|2dx, ∀ u∈V (2.4)

which will be used in sequel.

2.2 Some useful spaces

We define the fractal operator As (s∈R) as

As f =∑
j

λs
j ( f ,ωj)ωj, s∈R, j∈R, (2.5)

Vs =D(As)=

{
g∈H : Asg∈H,

+∞

∑
i=1

λ2α
i |(u,ωi)|2<+∞

}
, (2.6)

∥Aσu∥=
(

+∞

∑
i=1

λ2σ
i |(u,ωi)|2

)1/2

. (2.7)

Here D(As) denotes the domain of As with the inner product and the norm ∥·∥s as

(u,v)Vs =(A
s
2 u,A

s
2 v), ∥u∥2

Vs =(u,u)Vs (2.8)
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and V
s+1

2 =D(A
s+1

2 ) with the norm ∥·∥
V

s+1
2

. Especially,

V=V1, V2=W :=(H2(Ω))3
∩
(H1

0(Ω))3.

Moreover, As satisfies (see [1])

∥u∥L4 ≤C1|A
1
4 u|, ∀u∈D(A

1
4 ). (2.9)

The Gagliardo-Nirenberg interpolation inequality

|A1/2u|2≤C2|A1/4u||A3/4u|, ∀ u∈D(A3/4). (2.10)

2.3 Estimate of background function for (1.3)

The background function for the Stokes problem in Lipschitz-like domain satisfies the
following estimate:

(1) The background function ψ which is a solution of Stokes problem satisfies the
following estimates in a Lipschitz-like domain

sup
x∈Ω

|ψ(x)|+sup
x∈Ω

|∇ψ(x)|dist(x,∂Ω)≤C4∥φ∥L∞(∂Ω), (2.11)

∥|∇ψ|dist(·,∂Ω)1− 1
p ∥Lp(Ω)≤C5∥φ∥Lp(∂Ω), 2≤ p≤∞, (2.12)

∥ψ∥L∞(Ω)≤C4∥φ∥L∞(∂Ω). (2.13)

(2) If ψ satisfies the problem
div ψ=0, x∈Ω,

ψ= û, if x∈{x∈Ω; dist(x,∂Ω)<C′
1ε},

ψ= φ, on ∂Ω in sense of nontangential convergence.

(2.14)

Then we have

∆ψ=∇(qηε)+F, (2.15)

where

Supp ψ⊂{x∈ Ω̄; dist(x,∂Ω)<C′
2ε}, (2.16)

∥F∥L2(Ω)≤
C

ε
3
2
∥φ∥L2(∂Ω), ∇q=△û, (2.17)

F=0, x∈{x|dist(x,∂Ω)<C′
1ε or dist(x,∂Ω)>C′

2ε}, (2.18)

here ε is an arbitrary fixed positive constant.
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2.4 The equivalent problem

Based on the above notations, since the Stokes operator is compact, then (1.4) is equiva-
lent to the following homogeneous boundary value problem

vt−ν∆v+(v(t)·∇)v+(v(t)·∇)ψ+(ψ·∇)v+∇(p−νqηε)= f̄ −(ψ·∇)ψ,
div v=0,
v|∂Ω =0,
v(τ,x)=vτ(x)=uτ(x)+ψ(x),

(2.19)

where f̄ = f (x,t)+νF(x).
Let vτ∈H or V, applying the Leray projector P to problem (2.19), using the divergence

free condition, we derive the following equivalent abstract weak form{
vt+νAv+B(v,v)+B(v,ψ)+B(ψ,v)=P f̄ −B(ψ,ψ),

div v=0.
(2.20)

2.5 Existence of global weak solution

Let ψ be a background flow function which satisfies the Stokes problem (1.3) and v(t,x)=
u(t,x)−ψ(x), and its global weak solution can be defined as following.

Definition 2.1. Let Ω be a Lipschitz-like domain, uτ∈H, f (x,t)∈L2
loc(R;V ′), φ∈L∞(∂Ω) and

φ·n=0 on ∂Ω, u is called a weak solution of problem (1.1) provided that

(i) u∈C([τ,T];H), u(·,τ)=uτ, and du/dt∈L2(τ,T;V ′);

(ii) for all v∈C∞
0 (Ω) with div v=0, we get

d
dt

<u,v>−ν<u,∆v>−
∫

Ω

2

∑
i,j=1

uiuj ∂vi

xj
dx=< f ,v>

in the distributional sense on [τ,T];

(iii) there exists functions ψ∈C2(Ω)∩L∞(∂Ω), q∈C1(Ω) and g∈L2(Ω) such that
△ψ=∇q+ ĝ, in Ω,
div ψ=0, in Ω,
ψ= φ, on ∂Ω,

where ψ can reach its boundary values in the sense of non-tangential convergence and u−
ψ∈L2(τ,T;V).

The existence of global weak solutions of problem (2.20) (which is equivalent to (2.19))
can be stated as the following theorem.
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Theorem 2.1. Let vτ(x)∈H, f (x,t)∈ L2
loc(R;V ′), then there exists a unique solution v(t,x) of

non-autonomous problem (2.20) satisfying

v(t,x)∈L∞(τ,T;H)
∩

L2(τ,T;V),

and dv/dt is uniformly bounded in L2(τ,T;V ′).

Proof. Applying the Galerkin approximated method and compact argument as in [1] to
our non-autonomous problem, this result could be established, see Section 3.1.

The continuous dependence of global solutions on initial data will be presented in
following theorem.

Theorem 2.2. Let uτ ∈ H, f ∈ L2
loc(R;V ′),φ∈ L∞(∂Ω), and φ·n= 0 on ∂Ω. Then, we obtain

that the weak solution satisfies u(t,x)∈L4([τ,T]×Ω).
Moreover, the problem (1.1) possesses a unique weak solution u(t,x)∈L∞(τ,T;H)∩L2(τ,T;V)

which is continuously dependent on the initial data, i.e., u(t,x)∈C(τ,T;H).

Proof. See Section 3.1.

Remark 2.1. For the above theorem, if we consider the inhomogeneous boundary condi-
tion for 2D incompressible Navier-Stokes equation with Rayleigh’s friction (See [13]) in
Lipschitz-like domain 

∂u
∂t

−ν∆u+(u·∇)u+αu+∇p= f (t,x),

divu=0,
(2.21)

then the system (2.21) possesses a global weak solution u(t,x) satisfying

u(t,x)∈L∞(τ,T;H)∩L2(τ,T;V),

which means the Rayleigu’s friction does not change the structure of classical Navier-
Stokes equation (1.1). Moreover, the regularity also holds.

Remark 2.2. Consider the 3D Navier-Stokes-Voight equation just as [14] with same bound-
ary condition in Lipschitz-like domain

∂u
∂t

−α2∆ut−ν∆u+(u·∇)u+∇p= f (t,x),

divu=0,
(2.22)

then we can not derive the well-posedness for (2.22), since the estimate of background
function for the steady state Stokes problem (1.3) is open in three dimension. However,
if we consider (2.22) in two dimension Lipschitz domain, then the equation (2.22) has a
unique solution u(t,x) satisfying u(t,x)∈L∞(τ,T;V)∩L2(τ,T;V).
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2.6 The regularity of global weak solution

By the similar technique in Theorem 2.1 and uniform estimates in D(A
σ
2 ) and V, the

regularity of global weak solution above can be stated in the following theorem.

Theorem 2.3. (1) Assume f ∈L2
loc(R;H), let v(t,x) be the solution of (2.20) with the initial data

vτ∈D(A
σ
2 ), then the global weak solution v(t,x) becomes regular as v(t,x)∈L∞(τ,T;D(A

σ
2 ))∩

L2(τ,T;D(A
σ+1

2 )) for σ∈ [0, 1
2 ] and v(t,x)∈Cw([τ,T];D(A

σ
2 )) from the continuous dependence

on initial data.
(2) Let uτ ∈ D(A

σ
2 ), f (x,t)∈ L2

loc(R;H), φ ∈ L∞(∂Ω). Then, the problem (1.1) possesses
regular solution u(t,x)∈Cw([τ,T];D(A

σ
2 ).

Proof. See Section 3.2.

Remark 2.3. The recent literature from [15] considered the 3D Navier-Stokes equation
with variable viscosity

∂u
∂t

−(ν+ν1∥u∥2)∆u+(u·∇)u+∇p= f (t,x),

divu=0.
(2.23)

If we consider (2.23) with the same condition as (1.1), then the well-posedness and regu-
larity are not easy to achieve, even the two dimension case.

Remark 2.4. In conclusion, from the comparing with some other fluid flow models, we
has show that the well-posedness and regularity hold for 2D system since the estimate of
background function, even some complex models such as MHD and micropolar flows.

3 Proof of main results

In this section, we will prove our main results by some delicate estimates.

3.1 Proof of Theorems 2.1 and 2.2

In this section, we shall first prove the global existence of solutions for the equivalent
abstract equation of problem (1.1) in H. Then the proof of continuous dependence on the
initial data and the solution processes will be presented.

• Proof of Theorem 2.1:

Step 1: We shall use the standard Faedo-Galerkin method to establish the existence of
approximate solution to problem (2.20).

Fix n≥ 1, wj (j≥ 1) be the normalized eigenfunctions basis for the Stokes operators
in the space H with its increasing eigenvalues satisfying 0<λ1 ≤λ2 ≤··· and lim

j→∞
λj =∞.
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Let Vn = span{w1,w2,··· ,wn}, we define an approximate solution vn to problem (2.20) as
vn(t)=∑n

j=1anj(t)wj ∈Vn which satisfies the following initial value problem of ordinary
differential equation with respect to unknown variables {anj}n

j=1,


d
dt

(vn,wj)+ν⟨Avn,wj⟩+b(vn,vn,wj)+b(vn,ψ,wj)+b(ψ,vn,wj)

=(Pn f̄ ,wj)−b(ψ,ψ,wj),
vn(τ)=vnτ.

(3.1)

By the local existence theory of solutions for ordinary differential equations, there
exists a solution in local interval (τ,T) for problem (3.1).

Step 2: A priori L∞-estimate.
Multiplying (3.1) by anj, summing the resulting equations from j = 1 to n, noting

b(vn,vn,vn)=0 and b(ψ,vn,vn)=0 from (2.3), we have

1
2

d
dt

|vn|2+ν∥vn∥2≤|b(vn,ψ,vn)|+|⟨Pn f̄ ,vn⟩|+|b(ψ,ψ,vn)|. (3.2)

Next, we shall estimate every term on the right-hand side in (3.2).
(a) Using Hardy’s inequality (2.4), (2.3) and (2.11), choosing suitable ε>0 such that

C2C3C4ε∥φ∥L∞(∂Ω)≤
ν

4
, (3.3)

we obtain

|b(vn,ψ,vn)|≤C4∥φ∥L∞(∂Ω)

∫
dist(x,∂Ω)≤C2ε

dist(x,∂Ω)
|vn|2

[dist(x,∂Ω)]2
dx

≤C2C3C4ε∥φ∥L∞(∂Ω)∥vn∥2≤ ν

4
∥vn∥2. (3.4)

Similarly, we have

|b(ψ,ψ,vn)|≤
ν

4
∥vn∥2+

Cε |∂Ω|
ν

∥φ∥2
L∞(∂Ω), (3.5)

|<Pn f̄ ,vn > |≤ ν

4
∥vn∥2+

C
ν

[ | f |2V ′

λ1
+

Cν2

ε
∥φ∥2

L2(∂Ω)

]
. (3.6)

Combining (3.2)–(3.6), by ∥φ∥2
L2(∂Ω)

≤C|∂Ω|∥φ∥2
L∞(∂Ω) and the Poincaré inequality, we get

d
dt

|vn|2+
νλ1

2
|vn|2

≤ C
ν

[ | f |2V′

λ1
+

Cν2

ε
|∂Ω|∥φ∥2

L∞(∂Ω)+Cε |∂Ω|∥φ∥2
L∞(∂Ω)

]
≡K2

0. (3.7)
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By the Gronwall inequality, we derive

|vn|2≤|vnτ|2e−
νλ1

2 (t−τ)+
∫ t

τ
e−

νλ1
2 (t−s)K2

0ds. (3.8)

Moreover, since ∥φ∥2
L2(∂Ω)

≤C|∂Ω|∥φ∥2
L∞(∂Ω) and f ∈ L2

loc(τ,T;V ′), then we have, for an
arbitrary t∈ (τ,T),∫ t

τ
e−

νλ1
2 (t−s)K2

0ds

=
∫ t

τ
e−

νλ1
2 (t−s) C

ν

[ | f |2V′

λ1
+

ν2

ε
∥φ∥2

L2(∂Ω)+ε |∂Ω|∥φ∥2
L∞(∂Ω)

]
ds

=
∫ t

τ
e−

νλ1
2 (t−s) C

ν

| f |2V ′

λ1
ds+

C
ν

[
ν2

ε
|∂Ω|∥φ∥2

L∞(∂Ω)+ε |∂Ω|∥φ∥2
L∞(∂Ω)

]
·
∫ t

τ
e−

νλ1
2 (t−s)ds

and

C
ν

[
ν2

ε
|∂Ω|∥φ∥2

L∞(∂Ω)+ε |∂Ω|∥φ∥2
L∞(∂Ω)

]∫ t

τ
e−

νλ1
2 (t−s)ds≤C, (3.9)

C
νλ1

∫ t

0
e−

νλ1
2 (t−s)| f (s)|2V′ds≤ C

νλ1

∫ t

τ
| f (s)|2V′ds≤C. (3.10)

This implies that v(t,x)∈L∞(τ,T;H).

Step 3: The priori L2-estimate.
Integrating (3.2) over (s,t), and using (3.3)–(3.6), we have

|vn|2+
ν

2

∫ t

s
∥vn(r)∥2dr (3.11)

≤|vn(s)|2+C∥ f ∥L2(τ,T;V′)+
C
ν

[
ν2

ε
|Ω|∥φ∥2

L∞(∂Ω)+ε |∂Ω|∥φ∥2
L∞(∂Ω)

]
(t−s),

and using the Poincaré inequality and Gronwall’s inequality, we derive that

|vn|2≤|vn(s)|2e−
νλ1

2 (t−s)+C∥ f ∥L2
loc(τ,T;V′)e

− νλ1
2 (t−s)

+
C
ν

[
ν2

ε
|Ω|∥φ∥2

L∞(∂Ω)+ε |∂Ω|∥φ∥2
L∞(∂Ω)

]
t−s

e
νλ1

2 (t−s)
, (3.12)

which shows that vn(t,x)∈L∞(τ,T;H)∩L2(τ,T;V) if let s=τ in (3.12).

Step 4: The priori L2-estimate of dvn/dt.
Using the estimate of trilinear operator |b(u,v,w)| ≤C|u| 1

2 ∥u∥ 1
2 ∥v∥∥w∥1/2|w|1/2 and

the Poincaré inequality, we have

∥B(vn,vn)∥V ′ = sup
∥w∥=1

∥b(vn,vn,w)∥≤C|vn|
1
2 ∥vn∥

1
2 ∥vn∥,
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∫ T

τ
∥B(vn,vn)∥2

V′ds≤C
(∫ T

τ
|vn|2ds+

∫ T

τ
∥vn∥2ds

)
, (3.13)

which implies B(vn,vn)∈L2(τ,T;V ′).
Considering ⟨dvn

dt ,w⟩ with w∈V in the equation(
dvn

dt
,w
)
+(νAvn,w)+(B(vn,vn),w)+(B(vn,ψ),w)+(B(ψ,vn),w)

=(P f ,w)−(B(ψ,ψ),w), (3.14)

and using the Hardy inequality, Hölder’s inequality and the same technique as in (3.4),
we deduce

|b(vn,ψ,w|≤C4∥φ∥L∞(∂Ω)

∫
dist(x,∂Ω)≤C2ε

|vn|
dist(x,∂Ω)

|w|dist(x,∂Ω)dx

≤C∥φ∥L∞(∂Ω)∥vn∥∥w∥, (3.15)∫ T

τ
|B(vn,ψ)|2V′ds≤C∥φ∥2

L∞(∂Ω)∥vn∥2
L2(τ,T;V), (3.16)

which means that B(vn,ψ) ∈ L2(τ,T;V ′). Similarly, we have B(ψ,vn) ∈ L2(τ,T;V ′) and
B(ψ,ψ)∈L2(τ,T;V ′). Since f ∈L2

loc(τ,T;V ′) and vn∈L2(τ,T;V), then P f ∈L2(τ,T;V ′) and
νAvn ∈L2(τ,T;V ′). From the equation (3.14) in the weak sense, we have dvn

dt ∈L2(τ,T;V ′)

and {dvn
dt } is bounded.

Step 5: Passing to limit and compact argument to achieve the existence of weak solu-
tions.

From Steps 3 and 4, using the Lions-Aubin compact argument and the dominated
convergence theorem, we can extract a subsequence (relabeled as vn) and derive the ex-
istence of function v∈L2(τ,T;V)∩L∞(τ,T;H) with dv

dt ∈L2(τ,T;V ′) such that

vn →v strongly in L2(τ,T;H), (3.17)

vn ⇀v weakly in L2(τ,T;V), (3.18)

vn ⇀v weakly * in L∞(τ,T;H), (3.19)
dvn

dt
⇀

dv
dt

weakly in L2(τ,T;V ′). (3.20)

Next, we shall deal with the convergence of trilinear operators. Using the Hölder in-
equality and the property of trilinear operators, we obtain∫ T

τ
|b(vn,vn,ωj)−b(v,v,ωj)|dt

=
∫ T

τ
|b(vn,vn−v,ωj)|dt≤C

∫ T

τ
∥vn∥∥ωj∥|vn−v|dt
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≤C∥vn∥L2(τ,T;V)∥vn−v∥L2(τ,T;H)→0. (3.21)

Similarly, we have∫ T

τ
|b(vn−v,v,ωj)|dt≤ C√

λ1
∥v∥L2(τ,T;V)∥vn−v∥L2(τ,T;H)→0, (3.22)∫ T

τ
|b(vn,ψ,ωj)−b(u,ψ,ωj)|dt≤C∥φ∥L∞(∂Ω)∥vn−v∥L2(τ,T;H)→0, (3.23)

∫ T

τ
|b(ψ,vn,ωj)−b(ψ,u,ωj)|dt≤C∥φ∥L∞(∂Ω)∥vn−v∥L2(τ,T;H)→0. (3.24)

Combining (3.17)–(3.24), passing to the limit of (3.14), we conclude that v(t,x) is a
weak solution to problem (2.19) in the interval (τ,T), i.e., there exist at least one global in
time Hadamard weak solution to problem (2.19). From the property of background flows
class ψε=ψ∈C∞(Ω) satisfying (1.3) and v=u−ψ and the solution v for problem (2.19) is
obtained in Theorem 2.1 with initial data vτ=uτ−ψ, it is easy to check that u satisfies the
conditions (i), (ii) and (iii) in Definition 3.1 and u(t,x)∈ L∞(0,T;H)∩L2(0,T;V). We then
complete the existence result in Theorem 2.1. �

• Proof of uniqueness in Theorem 2.1 and Theorem 2.2
Let u1(·) and u2(·) be two solutions to problem (1.1) with corresponding initial data u1

τ

and u2
τ respectively and background flow functions ψ1 and ψ2, if we take w=u1−u2, then

w satisfies the problem:

dw
dt

−ν∆w+(u1 ·∇)u1−(u2 ·∇)u2=0,

div w=0, (x,t)∈Ωτ,

w(t,x)|∂Ω =0, (x,t)∈∂Ωτ,

w(τ,x)=wτ =u1
τ(x)−u2

τ(x),

(3.25)

which can be written as
dw
dt

+νAw+B(u1,u1)−B(u2,u2)=0,

div w=0.
(3.26)

Let ω∈C∞
0 (Ω), div ω=0, from the condition (ii) in Definition 2.1, we can derive

d
dt

<u1−u2,ω>−ν<u1−u2,∆ω>=
∫

Ω

2

∑
i,j=1

(ui
1uj

1−ui
2uj

2)
∂ωi

xj
dx. (3.27)

Obviously, (3.27) holds for any ω∈V. In fact, from the condition (ii) and <u1−u2,∆ω>=
−((u1−u2,ω)), we have

u1−u2=(u1−ψ1)−(u2−ψ2)+(ψ1−ψ2)∈L2([0,T];V),
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d
dt

(u1−u2)∈L2([0,T];V ′), for ω∈V.

Let ω=u1−u2 in (3.27), we have

1
2

d
dt

|ω|2+ν∥ω∥2

≤C
∫

Ω
|u2||ω||∇ω|dx≤∥u2∥L4 |∇ω|1/2|w|1/2|∇ω|

≤ν∥ω∥2+Cν∥u2∥4
L4 |ω|2. (3.28)

Since

∥u2∥L4(Ω)≤∥u2−ψ∥L4(Ω)+∥ψ∥L4(Ω)

≤C∥∇(u2−ψ)∥
1
2
L2(Ω)

∥u2−ψ∥
1
2
L2(Ω)

+∥ψ∥L4(Ω), (3.29)

we have u∈ L4(Ω×(0,T)) and ω(·,0)=0, hence ω=0, i.e., the solution is unique. More-
over, we have the continuous dependence on the initial data

|u1(s)−u2(s)|2≤∥u1
0−u2

0∥2
H×e

Cν

∫ t
τ ∥u2(s)∥4

L4(Ω)
ds

. (3.30)

Note that (3.28) can be written as

d
dt

|ω|2+ν∥ω∥2≤C′
ν∥u2∥4

L4 |ω|2. (3.31)

Integrating from τ to t, we have

|ω(t)|2+ν
∫ t

τ
∥ω(s)∥2ds≤|ωτ|2+C′

ν

∫ t

τ
∥u2(s)∥4

L4 |ω(s)|2ds. (3.32)

Neglecting the first term on the left-hand side of (3.32), and using (3.30), we derive

∫ t

τ
∥u1(s)−u2(s)∥2ds

≤ 1
ν
|u1

τ−u2
τ|2×

(
C′

ν

∫ t

τ
∥u2(s)∥4

L4dse
Cν

∫ t
τ ∥u2(s)∥4

L4(Ω)
ds
+1
)

. (3.33)

Hence, (3.30) and (3.33) imply the continuous dependent on the initial data for the
global weak solutions, and hence u(t,x) ∈ C(0,T;H)∩L2(0,T;V), which completes the
proof. �
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3.2 Proof of Theorem 2.3

Firstly, we shall present a lemma for the following proof.

Lemma 3.1. For u∈D(A1/4), there exists a constant C such that

∥u∥L4(Ω)≤C∥A1/4u∥L2(Ω), (3.34)∫
Ω

|u(x)|2
dist(x,∂Ω)

dx≤C∥A1/4u∥2
L2(Ω) (3.35)

hold, here C is independent on the domain Ω. Moreover, the following extended estimate∫
Ω

|Aαu(x)|2
dist(x,∂Ω)

dx≤C∥Aα+1/4u∥2
L2(Ω) (3.36)

is also true.

Proof. See [1].

• Proof of Theorem 2.3: Regularity of global weak solution
Using the Galerkin approximated technique and compact argument again, noting that
v = u−ψ, we need to estimate the norms of v in some more regular norm for the non-
autonomous problem, i.e., the asymptotic regularity of v, the key point of difficulty is the
estimate of trilinear operator.

Multiplying the limiting equation with Aσv for (2.20), we have

1
2

d
dt

∥Aσ/2∥2+ν∥A
σ+1

2 v∥2

≤|b(v,v,Aσu)|+|b(v,v,Aσu)|+|b(ψ,v,Aσu)|
+|b(v,ψ,Aσu)|+|b(ψ,ψ,Aσu)|+|< f̄ ,Aσv> |. (3.37)

Using the same technique in Section 3.1 and Lemma 3.1, we derive that

|b(v,v,Aσv)|≤C|A1/4v||A1/2||Aσ+ 1
4 v|≤ ν

8
|A σ+1

2 v|2+C|A1/4v|2|A1/2v|2, (3.38)

|b(ψ,v,Aσv)|≤C∥φ∥L∞(∂Ω)|A1/2||Aσv|≤ ν

8
|A σ+1

2 v|2+C∥φ∥2
L∞(∂Ω)|A

1/2v|2, (3.39)

|b(v,ψ,Aσv)|≤C∥φ∥L∞(∂Ω)

∫
Ω

|v(x)|
dist(x,∂Ω)

|Aσv|dx

≤ ν

8
|A σ+1

2 v|2+C∥φ∥2
L∞(∂Ω)|A

1/2v|2, (3.40)

|b(ψ,ψ,Aσv)|≤C∥φ∥L∞(∂Ω)∥φ∥L2(∂Ω)

∫
Ω

|Aσv(x)|
dist(x,∂Ω)

dx

≤ ν

8
|A σ+1

2 v|2+C∥φ∥2
L∞(∂Ω)∥φ∥2

L2(∂Ω). (3.41)
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In addition, by the similar technique in Section 3.1, it yields

|< f̄ ,Aσv> |≤ |< f ,Aσv> |+|F,Aσv|≤ ν

8
|A σ+1

2 v|2+C
[
| f |2+ν

√
ε|F|2

]
. (3.42)

Combining (3.37)-(3.42), noting that f ∈ L2
loc(τ,T;H), by the Gronwall inequality, we can

conclude the uniformly boundedness of v in D(A
σ
2 ), and hence also u, which complete

the proof. �

4 Further research

In this paper, we have given a proof of well-posedness for 2D non-autonomous NS e-
quation in Lipschitz-like domain, our objective next is to study the pullback dynamic
systems for our problem, and moreover for the system with delay terms.
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