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Abstract. In this paper, the Riemann solutions of a reduced 6×6 blood flow model
in medium-sized to large vessels are constructed. The model is nonstrictly hyperbolic
and non-conservative in nature, which brings two difficulties of the Riemann problem.
One is the appearance of resonance while the other one is loss of uniqueness. The
elementary waves include shock wave, rarefaction wave, contact discontinuity and
stationary wave. The stationary wave is obtained by solving a steady equation. We
construct the Riemann solutions especially when the steady equation has no solution
for supersonic initial data. We also verify that the global entropy condition proposed
by C.Dafermos can be used here to select the physical relevant solution. The Riemann
solutions may contribute to the design of numerical schemes, which can apply to the
complex blood flows.
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1 Introduction

A simple set of equations for the blood flow in medium-length to large arteries and veins
are given by [28] 




At+(Au)x=0,

(Au)t+(Au2)x+
A

ρ
px =−Ru,

(1.1)

where A(x,t) is the cross section area of the vessel, ρ,p,u represent the density, the pres-
sure and the averaged velocity of the blood, respectively. We treat ρ as a constant. R is the
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flow resistance per unit length of the tube, assumed to be a known function here. See [27]
for more details.

To complete the system, an additional condition on the pressure p is provided by the
tube law, which is analogous to the state equation of fluid flows. Following [23], we have
the tube law

p= pe(x,t)+ψ(A;AE,K), (1.2)

where

ψ(A;AE,K)=K(x)
(
αm−αn

)
, α=

A

AE
. (1.3)

The pe is the external pressure of the vessel. K is the stiffness coefficient of the vessel,
which represents the elastic properties of the vessel. AE is the cross section area at equi-
librium state. m ≥ 0 and n≤ 0 are two constants. For flows in arteries, m = 1/2, n= 0,
see [22]. In this paper, we take 0<m<1, n=0 for simplicity.

In [28], Toro and Siviglia took pe,K and AE as a function of x only. Moreover, they
added the following conditions to complete system (1.1)

∂t pe =0, ∂tK=0, ∂t AE=0. (1.4)

Substituting (1.3) into the second equation of (1.1), we have

(Au)t+(Au2)x+
A

ρ
ψA Ax+

A

ρ
ψKKx+

A

ρ
ψAE

(AE)x+
A

ρ
(pe)x =−Ru. (1.5)

Following Toro and Siviglia [28], we add an advection equation for a passive tracer φ
representing the concentration of a chemical species. The tracer is transported passively
with the fluid speed, so we have

∂t(Aφ)+∂x(Auφ)=0. (1.6)

The advective equation is decoupled from the other equations. We note (1.6) does not
add new difficulties to the Riemann problem. But for future applications, it is convenient
to consider all six equations as follows

∂tU+Q(U)∂xU=S(U), (1.7)

where U=
(
u,A,K,AE,pe,φ

)
, and

Q(U)=




u
1

ρ
ψA

1

ρ
ψK

1

ρ
ψAE

1

ρ
0

A u 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 u




, S(U)=




−
Ru

A
0
0
0
0
0




. (1.8)
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System (1.7) is non-conservative, it is analogous to the flows in a variable cross section
duct [2, 9, 16, 25], the two-phase flow [3], and the shallow water equations [17]. In this
paper, we mainly consider the homogeneous form of (1.7), which corresponds to the
non-resistance flow and is non-strictly hyperbolic because the characteristic fields may
coincide with each other. For more details, we refer to [8, 10–13, 16, 18]. Some numerical
results can be found in [4, 5, 7, 14, 19].

In [16], Lefloch and Thanh constructed the Riemann solutions of the isentropic flow
in a variable cross-section duct. They divided the phase plane into subregions, in which
the system is strictly hyperbolic. They also discuss the resonance and the non-uniqueness
of the system. Sheng and Zhang [24] discussed the interaction of elementary waves of
flows in a variable cross-section duct.

Han et al. [10, 11] discussed the Riemann problem of a reduced 3×3 blood model.
By using the L-M and R-M curves, which are stationary wave curves attached to two
nonlinear wave curves, they constructed the Riemann solutions for the subcritical and
supercritical data respectively. They also gave some numerical results showing the non-
uniqueness of solutions.

The 6×6 blood flow model is analogous to the 3×3 model. Toro and Siviglia made
characteristic analysis of the equations with the conditions (1.4) in [28]. They discussed
the Riemann problem briefly. The resonant waves are not included in their paper. In
this paper, we mainly construct the Riemann solutions of (1.7) in (u,A) plane. We use
the classification methods in [25] to obtain the solutions according to the initial data are
in different regions. The solutions lose uniqueness for some initial data. To select the
physically relevant solution, we follow the global entropy condition in [6], which states
that not only should the entropy increase but it should be increasing at the maximum
rate. Numerical results are consistent with the criterion. In future work, we are interested
in the interaction of elementary waves and constructing numerical schemes for the 6×6
blood flow model.

This paper is organized as follows. In Section 2, we make characteristic analysis of
(1.7), and discuss basic properties of elementary waves, including rarefaction waves,
shock waves, contact discontinuities and stationary waves. To select a unique solution of
stationary discontinuity, we are not able to use the monotonicity criterion as in variable
duct flows. Here we follow the conclusion obtained by [20]. In Section 3, we construct the
Riemann solutions in (u,A) plane. The resonance and non-uniqueness of solutions are
shown in this section. In order to use the global entropy solution, we define the entropy
in blood flow model. In Section 4, we design a numerical scheme for blood flow model.
We also give some tests to show that the scheme preserves the mechanical energy very
well.

2 Characteristic analysis for system (1.7)

2.1 Preliminaries

In this section, we consider the homogeneous form of system (1.7), namely
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∂tU+Q(U)∂xU=0. (2.1)

Considering a smooth solution of system (2.1), Q(U) has six eigenvalues

λ1=u−c, λ2=u, λ3=u+c, λ4=λ5=λ6=0, (2.2)

where c=
√

A
ρ ψA. The corresponding right eigenvectors are





r1=(c,−A,0,0,0,0,)T, r2=(0,0,0,0,0,1)T ,

r3=(c,A,0,0,0,0)T, r4=
(

1,−
A

u
,0,0,−

ρ(u2−c2)

u
,φ
)T

,

r5=(0,0,1,0,−ψK,0)T, r6=(0,0,0,1,−ψAE
,0)T.

(2.3)

It is easy to verify that the 2-, 4-, 5-and 6-characteristic fields are linearly degenerate,
while the 1- and 3-characteristic fields are genuinely nonlinear. System (2.1) is not strictly
hyperbolic because λ1,λ2 and λ3 may coincide with λi = 0 (i = 4,5,6). More precisely,
setting

Γ+ : u= c, Γ− : u=−c, Γ0 : u=0, (2.4)

we see that

λ1=λ4,5,6 on Γ+, λ3=λ4,5,6 on Γ−, λ2=λ4,5,6 on Γ0. (2.5)

In the four dimensional space (u,A,K,AE), Γ+,Γ− and Γ0 are three surfaces on which sys-
tem (2.1) is not strictly hyperbolic. Moreover the three surfaces separate the (u,A,K,AE)
space into four regions, denoted by I,II,III,IV, in which the system is strictly hyperbolic:





I=
{
(u,A,K,AE) : λ4<λ1

}
,

II=
{
(u,A,K,AE) : λ1<λ4<λ2

}
,

III=
{
(u,A,K,AE) : λ2<λ4<λ3

}
,

IV=
{
(u,A,K,AE) : λ3<λ4

}
.

(2.6)

2.2 Rarefaction waves

We look for self-similar solutions depending on ξ= x
t . System (2.1) reduces to





−ξ(A)ξ+(Au)ξ =0,

−ξ(Au)ξ+(Au2)ξ+
A

ρ
ψA Aξ+

A

ρ
ψKKξ+

A

ρ
ψAE

(AE)ξ+
A

ρ
(pe)ξ =0,

−ξ(Aφ)ξ+(Aφu)ξ =0,

Kξ =0,

(AE)ξ =0,

(pe)ξ =0.

(2.7)
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The Riemann invariants associated with λ1 and λ3 are:





for λ1=u−c :

{
AE,K,pe,φ,u+

∫
c(A)

A
dA

}
,

for λ3=u+c :

{
AE,K,pe,φ,u−

∫
c(A)

A
dA

}
,

(2.8)

where c=
√

A
ρ ψA =

√
mK
ρ αm, which is a function of A,K and AE. For a given left-hand

state U0=(u0,A0,K0,AE0
,pe0 ,φ0), we determine the right-hand state U=(u,A,K,AE,pe,φ)

that can be connected to U0 by rarefaction curve as

R1,3(U,U0) :





u±
2c

m
=u0±

2c0

m
, u≥u0,

K=K0, AE=AE0
, pe = pe0 , φ=φ0.

(2.9)

The subscripts 1 and 3 represent the backward and forward rarefaction waves respec-
tively.

2.3 Shock waves

We can not define weak solution for (2.1) as usual because of the source term. However,
the Rankine-Hugoniot relation associated with the variables K,AE,pe of (2.1) is

−σ[K]=0, −σ[AE]=0, −σ[pe ]=0,

where [ f ] : = f1− f0 is the jump of the variable f . We have the following conclusions:

1) σ 6=0,[K]= [AE]= [pe]=0 : the variables K,AE,pe remain unchanged across the dis-
continuity with non-zero speed;

2) σ=0 : the speed of discontinuity vanishes, here we assume [ f ] 6=0, f =K,AE, or pe.
We call it stationary contact discontinuity.

From 1), the Rankine-Hugoniot conditions corresponding to (1.7) is





−σ[A]+[Au]=0,

−σ[Au]+

[
Au2+

mk

ρ(m+1)Am
E

Am+1

]
=0,

−σ[Aφ]+[Auφ]=0,

(2.10)

where σ is the speed of the discontinuity given as

σ1,3=u0∓
M

A0
, M=

√
mk

ρ(m+1)Am
E

AA0(Am+1−Am+1
0 )

A−A0
, (2.11)
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and U0 =(u0,A0,K0,AE0
,pe0 ,φ0) is a given left-hand state. The shock curve consisting of

all right-hand state U satisfying Lax shock condition is

S1,3(U,U0) :





u=u0−

√
mk

ρ(m+1)Am
E

(A−A0)(Am+1−Am+1
0 )

AA0
, u<u0,

K=K0, AE=AE0
, pe = pe0 , φ=φ0.

(2.12)

Denote the 1-wave curve W1(U,U0) = R1(U,U0)∪S1(U,U0) and the 3-wave curve
W3(U,U0) =R3(U,U0)∪S3(U,U0), we have the following result [10].

Lemma 2.1. For 0<m<1, the 1-wave curve W1(U,U0) is strictly decreasing and convex, while
the 3-wave curve W3(U,U0) is strictly increasing and concave in the (u,A) plane.

Proof. We first prove the 1-wave curve W1(U,U0) is strictly decreasing and convex. From
(2.9), we have

du

dA

∣∣∣∣
R1(U,U0)

=−
c

A
<0,

d2u

dA2

∣∣∣∣
R1(U,U0)

=
2−m

2

c

A2
>0. (2.13)

For 1-shock wave, we have

du

dA

∣∣∣∣
S1(U,U0)

(2.14)

=−

√
mKAA0

ρ(m+1)Am
E (A−A0)(Am+1−Am+1

0 )

mAm+1A0(A−A0)+A0(Am+2−Am+2
0 )

2(AA0)2
<0.

A straightforward but tedious calculation shows that d2u
dA2

∣∣
S1(U,U0)

> 0 for 0<m< 1. Han

et al. gave a skillful proof, see [10] for details.
The proof for the 3-wave curve W3(U,U0) is similar, we omit it.

2.4 Contact discontinuity

The contact discontinuity is associated with the 2-characteristic field. Across the contact
discontinuity, the variables u,A,K,AE,pe remain constant. Given the left-hand state U0,
the right-hand state U that can be connected with U0 by contact discontinuity is

J(U,U0) : u=u0, A=A0, K=K0, AE=AE0
, pe = pe0 , φ 6=φ0. (2.15)

2.5 Stationary wave

A stationary discontinuity is a time-independent solution. We search for the steady so-
lution for (1.7). The stationary discontinuity solution is determined by the following
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ordinary differential equations





(Au)x=0,

(Au2)x+
A

ρ
ψA Ax+

A

ρ
ψKKx+

A

ρ
ψAE

(AE)x+
A

ρ
(pe)x=0,

(Auφ)x=0.

(2.16)

For smooth solutions, (2.16) is equivalent to





(Au)x=0,
(

1

2
ρu2+K

(( A

AE

)m
−1

)
+pe

)

x

=0,

(Auφ)x=0.

(2.17)

Given the left hand state U0, the right hand state U connecting with U0 by stationary
discontinuity is

S0(U,U0) :





Au=A0u0,

1

2
ρu2+K

(( A

AE

)m
−1

)
+pe =

1

2
ρu2

0+K0

(( A0

AE0

)m
−1

)
+pe0 ,

φ=φ0.

(2.18)

Substituting the first equation into the second one, we have

Φ(K,A,AE,pe;A0)

:=K
Am+2

Am
E

−

(
1

2
ρu2

0+K0

(
A0

AE0

)m

+K−K0+pe0−pe

)
A2+

1

2
ρ(A0u0)

2=0. (2.19)

Since the variables K,AE,pe change only across stationary discontinuity, we write
Φ(K,A,AE,pe; A0)=Φ(A;A0). Taking the derivative of Φ with respect to A, we have

dΦ

dA
=(m+2)

KAm+1

Am
E

−2

(
1

2
ρu2

0+K0

(
A0

AE0

)m

+K−K0+pe0 −pe

)
A. (2.20)

Φ reaches its minimum value at

Amin(U0)=




ρu2
0+2K0(

A0
AE0

)m+2(K−K0+pe0−pe)

(m+2)K




1/m

AE. (2.21)

We conclude that Φ=0 admits a solution if and only if Φ(Amin)≤0. More precisely, we
have the following lemma.
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Lemma 2.2. There exists a stationary discontinuity connecting two states U0 =
(u0,A0,K0,AE0

,pe0 , φ0) and U = (u,A,K,AE,pe,φ) if and only if Φ(Amin)≤ 0. Moreover, we
have that

1) if Φ(Amin)>0, there are no stationary discontinuity;

2) if Φ(Amin) < 0, the function Φ(A,U0) = 0 has exactly two solutions U∗(U0) =
(u∗,A∗,K,AE, pe,φ) and U∗(U0)=(u∗,A∗,K,AE,pe,φ) with A∗<Amin<A∗;

3) if Φ(Amin)=0, the two solutions U∗(U0) and U∗(U0) coincide.

We conclude that u∗> c∗=

√
mK
ρ

(
A∗
AE

)m
, u∗

< c∗=

√
mK
ρ

(
A∗

AE

)m
. i.e., the two solutions

U∗ and U∗ are in the supercritical area (u> c) and subcritical area (u< c) respectively. In
fact, from (2.21), we have

A∗<Amin(U0)<A∗, (2.22)

which yields u2
∗> c2

∗ and u∗2
< c∗2.

Remark 2.1. The condition Φ(Amin)≤0 may not hold in some cases. For example, when
the difference between pe0 and pe is very large, or the variable K is large enough compared
to K0,pe0 and AE. The flow will across a shock wave to reduce the speed and make
Φ(Amin)≤0 solvable under these cases. The explicit solution will be discussed in Section
3.

As in [3, 10, 25], the Riemann problem for (2.1) may admit up to a one-parameter
family of solutions. To select a unique solution, their principle can be simplified as: The
flow is subcritical (supercritical) at one side of the stationary discontinuity iff it is also
subcritical (supercritical) at the other side of it.

Siviglia and Toffolon [20] considered the steady flow in blood vessels with discon-
tinuous mechanical properties of a collapsible tube. They concluded that in arteries, the
transition of subcritical state to supercritical state is not possible across the steady waves.
They also proposed a principle to choose the stationary solutions. Basically, they defined
the momentum flux

g(A) :=ρ
H2

A
+A(pe+ψ)−

∫ A

A0

ψdA, (2.23)

where H = Au remains constant across the stationary discontinuity. The physically ad-
missible solution is selected where g(A) has the minimum value. Generally, a smooth
transition between subcritical solution to supercritical solution only happens under criti-
cal conditions, i.e., the state on one side of the stationary discontinuity is critical: u0= c0.
Following their results, we have the following lemma.

Lemma 2.3. For the 6×6 system (2.1), across the stationary discontinuity, the states on the two
sides remain in the closure of only one domain in (u,A) plane.
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U

A

u

Γ_(   _ ) Ψ + + + + +Ψ  Γ (     )_Γ (     )Ψ

U

U

0

1

Γ (   )ΨΨ   _ Ψ  Γ (    ) Γ (     )_

0U

1U

U0

U1
1

IIIIII
IV U0

Figure 1: The stationary curve remains in one domain in (u,A) plane.

Under the assumption of Lemma 2.3, we call the stationary discontinuity as stationary
wave, denoted by S0(U,U0) from the left hand state U0 to the right hand state U. We note
that the sonic curve Γ±(Ψ) is a function of K and AE. The stationary wave curve will
change continuously on one side of Γ±(Ψ) from Lemma 2.3. See Fig. 1.

For stationary wave S0(U,U0), Lemma 2.3 tells us that when U0 is subcritical, we
choose U∗

0 as the solution. When U0 is supercritical, U0∗ is chosen as the solution. For the
critical case u0 = c0, there are two solutions, one is subcritical, the other is supercritical.
The selection of the two solutions will be discussed in Section 3.

Remark 2.2. For blood flows in veins, Lemma 2.3 may not hold, which causes multiple
solutions [21] and further research is needed.

2.6 Shock wave coincides with stationary wave

In order to construct the Riemann solution, we have to know when the shock speed
equals to zero. When u0< c0, from (2.11), we have

σ1< c0−
M

A0
=

√
mK

ρ

(
A0

AE

)m

−

√
mK

ρ(m+1)Am
E

A(Am+1−Am+1
0 )

A0(A−A0)

=
1

N

mK

ρA0Am
E

(Am+1
0 −AAm

θ )<0, A0<Aθ <A, (2.24)

where

N=

√
mK

ρ

(
A0

AE

)m

+

√
mK

ρ(m+1)Am
E

A(Am+1−Am+1
0 )

A0(A−A0)
.

From (2.11), let σ1=0, by using the relation u0=
Au
A0

, A>A0, we have

u2=
A0mK

Aρ(m+1)Am
E

Am+1−Am+1
0

A−A0
=

A0

A

mK

ρ

(
Aθ

AE

)m

< c2, A0<Aθ <A. (2.25)
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Combining (2.24) and (2.25), we have σ1<0 when U0∈II∪III∪IV. When U0∈I, there exists
a point Ũ0 ∈ II such that σ1(Ũ0,U0)= 0. For 3-shock wave S3(U,U0), there exists a point
Ũ0∈ III such that σ3=0 if U0∈ IV. Therefore we have the following lemma.

Lemma 2.4. 1) The 1-shock speed σ1(U,U0) may change its sign along the shock curve S1(U,U0).
More precisely,

i) If U0∈ II∪III∪IV, then σ1(U,U0) remains negative

σ1(U,U0)<0.

ii) If U0∈ I, then there exists a point U= Ũ0∈ II on the shock curve S1(U,U0) such that




σ1(Ũ0,U0)=0,

σ1(U,U0)>0, A∈ (A0, Ã0),

σ1(U,U0)<0, A∈ (Ã0,+∞).

(2.26)

2) The 3-shock speed σ3(U,U0) may change its sign along the shock curve S3(U,U0), i.e.,

i) If U0∈ I∪II∪III, then σ3(U,U0) remains positive

σ3(U,U0)>0.

ii) If U0∈ IV, then there exists a point U= Ũ0∈ III on the shock curve S3(U,U0) such that




σ3(Ũ0,U0)=0,

σ3(U,U0)<0, A∈ (A0, Ã0),

σ3(U,U0)>0, A∈ (Ã0,+∞).

(2.27)

Now we are ready to construct the Riemann solution of blood flow model (1.1). It is
well known that the Riemann solution is not unique and there are up to three solutions
for some initial data [2,11,16]. How to select a unique physically relevant solution is still
an open problem. Here we follow Dafermos [6] and Andrianov and Warnecke [2], where
a global entropy condition is proposed which states that not only should the entropy in-
crease but it should be increasing at the maximum rate. First we use the entropy defined
as [6]:

S=
1

2
u2+

K

ρ(m+1)

√
A

Ae
(2.28)

in system (1.1). We note that (2.28) is derived from the conservation laws. But it can be
applied to nonconservative system as well [1]. Then we give the global entropy condition
in blood flow model.

Global entropy condition. In blood flow model (1.1), the physically relevant solution of
system (1.1) is chosen such that the entropy defined in (2.28) not only increase but also
increase at the maximum rate.

Under the global entropy condition, we can pick out the unique physical solution.
Some numerical results are shown in Section 4.
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3 The Riemann problem of system (2.1)

In this section, we consider the Riemann problem of system (2.1) with two pieces of con-
stant initial data

U(x,t)
∣∣
t=0

=
(
u,A,K,AE,pe,φ

)∣∣
t=0

=

{ (
u−,A−,K−,AE−,pe−,φ−

)
, x<0,(

u+,A+,K+,AE+,pe+,φ+

)
, x>0.

(3.1)

We will establish the global existence of the Riemann problem for (2.1) with (3.1). Under
the self-similar transformation ξ=x/t, the Riemann problem reduces to a boundary value
problem of ordinary differential equations (2.7) with

(u,A,K,AE,pe,φ)(±∞)=(u±,A±,K±,(AE)±,(pe)±,φ±). (3.2)

We will use the following notations:

(i) W1(Uj,Ui)⊕W3(Uk,Uj) indicates that there is a backward wave W1 from the left-
hand state Ui to the right-hand state Uj, followed by a forward wave W3 from the
left-hand state Uj to the right-hand state Uk.

(ii) U denotes the right-hand state from the left-hand state U = (u,A,K,AE,pe,φ) by
contact discontinuity J(U,U) associated to λ2 =u. In (u,A) plane, U and U denote
the same point.

(iii) Denote a vector Ω=(K,AE,pe). Ω only changes across stationary wave which sat-
isfies (2.18).

The Riemann problem of a reduced 3×3 blood model is discussed by Han et al. [10,
11], in which they classify the initial data into subcritical and supercritical in phase plane
respectively. Here we give a different approach. Since the stationary wave S0 always has
zero speed, we classify the Riemann solutions based on the (x,t) plane. Noticing that for
blood flow in veins, we can also use this method to construct the Riemann solution. The
only difference is that in veins, the transition through critical condition is likely to occur
due to an abrupt change of the mechanical properties of the wall vessel [21]. However,
a straightforward and similar calculation shows that we still have Lemma 2.4 holds in
veins, which means the sonic curve Γ±(Ψ) can still be used to classify the solution. More
specifically, the Riemann solutions in (x,t) plane have the following structures:

1) W1, J and W3 are on one side of S0;

2) W1, J and W3 are on both sides of S0;

3) Either W1 or W3 coincides with S0;

4) Two stationary waves are included in the solutions.
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Case 1. W1, J and W3 are on one side of S0, which includes two cases: S0⊕W1⊕ J⊕W3 and
W1⊕ J⊕W3⊕S0. We discuss them separately.

Subcase 1.1. U−∈ I, U+∈ I and some part of II. U− first jumps to U−∗∈ I by stationary
wave S0 with Ω shifting from Ω− to Ω+, see Fig. 2. By Lemma 2.4, there exists a point
Ũ−∗∈ II on S1(U,U−∗) such that the shock speed vanishes, i.e., σ1(Ũ−∗,U−∗)=0. Denote
{U2}=W3(U+,U)∩W1(U,U−∗). If ũ−∗≤u2, the Riemann solution is

S0(U−∗,U−)⊕W1(U2,U−∗)⊕ J(U2,U2)⊕W3(U+,U2). (3.3)
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Figure 2: Subcase 1.1 and wave configuration.

Subcase 1.2. U+ ∈ IV, U− ∈ IV and some part of III. See Fig. 3. Denote U+∗ ∈ IV
jumped by U+ from the right side with stationary wave. There exists Ũ+∗ ∈ II satisfy-
ing σ3(Ũ+∗,U+∗)=0 by Lemma 2.4. Denote {U3}=W1(U,U−)∩W3(U+∗,U). If u3≤ ũ+∗,
The solution is

W1(U3,U−)⊕ J(U3,U3)⊕W3(U+∗,U3)⊕S0(U+,U+∗). (3.4)
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W 1
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*+U
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3
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Figure 3: Subcase 1.2 and wave configuration.

Remark 3.1. If u+−
2
m c+≥u−∗+

2
m c−∗ in Subcase 1.1 or u−+

2
m c−≤u+∗−

2
m c+∗ in Subcase

1.2, there exists a vacuum. As shown in [10, 22], the collapse of vessel in arteries may
not appear under normal physiological conditions. Thus the vacuum solution only has
academic meaning.
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Case 2. W1, J and W3 are on both sides of S0. The solution can be W1⊕S0⊕ J⊕W3 or
W1⊕ J⊕S0⊕W3. We discuss as follows:

Subcase 2.1. U−∈ I. Denote Ũ−∈ II on S1(U,U−) such that the shock speed vanishes, i.e.,
σ1(Ũ−,U−)= 0. Ũ− jumps to Ũ∗

− by stationary wave using subcritical solution. Denote

U0∈S1(U,Ũ−),u0 < ũ−, the state U1 obtained by stationary jump from U0 forms a curve
S0(U1,U0). See Fig. 4 (left). Denote {U∗

4}= W3(U+,U)∩S0(U1,U0), U∗
4 is jumped by

stationary wave from U4 ∈ S1(U,U−) if u∗
4 > 0 (or from U4 ∈ J(U,U4) if u∗

4 < 0). This
construction holds for U+∈ II∪III or U+∈ IV,σ3(U∗

4 ,U+)>0. See Fig. 5. We have

1) If u∗
4 ≥0, the solution is

S1(U4,U−)⊕S0(U
∗
4 ,U4)⊕ J(U∗

4 ,U∗
4 )⊕W3(U+,U∗

4 ). (3.5)

2) If u∗
4 <0, the solution is

S1(U4,U−)⊕ J(U4,U4)⊕S0(U
∗
4 ,U4)⊕W3(U+,U∗

4 ). (3.6)
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Figure 4: Subcase 2.1 (left) and Subcase 2.2 (right).
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Figure 5: Wave configuration for Subcase 2.1 and Subcase 2.2.

Subcase 2.2. U− ∈ II∪III. Denote {UC}=W1(U,U−)∩Γ+(Ψ). UC jumps to U∗
C ∈ II by

stationary wave. Denote U0 ∈ W1(U,U−)(u0 ≤ uc), the state U1 obtained by stationary
wave from U0 forms a curve S0(U1,U0). See Fig. 4 (right). Denote {U∗

5}=W3(U,U+)∩
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S0(U1,U0), U∗
5 is jumped from U5∈S1(U,U−) if u∗

5 >0 (or from U5 if u∗
5 <0). Similarly, if

U+∈ II∪III or U+∈ IV,σ3(U∗
5 ,U+)>0, we have

1) If u∗
5 ≥0, the solution is

W1(U5,U−)⊕S0(U
∗
5 ,U5)⊕ J(U∗

5 ,U∗
5 )⊕W3(U+,U∗

5 ). (3.7)

2) If u∗
5 <0, the solution is

W1(U5,U−)⊕ J(U5,U5)⊕S0(U
∗
5 ,U5)⊕W3(U+,U∗

5 ). (3.8)

Case 3. Either W1 or W3 coincides with S0. The solution can be W1⊕S0⊕W1⊕ J⊕W3 or
W1⊕ J⊕W3⊕S0⊕W3. We discuss as follows:
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Figure 6: Subcase 3.1 and wave configuration.

Subcase 3.1. U− ∈ II∪III∪IV, U+ ∈ I and some part of II. U− passes through a 1-wave
first. Denote {UC}= W1(U,U−)∩Γ+, UC jumps to UC∗ ∈ I by stationary wave. There
exists a point ŨC∗ ∈ S1(U,UC∗) satisfying σ1(ŨC∗,UC∗) = 0. See Fig. 6. Denote {U6}=
W1(U,UC∗)∩W3(U,U+). If u6≥ ũc∗, the solution is

R1(UC,U−)⊕S0(UC∗,UC)⊕W1(U6,UC∗)⊕ J(U6,U6)⊕W3(U+,U6). (3.9)
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Figure 7: Subcase 3.2 and wave configuration.

Subcase 3.2. U−∈ IV, U+∈ I∪II∪III and some part of IV. First we denote two curves in
(u,A) plane: Γ

∗
−(Ψ+) and Γ̃

∗
−(Ψ+). Γ

∗
−(Ψ+) is formed with states jumping from Γ−(Ψ−)
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by stationary wave using subcritical solutions. For any U0 ∈ Γ
∗
−(Ψ+)∈ III, there exists a

point U1∈ III on S3(U,U0) satisfying σ3(U1,U0)=0, the state U1 forms the curve Γ̃∗
−(Ψ+).

Denote {U∗
C}=W3(U+,U)∩Γ

∗
−(Ψ+), UC∗ is jumped by UC ∈Γ−(Ψ−). See Fig. 7. Denote

{U7} = W1(U,U−)∩R3(UC,U7). If U+ ∈ I∪II∪III or U+ ∈ IV, σ3(U∗
C,U+) > 0, then the

solution is

W1(U7,U−)⊕ J(U7,U7)⊕R3(UC,U7)⊕S0(U
∗
C,UC)⊕W3(U+,U∗

C). (3.10)

Subcase 3.3. U−∈ I, U+∈ I. We consider an interesting coinciding case. When the initial
data (3.1) is given such that the function Φ defined in (2.19) has no solution. We construct
the solution as follows: U− first jumps to U∗

C ∈ II by a shock wave, then U∗
C ∈ II jumps to

UC on Γ+(Ψ) by a stationary wave, followed by a backward rarefaction wave connecting
UC and U2, U2 jumps to U2 by a contact discontinuity, finally U2 and U+ are connected
by a 3-wave W3(U,U+). See Fig. 8. The solution is

S1(U
∗
C,U−)⊕S0(UC,U∗

C)⊕R1(U2,UC)⊕ J(U2,U2)⊕W3(U+,U2). (3.11)
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Figure 8: Subcase 3.3 and wave configuration.

Remark 3.2. We extend this construction to a more general case when Φ has no solution.
We claim that the Riemann solution involves a shock wave to decrease the speed of blood
flow in this case. In fact, for arbitrary initial data U0, we can prove that there exists a state
U1∈S1(U,U0) such that Φ(U,U1) admits a solution. An extremely case is that the flow is
at rest across the shock wave, thus (2.19) has a solution.

Case 4. In this case we consider a solution contains three waves with the same zero
speed, i.e., two stationary waves and a standing 1-shock wave. This case holds for U−∈I,
U+ ∈ I∪II∪III∪IV. See Fig. 9. First we have two points Ũ∗

−,Ũ−∗ ∈ II, see Subcase 1.1

and Subcase 2.1 for the definition. From (2.10) and (2.18), we can easily derive Ã∗
−ũ∗

−=

Ã−∗ũ−∗= A−u−, this is exactly the conservation of mass. Thus Ũ∗
−,Ũ−∗ are on the curve

Au=A−u−. We have two cases: ũ∗
−< ũ−∗ and ũ∗

−> ũ−∗.

Subcase 4.1. ũ∗
−< ũ−∗, see Fig. 9 (left). From U−, the solution jumps to a state U1(Ω0) by

stationary wave with an intermediate value Ω0 ∈ [Ω−,Ω+]. Then U1(Ω0) connects with
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Figure 9: Subcase 4.1 and wave configuration.

Ũ1(Ω0)∈ II by a standing 1-shock wave S1. Next, Ũ1(Ω0) jumps to U1(Ω+) by another
stationary wave with Ω shifting from Ω0 to Ω+.

As shown in Thanh [25], set

L :=
{

U(Ω)
∣∣Ω∈ [Ω−,Ω+]

}
.

If W3(U+,U)∩L={U2}, then the solution contains three discontinuities having the same
speed zero, see Fig. 9 (left). The solution is

S0(U1(Ω0),U−)⊕S1(Ũ1(Ω0),U1(Ω0))⊕S0(U2,Ũ1(Ω0))⊕ J(U2,U2)⊕W3(U+,U2). (3.12)

We note that the solution is unique in this case.

Subcase 4.2. ũ∗
− > ũ−∗, see Fig. 9 (right). We see that W3(U+,U) may intersect with

S1(U,U−∗), S0(U1,U0) and L at the same time. The solution lose uniqueness and has up
to three solutions. Namely, Subcase 1.1, Subcase 2.1 and Subcase 4.1. We use the global
entropy condition in Section 2 to pick out the physical relevant solution. Moreover, we
will show that the numerical results are consistent with the global entropy condition in
Section 4. Which is to say, the physically relevant solution is the one that maximizes S in
(2.28).

4 Numerical simulations

In this section, we will develop a numerical scheme for the model (2.1), which is built
in [15] for compressible flows in a variable cross-section duct. It has been proved that the
scheme captures exactly equilibrium states. Given a uniform time step ∆t and an equal
mesh size ∆x. Set xj= j∆x, j∈Z, tn=n∆t, n∈N. Let Un

j be the approximation of the values

U(xj,t
n) of the exact solution. Our well-balanced scheme for (2.1) is defined by

Un+1
j =Un

j −
∆t

∆x

(
g(Un

j ,Un
j+1,−)−g(Un

j−1,+,Un
j )
)

, (4.1)
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where Un
j+1,− and Un

j−1,+ are given shortly below. g(U,V) can be any standard numerical

flux for blood flow model. Here we take the Lax-Friedrichs flux:




g(U,V)=
1

2
( f (U)+ f (V))−

1

2λ
(V−U),

U :=(A,Au,Aφ), f (U) :=
(

Au,Au2+
mk

ρ(m+1)Am
E

Am+1,Auφ
)

.
(4.2)

In the scheme (4.1), the states

Un
j+1,−=(A,Au,Aφ)n

j+1,−, Un
j−1,+=(A,Au,Aφ)n

j−1,+ (4.3)

are defined from the mechanical energy equations (2.17). We compute An
j+1,− and un

j+1,−

from the equations





An
j+1un

j+1=An
j+1,−un

j+1,−,

1

2
ρ(un

j+1)
2+Kn

j+1

((
An

j+1

(AE)n
j+1

)m

−1

)
+(pe)

n
j+1

=
1

2
ρ(un

j+1,−)
2+Kn

j

((
An

j+1,−

(AE)n
j

)m

−1

)
+(pe)

n
j ,

(4.4)

and compute An
j−1,+ and un

j−1,+ from the equations





An
j−1un

j−1=An
j−1,+un

j−1,+,

1

2
ρ(un

j−1)
2+Kn

j−1

((
An

j−1

(AE)n
j−1

)m

−1

)
+(pe)

n
j−1

=
1

2
ρ(un

j−1,+)
2+Kn

j

((
An

j−1,+

(AE)n
j

)m

−1

)
+(pe)

n
j .

(4.5)

Remember we have the steady solutions





An
j+1un

j+1=An
j un

j ,

1

2
ρ(un

j+1)
2+Kn

j+1

((
An

j+1

(AE)n
j+1

)m

−1

)
+(pe)

n
j+1

=
1

2
ρ(un

j )
2+Kn

j

((
An

j

(AE)n
j

)m

−1

)
+(pe)

n
j .

(4.6)

Therefore, the unique solutions for (4.4) and (4.5) will be
{

An
j+1,−=An

j , un
j+1,−=un

j ,

An
j−1,+=An

j , un
j−1,+=un

j ,
(4.7)
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which indicates (see (4.1))
Un+1

j =Un
j . (4.8)

This means we exactly recover the steady solutions.
In a domain where K,AE,pe are constant, it is not difficult to verify that

Un
j+1,−=Un

j+1, Un
j−1,+=Un

j−1. (4.9)

This implies that (4.1) reduced to the standard Lax-Friedrichs scheme where K,AE,pe are
constant.

In our tests, we use the computing correctors dn
j >0 introduced in [26] at the discrete

level. dn
j is defined by

dn
j =∆x·max|λi(U

n
j )|
(
|An

j+1−An
j |+|un

j+1−un
j |
)

, i=1,2,··· ,6, (4.10)

which will enhance scheme (4.1) especially in resonant regime.
Now we give some numerical simulations of the Riemann solution involving station-

ary wave using the scheme (4.1). The results are consistent with that in Section 3. For
the other case, we note that it is the same with Euler equation and will not discuss here.
Take the blood density ρ=1050kg/m3 , m=0.5. The CFL constant is 0.5. We use 2000 mesh
points. The solution will be computed for x∈[0,20], the stationary discontinuity is located
at x=10. Here U=(u,A,K,AE,pe,φ).

Case 1. The initial data is

U−=(2.5,0.0003,2000,0.002,2.0,2.0) , U+=(2.1685,0.00034586,1000,0.001,1.0,0.5) .

We have U−∈ I, U+∈ I. The result is obtained at time t= 1.25s. The solution contains a
stationary wave and a contact discontinuity. See Fig. 10 (left). We see that the schemes
captures exactly the steady solution. It is the same as the Riemann solution in the Subcase
1.1.

Case 2. The initial data is

U−=(2.5,0.0003,2000,0.002,2.0,2.0) , U+=(2.25,0.0008,1000,0.001,1.0,0.5) .

We have U−∈ I, U+∈ I. The result is obtained at time t=1.5s. The solution begins with a
stationary wave, followed by a backward shock wave, followed by a contact discontinu-
ity, then followed by a forward rarefaction wave. See Fig. 10 (right). It is the same as the
Riemann solution in the Subcase 1.1.

Case 3. The initial data is

U−=(0.75,0.00015,1000,0.000015,3.0,3.0) , U+=(3.5,0.0002,2000,0.0001,1.0,1.5) .
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Figure 10: Case 1 (left). S0⊕ J. Case 2 (right). S0⊕S1⊕ J⊕R3.
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Figure 11: Case 3 (left). R1⊕S0⊕S1⊕ J⊕R3. Case 4 (right). S1⊕ J⊕S3⊕S0.

We have U−∈ II, U+∈ I. The result is obtained at time t=1.5s. The solution begins with
a backward rarefaction wave, followed by a stationary wave, followed by a backward
shock wave, followed by a contact discontinuity, then followed by a forward rarefaction
wave. See Fig. 11 (left). It is the same as the Riemann solution in Case 3.

Case 4. The initial data is

U−=
(
−1.5,0.0005,2000,5×10−5 ,3.0,3.0

)
, U+=

(
−3.5,0.0002,1000,10−4 ,1.0,1.5

)
.

We have U− ∈ III, U+ ∈ IV. The result is obtained at time t = 2.0s. The solution begins
with a backward shock wave, followed by a contact discontinuity, followed by a forward
shock wave, then followed by a stationary wave. See Fig. 11 (right). It is the same as the
Riemann solution in the Subcase 1.2.
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Case 5. The initial data is

U−=
(
0.1,0.0002,1200,10−5 ,1.0,3.0

)
, U+=

(
0.2,0.0006,1000,10−5 ,5.0,2.0

)
.

We have U−∈ I, U+∈ II. Fig. 12 is the result obtained at time t=2.5s. The solution begins
with a backward shock wave, followed by a stationary wave, followed by a contact dis-
continuity, then followed by a forward rarefaction wave. See Fig. 12. It is the same as the
Riemann solution in Case 2.
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Figure 12: Case 5. S1⊕S0⊕ J⊕R3.

Case 6. The initial data is

U−=
(
−0.01323213,10−5 ,0.290682,10−2,3.0,3.0

)
,

U+=
(
0.050242,1.243×10−6 ,0.24708,10−2,3.0,3.0

)
.

We have U−∈IV, U+∈I. The result is obtained at time t=80.0s. The solution begins with
a backward rarefaction wave, followed by a stationary wave, followed by a contact dis-
continuity, then followed by a forward rarefaction wave. We see that the vessel collapse
in this case. See Fig. 13. It is the same as the Riemann solution in Case 2.
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Figure 13: Case 6. R1⊕Vacuum⊕S0⊕ J⊕R3.

Case 7. The initial data is

U−=
(

2.0,0.00025,100,10−4 ,3.0,0.0
)

, U+=
(

0.48125,0.000925,1000,10−4 ,3.0,100.0
)

.
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Figure 14: Case 7. S0⊕S1⊕S0⊕ J⊕R3.

We have U− ∈ I, U+ ∈ II. The result is obtained at time t = 1.5s. The solution contains
three discontinuities with the same zero speed, followed by a contact discontinuity, then
followed by a forward rarefaction wave. See Fig. 14. It is the same as the Riemann
solution in the Subcase 4.1.

The next two examples are taken from Han et al. [11]. The initial data are chosen
such that the solutions are not unique as in the Subcase 4.2. The multiple solutions are
computed in Han et al. [11] for each example. We will see that our new scheme captures
the solutions exactly. We also use the examples to verify the physically relevant solution
is the one that maximizes the entropy defined in (2.28).

Case 8. The initial data is

U−=
(
6.655409,10−6,58136.483963,10−4 ,3.0,3.0

)
,

U+=
(
0.0,5.038×10−6,56392.389444,10−4 ,3.0,3.0

)
.

We have U−∈ I, U+∈ I. Fig. 15 is the result obtained at time t=2.0s. The solution be-
gins with a stationary wave, followed by a backward shock wave, followed by a contact
discontinuity, then followed by a forward shock wave. See Fig. 15. We see that the new
scheme captures the entropy solution very well.
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Figure 15: Case 8. S0⊕S1⊕ J⊕S3.
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Case 9. The initial data is

U−=
(
0.023530423,10−6 ,0.919219,10−4,3.0,1.0

)
,

U+=
(
0.022542384,10−5 ,0.781336,10−4,3.0,1.0

)
.

We have U−∈ I, U+∈ I. Fig. 16 is the result obtained at time t=150s. The solution be-
gins with a stationary wave, followed by a backward shock wave, followed by a contact
discontinuity, then followed by a forward rarefaction wave. See Fig. 16.
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Figure 16: Case 9. S0⊕S1⊕ J⊕R3.

In summary, we construct the Riemann solutions of a 6×6 blood flow model using
phase plane analysis methods. When steady equation (2.19) has no solution for super-
sonic initial data, we also construct the solution in this case for the first time. The solution
lose uniqueness and there exist up to three solutions for the same initial data. To follow
the global entropy condition, we propose the entropy in blood flow model. We develop
a numerical scheme which is showed to preserve the mechanical energy very well.
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