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Abstract. The Stokeslet and stresslet kernels are commonly used in boundary element
simulations and singularity methods for slow viscous flow. Evaluating the velocity in-
duced by a collection of Stokeslets and stresslets by direct summation requires O(N2)
operations, where N is the system size. The present work develops a treecode algo-
rithm for 3D Stokeslets and stresslets that reduces the cost toO(N logN). The particles
are divided into a hierarchy of clusters and well-separated particle-cluster interactions
are computed by a far-field Cartesian Taylor approximation. The terms in the approx-
imation are contracted to promote efficient computation. Serial and parallel results
display the performance of the treecode for several test cases. In particular the method
has relatively simple structure and low memory usage and this enhances parallel effi-
ciency for large systems.
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1 Introduction

The slow steady flow of an incompressible viscous fluid is governed by the Stokes equa-
tions,

∇2u−∇p=0, (1.1a)
∇·u=0, (1.1b)

where u is the fluid velocity, p is the pressure and the viscosity is taken to be unity.
Many applications in fluid dynamics are modeled as particle interactions in Stokes flow,
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including for example particle-laden fluid jets [28], vibrations in microfluidic crystals [5],
cilia- and flagella-driven flows [11,33], free-surface flows of liquid drops [27] and vesicle
flows [36], among others. The Stokeslet and stresslet kernels are fundamental solutions
of the Stokes equations given in 3D (up to a numerical prefactor) by

Sij(x,y)=
δij

|x−y|+
(xi−yi)(xj−yj)

|x−y|3 , (1.2a)

Tijl(x,y)=
(xi−yi)(xj−yj)(xl−yl)

|x−y|5 , (1.2b)

where δij is the Kronecker delta, x=(x1,x2,x3), y=(y1,y2,y3) and indices i, j,l=1 : 3 rep-
resent Cartesian coordinates. The Stokeslet and stresslet kernels are commonly used in
boundary element simulations and singularity methods for slow viscous flow [29].

The ith component of the velocity induced by a set of Stokeslets and stresslets is

ui(xm)=
N

∑
n=1
n 6=m

Sij(xm,xn) f n
j +

N

∑
n=1
n 6=m

Tijl(xm,xn)hn
j νn

l , i=1,2,3, (1.3)

where xm is a target particle, xn is a source particle, f n
j is a force weight, hn

j is a dipole
weight and νn

l are the components of a unit normal vector to a surface. Note that the
Stokeslet term has an implicit sum over j=1:3 and the stresslet term has an implicit sum
over j,l = 1 : 3; for clarity in some places below these sums will be written out explic-
itly. Eq. (1.3) is written for the case in which the targets and sources coincide, but it is
straightforward to handle problems where they are disjoint.

Evaluating the velocity (1.3) for m=1 : N by direct summation requires O(N2) opera-
tions, which is prohibitively expensive when N is large. The same issue arises for inter-
acting point masses, point charges and point vortices and many fast summation methods
have been developed to reduce the cost, including particle-mesh methods [13, 20], the
Fast Multipole Method (FMM) [19] and treecodes [4]. These methods reduce the opera-
tion count to O(N logN) or O(N) in principle, while introducing approximations. The
FMM and treecode use multipole expansions of particle clusters (near-field and far-field
for the FMM, but only far-field for the treecode), while particle-mesh methods interpo-
late the particle strengths to a grid where often the fast Fourier transform (FFT) is used
to compute the sum.

A number of these fast summation methods have been developed in the context
of Stokes flow including a particle-mesh Ewald technique [31, 32] and a pre-corrected
FFT method [38]. Several extensions of the FMM have also been developed for Stokes
flow [7, 17, 24, 37, 39]. In one implementation [35], the Stokeslet and stresslet sums are
decomposed into several terms which are computed by the FMM for Coulomb interac-
tions [15]. The kernel-independent FMM [25, 26, 39] has been applied to simulate swim-
ming microorganisms [30] using regularized Stokeslets [8,9]. Recently the Spectral Ewald
(SE) method was developed for Stokes flow using Gaussian spreading functions [1, 2].
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These developments significantly improve the capability of fast summation meth-
ods for Stokes flow, but it is important to investigate different approaches and under-
stand their properties, especially as new types of many-core computing platforms be-
come available with new challenges to the goal of maintaining parallel efficiency. In
particular, as the relative cost of memory access rises in comparison with arithmetic op-
erations, it is worthwhile to investigate fast summation methods with different memory
requirements and communication patterns.

In this context the present work contributes a treecode algorithm that reduces the cost
of the Stokeslet and stresslet sums (1.3) to O(N logN). In a treecode, the particles are di-
vided into a hierarchy of clusters and well-separated particle-cluster interactions are com-
puted by a far-field approximation, while nearby interactions are computed directly [4].
The original treecode used monopole approximations, but later work starting with the
FMM showed the advantage of using higher-order multipole approximations [19]. Here
we retain the structure of the treecode, but we employ higher-order Cartesian Taylor se-
ries for the far-field approximation [3, 10, 12, 21–23]. We derive novel expressions for the
Taylor coefficients of the Stokeslet and stresslet kernels in terms of the Taylor coefficients
of the Coulomb potential and the far-field approximation is contracted for efficient eval-
uation, following an approach used for direct summation in the FMMLIB3D code [14,17].
A key feature of the proposed treecode is its relatively simple structure and low memory
usage, which together can enhance parallel efficiency.

The paper is organized as follows. Section 2 explains the particle-cluster interaction
on which the treecode is based. Section 3 derives expressions for the Taylor coefficients of
the Stokeslet and stresslet kernels. Section 4 presents an efficient method for computing
the particle-cluster approximations. Section 5 describes the treecode algorithm in detail.
Section 6 presents serial and parallel numerical results showing the performance of the
treecode in terms of accuracy, efficiency and memory usage. A summary is given in
Section 7.

2 Particle-cluster interactions

We start by expressing the velocity (1.3) in terms of particle-cluster interactions. Assume
the particles have been divided into a set of clusters {C} (the procedure will be described
below). Then write the Stokeslet part of the velocity as a sum of particle-cluster interac-
tions,

usto
i (xm)=

N

∑
n=1

Sij(xm,xn) f n
j

=∑
C

∑
yn∈C

Sij(xm,yn) f n
j =∑

C
usto

i (xm,C), (2.1)

where
usto

i (xm,C)= ∑
yn∈C

Sij(xm,yn) f n
j (2.2)
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Figure 1: Particle-cluster interaction between a target particle xm and a cluster of source particles C = {yn},
with cluster center yc, cluster radius r, particle-cluster distance R.

cluster center y = yc,

usto
i (xm, C) = Â

yn2C
Sij(xm, yn) f n

j (2.3a)

= Â
yn2C

•

Â
||k||=0

1
k!

Dk
y Sij(xm, yc)(yn � yc)

k f n
j (2.3b)

=
•

Â
||k||=0

1
k!

Dk
y Sij(xm, yc) Â

yn2C
(yn � yc)

k f n
j (2.3c)

⇡
p

Â
||k||=0

ak
ij(xm, yc)Mk

j (C), (2.3d)

where p is the order of approximation, k = (k1, k2, k3) is an integer multi-index with
all ki � 0,

ak
ij(xm, yc) =

1
k!

Dk
y Sij(xm, yc) (2.4)

is the kth Taylor coefficient of the Stokeslet, and

Mk
j (C) = Â

yn2C
(yn � yc)

k f n
j (2.5)

is the kth moment of cluster C. Note that the following conventions are used for multi-
index notation, ||k|| = k1 + k2 + k3, k! = k1!k2!k3!, Dk

y = Dk1
y1 Dk2

y2 Dk3
y3 , yk = yk1

1 yk2
2 yk3

3 .
Note that the particle-cluster approximation (2.3d) separates the target and source

particles, and this promotes an efficient computation. The key points are (i) the Taylor
coefficients ak

ij depend on the target particle xm and cluster center yc, but not on the
particles yn in the cluster, and (ii) the cluster moments Mk

j depend only on the particles
in the cluster C, so they can be stored and re-used for different target particles xm.

Figure 1: Particle-cluster interaction between a target particle xm and a cluster of source particles C= {yn},
with cluster center yc, cluster radius r, particle-cluster distance R.

is the interaction between a target particle xm and a cluster of source particles C= {yn}.
Fig. 1 depicts the particle-cluster interaction, showing also the cluster center yc, cluster
radius r=maxn |yn−yc| and particle-cluster distance R= |xm−yc|. The stresslet part of
the velocity is treated similarly.

If the particle xm and cluster C are not well-separated (the criterion is given later),
then direct summation is used in (2.2). If they are well-separated, then we use a far-field
approximation given by Taylor expanding the Stokeslet Sij(x,y) about the cluster center
y=yc,

usto
i (xm,C)= ∑

yn∈C
Sij(xm,yn) f n

j

= ∑
yn∈C

∞

∑
||k||=0

1
k!

Dk
y Sij(xm,yc)(yn−yc)

k f n
j

=
∞

∑
||k||=0

1
k!

Dk
y Sij(xm,yc) ∑

yn∈C
(yn−yc)

k f n
j

≈
p

∑
||k||=0

ak
ij(x

m,yc)Mk
j (C), (2.3)

where p is the order of approximation, k= (k1,k2,k3) is an integer multi-index with all
ki≥0,

ak
ij(x

m,yc)=
1
k!

Dk
y Sij(xm,yc) (2.4)

is the kth Taylor coefficient of the Stokeslet and

Mk
j (C)= ∑

yn∈C
(yn−yc)

k f n
j (2.5)

is the kth moment of cluster C. Note that the following conventions are used for multi-
index notation, ||k||= k1+k2+k3, k!= k1!k2!k3!, Dk

y =Dk1
y1 Dk2

y2 Dk3
y3 , yk =yk1

1 yk2
2 yk3

3 .
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Note that the particle-cluster approximation (2.3) separates the target and source par-
ticles and this promotes an efficient computation. The key points are (i) the Taylor coeffi-
cients ak

ij depend on the target particle xm and cluster center yc, but not on the particles yn

in the cluster and (ii) the cluster moments Mk
j depend only on the particles in the cluster

C, so they can be stored and re-used for different target particles xm.
Similarly for the stresslet particle-cluster interaction,

ustr
i (xm,C)= ∑

yn∈C
Tijl(xm,yn)hn

j νn
l ≈

p

∑
||k||=0

ãk
ijl(x

m,yc)M̃k
jl(C), (2.6)

with stresslet Taylor coefficients,

ãk
ijl(x

m,yc)=
1
k!

Dk
y Tijl(xm,yc), (2.7)

and cluster moments,
M̃k

jl(C)= ∑
yn∈C

(yn−yc)
khn

j νn
l . (2.8)

Combining (2.3) and (2.6), when a particle xm and cluster C are well-separated, the far-
field approximation for the induced velocity of the particle-cluster interaction is com-
puted from

ui(xm,C)≈
p

∑
||k||=0

ak
ij(x

m,yc)Mk
j (C)+

p

∑
||k||=0

ãk
ijl(x

m,yc)M̃k
jl(C). (2.9)

As explained in the next two subsections, the strategy for evaluating (2.9) has two parts.
First we derive alternative expressions for the Stokeslet and stresslet Taylor coefficients,
ak

ij, ã
k
ijl and then using those expressions we derive a method for efficient computation

of (2.9).

3 Alternative expressions for Taylor coefficients

First consider the Coulomb potential,

G(x,y)=
1

|x−y| , (3.1)

with Taylor coefficients

bk(x,y)=
1
k!

Dk
y G(x,y). (3.2)

It was shown in [12, 23] that these coefficients satisfy the recurrence relation

||k||·|x−y|2bk−(2||k||−1)
3

∑
i=1

(xi−yi)bk−ei +(||k||−1)
3

∑
i=1

bk−2ei =0, (3.3)
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with b0 =G(x,y), bk =0 when any ki <0 and ei is the ith Cartesian unit vector. First the
Stokeslet (1.2a) is written as

Sij(x,y)=δijG(x,y)+(xj−yj)Dyi G(x,y), (3.4)

and then applying the Leibniz rule for differentiating a product, we have

1
k!

Dk
y
[
(xj−yj)Dyi G

]
=

1
k!

D
k−k jej
y D

k j
yj

[
(xj−yj)Dyi G

]
=

1
k!

D
k−k jej
y

[
(xj−yj)D

k j
yj Dyi G−k jD

k j−1
yj Dyi G

]
=(xj−yj)

1
k!

Dk+ei
y G− k j

k!
D

k+ei−ej
y G

=(xj−yj)(ki+1)bk+ei−(ki+1−δij)bk+ei−ej . (3.5)

This yields the following expression for ak
ij in terms of the bk,

ak
ij =δijbk+(xj−yj)(ki+1)bk+ei−(ki+1−δij)bk+ei−ej . (3.6)

Similarly the stresslet (1.2b) is written as

Tijl(x,y)=
1
3

[
(xl−yl)Dyi Dyj G(x,y)+δijDyl G(x,y)

]
, (3.7)

so the Taylor coefficients are

ãk
ijl =

1
k!

Dk
y Tijl =

1
3

[
1
k!

Dk
y

[
(xl−yl)Dyi Dyj G

]
+δij

1
k!

Dk
y Dyl G

]
. (3.8)

The first term on the right is

1
k!

Dk
y

[
(xl−yl)Dyi Dyj G

]
=(xl−yl)

1
k!

D
k+ei+ej
y G− kl

k!
D

k+ei+ej−el
y G

=(xl−yl)(ki+1)(k j+1+δij)bk+ei+ej

−(ki+1−δil)(k j+1+δij−δjl)bk+ei+ej−el . (3.9)

This yields the following expression for ãk
ijl in terms of the bk,

3ãk
ijl =(xl−yl)(ki+1)(k j+1+δij)bk+ei+ej

−(ki+1−δil)(k j+1+δij−δjl)bk+ei+ej−el +δij(kl+1)bk+el . (3.10)

The Taylor coefficients ak
ij, ãk

ijl could be computed explicitly using (3.6) and (3.10), how-
ever instead we will employ these relations implicitly to obtain a more efficient evalu-
ation of the particle-cluster approximation (2.9). The details are explained in the next
section.
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4 Efficient computation of particle-cluster approximations

In this section we explain how to rewrite various sums for improved computational effi-
ciency, first for the direct sum (1.3) to illustrate the idea and then for the particle-cluster
approximation (2.9).

4.1 Direct sum

The procedure for efficient evaluation of the direct sum (1.3) was previously used in the
FMMLIB3D code [14, 17]. It is repeated here to illustrate the idea and then it is applied
to the particle-cluster approximation in the treecode. The idea is to contract the sums
and re-use quantities wherever possible. First note that the Stokeslet part of (1.3) can be
expressed as

usto
i (xm)=

N

∑
n=1
n 6=m

3

∑
j=1

Sij(xm,yn) f n
j

=
N

∑
n=1
n 6=m

(
3

∑
j=1

δij

|xm−yn| f
n
j +

3

∑
j=1

(xm
i −yn

i )(xm
j −yn

j )

|xm−yn|3 f n
j

)

=
N

∑
n=1
n 6=m

(
f n
i

|xm−yn|+(xm
i −yn

i )s
mn
)

, (4.1)

where

smn = |xm−yn|−3
3

∑
j=1

(xm
j −yn

j ) f n
j

can be re-used for i=1 :3. Similarly, the stresslet part of (1.3) can be expressed as

ustr
i (xm)=

N

∑
n=1
n 6=m

3

∑
j=1

3

∑
l=1

Tijl(xm,yn)hn
j νn

l

=
N

∑
n=1
n 6=m

3

∑
j=1

3

∑
l=1

(xm
i −yn

i )(xm
j −yn

j )(xm
l −yn

l )

|xm−yn|5 hn
j νn

l =
N

∑
n=1
n 6=m

(xm
i −yn

i )t
mn, (4.2)

where

tmn = |xm−yn|−5
3

∑
j=1

(xm
j −yn

j )h
n
j

3

∑
l=1

(xm
l −yn

l )ν
n
l

can be re-used for i=1:3. Using (4.1) and (4.2), the operation count for direct summation
is still O(N2), but we observe empirically that the CPU run time is reduced since this
procedure avoids explicitly forming the tensors Sij, Tijl .
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4.2 Stokeslet particle-cluster interaction

We take a similar approach in computing the particle-cluster approximations in the
treecode; the sums are contracted to reduce the number of operations, terms are re-used
wherever possible and we avoid explicitly forming the Taylor coefficient tensors ak

ij, ã
k
ijl .

Consider the Stokeslet particle-cluster approximation (2.9); using the expression for the
Taylor coefficients (3.6), we have

usto
i (xm,C)≈

p

∑
||k||=0

3

∑
j=1

ak
ij(x

m,yc)Mk
j (C)

=
p

∑
||k||=0

3

∑
j=1

[
δijbk+(xj−yj)(ki+1)bk+ei−(ki+1−δij)bk+ei−ej

]
Mk

j (C). (4.3)

This simplifies to

usto
i (xm,C)≈

p

∑
||k||=0

[
2bk Mk

i (C)+(ki+1)
[
bk+ei σk(C)−

3

∑
j=1

bk+ei−ej Mk
j (C)

]]
, (4.4)

where

σk(C)=
3

∑
j=1

(xj−yj)Mk
j (C)

can be re-used for i=1 :3.

4.3 Stresslet particle-cluster interaction

Next consider the stresslet particle-cluster approximation (2.9); using the expression for
the Taylor coefficients (3.10), we have

ustr
i (xm,C)≈

p

∑
||k||=0

3

∑
j=1

3

∑
l=1

ãk
ijl(x

m,yc)M̃k
jl(C)

=
1
3

p

∑
||k||=0

3

∑
j=1

3

∑
l=1

[
(xl−yl)(ki+1)(k j+1+δij)bk+ei+ej

−(ki+1−δil)(k j+1+δij−δjl)bk+ei+ej−el +δij(kl+1)bk+el
]

M̃k
jl(C). (4.5)

To keep the next few intermediate formulas more concise, in the remainder of this section
we drop the arguments xm,C. Then moving the sums over indices j, l as far as possible to



L. Wang, S. Tlupova and R. Krasny / Adv. Appl. Math. Mech., 11 (2019), pp. 737-756 745

the right and splitting (4.5) into two terms, we have

ustr
i ≈

1
3

p

∑
||k||=0

[
(ki+1)

3

∑
j=1

(k j+1+δij)bk+ei+ej
3

∑
l=1

(xl−yl)M̃k
jl (4.6a)

−(ki+1)
3

∑
j=1

3

∑
l=1

(k j+1+δij−δjl)bk+ei+ej−el M̃k
jl (4.6b)

+
3

∑
j=1

3

∑
l=1

δil(k j+1+δij−δjl)bk+ei+ej−el M̃k
jl (4.6c)

+
3

∑
l=1

(kl+1)bk+el
3

∑
j=1

δij M̃k
jl

]
. (4.6d)

Then split (4.6b) into two terms and simplify (4.6c) and (4.6d) to obtain

ustr
i ≈

1
3

p

∑
||k||=0

[
(ki+1)

3

∑
j=1

(k j+1+δij)bk+ei+ej
3

∑
l=1

(xl−yl)M̃k
jl (4.7a)

−(ki+1)
3

∑
j=1

3

∑
l=1

(k j+1+δij)bk+ei+ej−el M̃k
jl (4.7b)

+(ki+1)
3

∑
j=1

3

∑
l=1

δjlbk+ei+ej−el M̃k
jl (4.7c)

+
3

∑
j=1

(k j+1)bk+ej M̃k
ji+

3

∑
l=1

(kl+1)bk+el M̃k
il

]
. (4.7d)

Defining

τj =
3

∑
l=1

(xl−yl)M̃k
jl

in (4.7a), simplifying (4.7c) and combining the terms in (4.7d), we have

ustr
i ≈

1
3

p

∑
||k||=0

[
(ki+1)

3

∑
j=1

(k j+1+δij)bk+ei+ej τj

−(ki+1)
3

∑
j=1

3

∑
l=1

(k j+1+δij)bk+ei+ej−el M̃k
jl

+(ki+1)bk+ei
3

∑
j=1

M̃k
jj+

3

∑
j=1

(k j+1)bk+ej(M̃k
ji+M̃k

ij)

]
. (4.8)

Next let

mk =
3

∑
j=1

M̃k
jj, mk

ij = M̃k
ij+M̃k

ji ,
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and restore the arguments xm, C, so that the stresslet particle-cluster approximation is

ustr
i (xm,C)≈1

3

p

∑
||k||=0

[
(ki+1)

3

∑
j=1

(k j+1+δij)bk+ei+ej τj(C)

−(ki+1)
3

∑
j=1

3

∑
l=1

(k j+1+δij)bk+ei+ej−el M̃k
jl(C)

+(ki+1)bk+ei mk(C)+
3

∑
j=1

(k j+1)bk+ej mk
ij(C)

]
. (4.9)

In summary, the particle-cluster approximation (2.9) is computed using (4.4) for the
Stokeslet part and (4.9) for the stresslet part, where the coefficients bk are computed us-
ing the recurrence relation (3.3). The introduction of the quantities σk, τk, mk, mk

ij enables
a more efficient computation. The operation count for the treecode is still O(N logN),
but we observe empirically that the CPU run time is reduced since this procedure avoids
explicitly forming the Taylor coefficient tensors ak

ij, ãk
ijl .

5 Description of treecode

The treecode implementation starts by inputting the particle positions and weights and
building a hierarchical tree of particle clusters [4]. The root cluster is a cube containing all
the source particles. The root is bisected along the Cartesian axes and the eight children
become subclusters of the root. The child clusters are similarly bisected and the process
continues until a cluster contains fewer than N0 particles, where N0 is a user-specified pa-
rameter. Each cluster has a data structure containing necessary information, e.g., pointers
to the particles belonging to the cluster, coordinates of the cluster center, pointers to the
children of the cluster and so on.

The procedure is outlined in Algorithm 1. The code uses a multipole acceptance cri-
terion (MAC) to determine whether a given target particle xm and source cluster C are
well-separated. The criterion for being well-separated is

r
R
≤ θ, (5.1)

where as shown in Fig. 1, r is the cluster radius, R is the distance between the particle
and the cluster center yc and θ is a user-specified parameter which together with the
order p controls the approximation error. The code cycles through the target particles
and each particle interacts with source clusters starting at the root. If the MAC (5.1) is
satisfied, the particle-cluster approximation is computed as explained above. If the MAC
is not satisfied, the code checks the children of the cluster, or if the cluster is a leaf (no
children), direct summation is performed, again using the efficient formulation explained
above. This structure follows the original Barnes-Hut treecode algorithm [4], modified to
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accommodate higher-order particle-cluster approximations of the Stokeslet and stresslet
kernels.

Algorithm 1 treecode.
1: program main
2: input particle positions xn and weights f n

j ,hn
j ,νn

j , treecode parameters p,θ,N0

3: build tree, compute cluster moments Mk
j (C),M̃

k
jl(C)

4: for n=1 : N
5: compute-velocity (xn, root-cluster)
6: subroutine compute-velocity (x, C)
7: if MAC is satisfied
8: compute particle-cluster interaction by far-field Taylor approximation
9: else

10: if C is a leaf, compute particle-cluster interaction by direct sum
11: else
12: for each child C′ of C
13: compute-velocity (x, C′)

The treecode algorithm was programmed in C++ and compiled using the Intel icpc
compiler with -O2 optimzation flag. The source code is available for download [18].
The computations were performed on the University of Wisconsin-Milwaukee Mortimer
Faculty Research Cluster which has 55 standard compute nodes and each node is a Dell
PowerEdge R430 server with two 12-core Intel Xeon E5-2680 v3 processors at 2.50GHz
and 64 GB RAM. Serial computations were done on one core and parallel computations
were done using MPI with each process running on one core.

6 Numerical results

We present results for two test cases. The first test case has Stokeslet and stresslet parti-
cles on the surface of a unit sphere, as in boundary element simulations of exterior Stokes
flow. The particle distribution is given by triangulating the sphere as follows. Starting
from an icosahedron with 20 triangular faces, the faces are refined by connecting the
centers of the edges, resulting in triangulations with N=20 ·4L faces for L levels of refine-
ment. The particles are obtained by projecting the triangle centroids onto the sphere. In
this test case each cluster in the tree is shrunk to the bounding rectangular box containing
its particles. The second test case follows [2] and considers Stokeslet particles randomly
distributed in cubes of different sizes, with a fixed particle number density. In both test
cases the particle weights f n

j , hn
j are random numbers in [−1,1].

There are three user-specified parameters required for the treecode. The parameter
N0 is the maximum number of particles in a leaf of the tree; the value N0 =2000 is used
throughout this work. The other parameters are the order of approximation p and MAC
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parameter θ; we will vary these parameters to investigate their effect on the code’s per-
formance. The relative error in velocity (1.3) is defined by

E=


N

∑
n=1
|ud(xn)−ut(xn)|2

N

∑
n=1
|ud(xn)|2


1/2

, (6.1)

where ud is the velocity obtained by direct summation and ut is the treecode approxima-
tion. The CPU time is given in units of seconds (s). The following subsection presents
serial results for each test case, followed by a subsection with parallel results for the sec-
ond test case.

6.1 Serial computations

6.1.1 Test case 1: particles on the surface of a sphere

The first test case has Stokeslet and stresslet particles on a unit sphere at locations deter-
mined by the icosahedral triangulation as explained above. Fig. 2 plots the treecode CPU
time versus error E for systems of size N = 82920,317680,1310720, with Taylor approxi-
mation order p=0:2:10 (increasing from right to left) and MAC parameter θ=0.8,0.5,0.2
(decreasing from right to left). As expected, smaller error E is attained by increasing the
order p and decreasing the MAC parameter θ, but this increases the CPU time. Note that
as p increases, the error decreases more rapidly for smaller θ. Also note that for a given
order p and MAC parameter θ, the error is relatively insensitive to the system size N.
We can distinguish three regimes; for low accuracy θ=0.8 is most efficient, for medium
accuracy θ=0.5 is most efficient and for high accuracy θ=0.2 is most efficient. Fig. 2 also
shows the direct sum CPU time; as the system size increases, the treecode becomes more
efficient in comparison with direct summation.

The dependence of the error and CPU time on the MAC parameter θ can be explained
as follows. Choosing a smaller θ has two effects, (i) the code descends deeper into the tree,
so the CPU time increases, but the clusters have smaller radius, so the Taylor approxima-
tion is more accurate and (ii) there is higher likelihood the code will reach the leaf clusters
of the tree, which again increases the CPU time, but in that case direct summation is per-
formed, which incurs no error.

Table 1 gives the speedup (ratio d/t of CPU times for direct sum and treecode) and the
error E. The treecode achieves higher speedup as the system size increases; for example,
a medium accuracy E≈5e−05 is attained using MAC parameter θ=0.5 and order p=6;
in this case the treecode is 3.5 times faster than direct summation for N=81920, 11 times
faster for N=327680 and 38 times faster for N=1310720.

Fig. 3 shows results graphically for MAC parameter θ = 0.5, order p = 0 : 2 : 10 and
system size between N = 20480 and N = 1310720. Fig. 3(a) plots the treecode error E
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Figure 2: Test case 1, Stokeslets and stresslets on a sphere, CPU time versus error E, system size N=1310720
(upper, black), N=327680 (middle, blue), N=81920 (lower,red), direct sum (d, dashed), treecode (t, solid),
MAC parameter θ=0.8(4),0.5(+),0.2(©) (decreasing right to left), order p=0:2:10 (increasing right to left).

Table 1: Test case 1, Stokeslets and stresslets on a sphere, treecode MAC parameter θ, order p, speedup d/t=
ratio of direct sum and treecode CPU times, error E, (a) N=81920, d=112s, (b) N=327680, d=1824s, (c)
N=1310720, d=31267s.

(a) N=81920 (b) N=327680 (c) N=1310720
θ p d/t E p d/t E p d/t E

0.2

0 1.03 8.3e-04 0 4.38 1.4e-03 0 20.43 1.4e-03
2 1.05 2.2e-05 2 4.11 3.2e-05 2 17.44 4.0e-05
4 1.04 7.3e-07 4 3.48 9.8e-07 4 12.71 1.0e-06
6 1.00 2.9e-08 6 2.69 3.6e-08 6 8.36 2.4e-08
8 0.97 1.1e-09 8 1.97 1.3e-09 8 5.38 5.3e-10

10 0.90 4.2e-11 10 1.41 5.1e-11 10 3.51 1.2e-11

0.5

0 6.12 8.9e-03 0 26.59 7.4e-03 0 124.49 6.7e-03
2 5.69 1.2e-03 2 22.75 1.1e-03 2 97.36 1.4e-03
4 4.68 2.2e-04 4 16.79 2.4e-04 4 63.67 2.5e-04
6 3.50 5.2e-05 6 11.15 5.4e-05 6 38.12 4.6e-05
8 2.50 1.2e-05 8 7.23 1.3e-05 8 23.18 9.1e-06

10 1.74 2.9e-06 10 4.18 3.2e-06 10 14.59 2.0e-06

0.8

0 14.75 2.3e-02 0 67.63 2.0e-02 0 318.73 1.7e-02
2 13.32 8.2e-03 2 56.52 8.8e-03 2 243.78 9.5e-03
4 10.87 4.5e-03 4 40.07 4.7e-03 4 153.01 4.7e-03
6 7.65 2.5e-03 6 25.66 2.7e-03 6 89.71 2.3e-03
8 5.19 1.5e-03 8 16.29 1.7e-03 8 53.60 1.2e-03

10 3.61 9.3e-04 10 10.49 1.1e-03 10 33.48 6.2e-04

versus N. The error is relatively insensitive to the system size and for a given N, the error
decreases with increasing order p. Fig. 3(b) plots the CPU time versus N. The direct sum
CPU time scales like O(N2), while the treecode CPU time is consistent with O(N logN)
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Figure 3: Test case 1, Stokeslets and stresslets on a sphere, treecode MAC parameter q = 0.5, order
p = 0 : 2 : 10, system size N = 20480 : 1310720, (a) error, E, (b) CPU time for direct sum (dashed),
treecode (solid).

6.2 Parallel computations

The parallel treecode implementation used here relies on the observation that the tar-
get particle computations in Algorithm 5.1 are independent of each other, enabling a
replicated data approach [16]. The procedure is sketched in Algorithm 6.1 and was
implemented using MPI. The idea is that the particle array of length N is divided into
np segments of length N/np, where np is the chosen number of processes, and each
segment is assigned to one process (recall that each process is running on a single
core). Each process receives a copy of the entire particle array, builds a local copy

Figure 3: Test case 1, Stokeslets and stresslets on a sphere, treecode MAC parameter θ=0.5, order p=0:2:10,
system size N=20480 :1310720, (a) error, E, (b) CPU time for direct sum (dashed), treecode (solid).

and hence the treecode is faster than direct summation except for small system size N
and large order p. In the remainder of this section we use MAC parameter θ=0.5.

Table 2 displays the peak memory used by the treecode as a function of system size N
for order p=0 : 2 : 10. The memory used by direct summation is also given. The memory
usage statistics were obtained using the Valgrind massif analysis tool (valgrind.org). The
treecode and direct summation both store the particles in arrays of size O(N), but the
treecode uses additional memory of size O((N/N0)p3) for the cluster moments, where
the factor N/N0 represents the number of clusters in the tree and the factor p3 is the
memory associated with the moments of a cluster. Recall that the number of particles in
a leaf cluster is set here at N0=2000.

In the current treecode implementation, the additional memory used for the moments
was reduced as follows. Note that for a given cluster C and indices j,l = 1 : 3, the mo-
ments Mk

j (C), M̃k
jl(C) could be stored in square three-dimensional arrays of size p3, cor-

responding to the index k = (k1,k2,k3). However since we only need the indices with
||k||= k1+k2+k3 = 0 : p, a large portion of these arrays would be empty. So instead the
moments are stored in one-dimensional arrays with no empty space, by accessing the
indices (k1,k2,k3) in a fixed order; we refer to this as flattening the moment arrays. While
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Table 2: Test case 1, Stokeslets and stresslets on a sphere, memory usage (MB) for system size N, direct sum,
treecode with order p.

N=20480 N=81920 N=327680 N=1310720
direct sum 3.3 13.1 52.4 209.8

treecode order p
0 3.3 13.1 52.6 210.7
2 3.4 13.2 53.0 214.3
4 3.7 13.6 54.2 224.1
6 4.3 14.2 56.6 243.4
8 5.4 15.2 60.6 275.2
10 7.6 16.6 66.6 322.8

the treecode memory usage still has a term scaling like O((N/N0)p3), the prefactor is
greatly reduced. Table 2 shows that in this range of system size N and order p≤ 10, ex-
cept for one case with the smallest N and largest p, the treecode uses less than twice as
much memory as direct summation.

6.1.2 Test case 2: particles in a cube

The second test case has Stokeslet particles located randomly in a cube of side length L,
with number density N/L3=2500 [2]. Table 3 shows the speedup (ratio d/t of CPU times
for direct sum and treecode) and the error E, for system size N=125K and N=1000K. The
trends in error and CPU time with respect to MAC parameter θ and order p are similar to
test case 1. The speedup in this case is somewhat less than in the previous case, because
here the system sizes are smaller and the stresslet part of the sum is omitted; nonetheless
the treecode is faster than direct summation except for one case with small θ and large p.

Table 4 presents the memory usage in test case 2. As before, the treecode uses less
than twice as much memory as direct summation. The relatively low memory usage of
the treecode is an advantage in parallel simulations, where it enables a simple replicated
data approach as shown below.

6.2 Parallel computations

The parallel treecode implementation used here relies on the observation that the target
particle computations in Algorithm 1 are independent of each other, enabling a replicated
data approach [16]. The procedure is sketched in Algorithm 2 and was implemented
using MPI. The idea is that the particle array of length N is divided into np segments of
length N/np, where np is the chosen number of processes and each segment is assigned
to one process (recall that each process is running on a single core). Each process receives
a copy of the entire particle array, builds a local copy of the tree and computes the cluster
moments. The processes run concurrently and each one computes the induced velocity
at its assigned target particles. The scheme assumes that the entire particle array and tree
structure fit into the memory of each core, which is facilitated by the treecode’s relatively
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Table 3: Test case 2, random Stokeslets in a cube with number density N/L3 = 2500 [2], treecode MAC
parameter θ, order p, speedup d/t=ratio of direct sum and treecode CPU times, error E, (a) N=125K, d=
150s, (b) N=1000K, d= 9873s.

(a) N=125K (b) N=1000K
θ p d/t E p d/t E

0.2

0 1.14 1.1e-02 0 3.46 4.3e-02
2 1.13 2.2e-04 2 3.37 7.1e-04
4 1.11 4.4e-06 4 3.18 1.5e-05
6 1.08 1.1e-07 6 2.89 3.9e-07
8 1.02 3.2e-09 8 2.50 1.1e-08
10 0.95 9.6e-11 10 2.08 3.2e-10

0.5

0 5.50 1.1e-01 0 33.89 1.5e-01
2 5.28 8.2e-03 2 31.39 1.6e-02
4 4.79 1.1e-03 4 26.86 2.0e-03
6 4.17 1.7e-04 6 21.13 3.3e-04
8 3.40 3.0e-05 8 13.77 5.7e-05
10 2.64 5.5e-06 10 11.28 1.0e-05

0.8

0 16.94 2.1e-01 0 123.78 2.7e-01
2 15.85 4.3e-02 2 111.61 7.0e-02
4 13.81 1.4e-02 4 90.79 2.3e-02
6 11.32 5.4e-03 6 67.34 9.0e-03
8 8.77 2.4e-03 8 47.13 4.1e-03
10 6.40 1.1e-03 10 32.54 1.9e-03

Table 4: Test case 2, random Stokeslets in a cube with number density N/L3=2500 [2], memory usage (MB)
for system size N, direct sum, treecode with order p.

N=125K N=1000K
direct sum 11.0 88.0

treecode order p
0 14.0 112.4
2 14.1 112.8
4 14.3 114.0
6 14.6 116.4
8 15.0 120.4

10 15.8 126.3

low memory usage; this is not an issue for the examples considered here, but in case of
a much larger system size where this assumption does not hold, a distributed memory
approach would be required.

The parallel treecode performance is demonstrated below for test case 2. First we
consider strong scaling (fixed N) and then weak scaling (increasing N), as the number
of processes np increases. We also implemented a parallel direct sum using the same
replicated data approach for comparison with the parallel treecode.
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Algorithm 2 parallel treecode.
1: in main process
2: input particle positions xn, weights f n

j ,hn
j , treecode parameters p,θ,N0

3: broadcast particle array to each process
4: in each process
5: build local copy of tree, compute cluster moments
6: use treecode to compute induced velocity at assigned target particles
7: send result to main process

Table 5: Test case 2, random Stokeslets in a cube, parallel strong scaling, system size N = 1000K, treecode
parameters θ = 0.5, p = 6, error E = 3.1e−04, number of MPI processes (np), CPU time (d =direct sum,
t =treecode), ratio of CPU time for one process and np processes (d1/dnp,t1/tnp), parallel efficiency (PE,
ratio/np), treecode speedup (d/t).

np d CPU (s) d1/dnp d PE (%) t CPU (s) t1/tnp t PE (%) d/t
1 9707.0 1.00 100.0 336.6 1.00 100.0 28.8
2 4911.4 1.98 98.8 176.3 1.91 95.4 27.9
4 2451.2 3.96 99.0 86.6 3.89 97.2 28.3
8 1345.6 7.21 90.2 48.1 7.00 87.6 28.0
16 702.0 13.83 86.4 25.6 13.16 82.2 27.4
32 350.7 27.68 86.5 13.6 24.75 77.3 25.8

6.2.1 Strong scaling

Table 5 shows results for test case 2 with N = 1000K random Stokeslets in a cube. The
treecode parameters are θ=0.5, p=6, yielding error E=3.1e−04. The Table displays the
CPU time, ratio of CPU time for 1 process and np processes and parallel efficiency, for the
direct sum (d) and treecode (t) and finally the speedup due to using the treecode (d/t),
up to np=32 processes. The parallel direct sum reduces the CPU time from 9707 s on 1
process to 350.7 s on 32 processes, for parallel efficiency 86.5%. As expected the treecode
CPU times are smaller and the parallel performance is almost as good; the CPU time is
reduced from 336.6 s on 1 process to 13.6 s on 32 processes, for parallel efficiency 77.3%.
The treecode is 28 times faster than direct summation on 1 process and 25 times faster on
32 processes.

6.2.2 Weak scaling

Table 6 shows results for test case 2 starting with N = 125K particles on 1 process, then
doubling the number of particles and processes until reaching N=4000K particles on 32
processes. The box size increases so that the number density is N/L3 = 2500 [2]. The
treecode parameters are θ=0.5, p=6, yielding error E≤3.7e−04. The results show that
with each doubling of N and np, the direct sum CPU time approximately doubles, while
the treecode CPU time increases more slowly. Hence the treecode performance improves
as the system size increases; with N=125K on 1 process, the treecode is 6 times faster than



754 L. Wang, S. Tlupova and R. Krasny / Adv. Appl. Math. Mech., 11 (2019), pp. 737-756

Table 6: Test case 2, random Stokeslets in a cube, parallel weak scaling, system size (N), number of MPI
processes (np), treecode parameters θ=0.5, p=6, error E≤3.7e−04, CPU time (d= direct sum, t= treecode),
treecode speedup d/t.

N np d CPU (s) t CPU (s) d/t
125K 1 145.5 23.7 6.1
250K 2 291.7 27.2 10.7
500K 4 610.3 32.9 18.6
1000K 8 1345.7 48.1 28.0
2000K 16 2804.9 56.7 49.5
4000K 32 5565.9 67.7 82.3

direct summation, but with N=4000K on 32 processes, the treecode is 82 times faster.

7 Summary

We presented a treecode algorithm for computing the velocity induced by a collection of
Stokeslets and stresslets in 3D flow. The method uses a far-field Cartesian Taylor approx-
imation to compute well-separated particle-cluster interactions. Expressions were de-
rived for the Taylor coefficients of the Stokeslet and stresslet kernels in terms of the Taylor
coefficients of the Coulomb potential and these expressions enable an efficient computa-
tion of higher-order approximations. Numerical results were presented for icosahedral
particles on the surface of a sphere and random particles in a cube [2]. For a given level
of accuracy, the treecode CPU time scales like O(N logN), where N is the number of
particles and a substantial speedup over direct summation is achieved for large systems.
The memory usage increases with the system size N and Taylor approximation order
p, but for the range of parameters considered here, in most cases the treecode used less
than twice as much memory as direct summation. A relatively straightforward parallel
treecode implementation was demonstrated.

It is beyond the scope of the present work to make a detailed performance compari-
son with other methods for fast summation of Stokeslets and stresslets such as the Fast
Multipole Method (FMM) [17,25,26] and the Spectral Ewald (SE) method [2]. These meth-
ods have demonstrated excellent performance in terms of accuracy and efficiency. Yet the
treecode may be an attractive option in some cases due to its relatively simple algorithmic
structure and low memory usage, which together can enhance parallel efficiency.

Our simulations used representative values of the treecode parameters (order p, MAC
parameter θ, maximum number of particles in a leaf N0) and one future goal is to gain
efficiency by tuning their values. There are several other directions for future work. The
present approach can be extended to treat regularized Stokeslets and stresslets, which
may help accelerate biofluid applications using those kernels [8, 9, 30]. Another goal is
to apply the treecode in boundary element simulations of Stokes-Darcy porous medium
flow [6, 34] and Stokes flow around solid bodies [29].
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