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Abstract. Many biological settings involve complex fluids that have non-Newtonian
mechanical responses that arise from suspended microstructures. In contrast, Newto-
nian fluids are liquids or mixtures of a simple molecular structure that exhibit a linear
relationship between the shear stress and the rate of deformation. In modeling com-
plex fluids, the extra stress from the non-Newtonian contribution must be included in
the governing equations.

In this study we compare Lagrangian mesh and Oldroyd-B formulations of fluid-
structure interaction in an immersed boundary framework. The start-up phase of pla-
nar Poiseuille flow between two parallel plates is used as a test case for the fluid mod-
els. For Newtonian and Oldroyd-B fluids there exist analytical solutions which are
used in the comparison of simulation and theoretical results. The Lagrangian mesh
results are compared with Oldroyd-B using comparable parameters. A regridding al-
gorithm is introduced for the Lagrangian mesh model. We show that the Lagrangian
mesh model simulations with regridding produce results in close agreement with the
Oldfoyd-B model.
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1 Introduction

Complex fluids have become a major focus of attention in fluid mechanics. Many biolog-
ical fluids have suspended microstructures and may exhibit complex, non-Newtonian
responses. These include mucus in the lung, as well as fluids in the stomach, intestines,
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oviduct and uterus. A variety of analytical and numerical studies have emerged to in-
vestigate the mechanics of these fluids. The Oldroyd-B constitutive equations in an im-
mersed boundary framework have been used to model complex fluids [5,8,12] and fluid-
particle interactions [3, 10, 15, 20]. There are also several studies that use a Lagrangian
mesh to model complex fluids [1, 2, 7, 23, 24].

An earlier numerical rheometer study [7] demonstrated that viscoelastic properties
of an immersed boundary Lagrangian mesh model were very similar to those of an
Oldroyd-B model [7]. Here we compare the two models in start-up Poiseuille flow. Pla-
nar Poiseuille flow between two parallel plates, also known as parabolic channel flow,
driven by a constant spatially-uniform pressure gradient, is a well-known test problem
for numerical algorithms. It is useful as a benchmark problem because of the existence of
analytical solutions for both Newtonian and Oldroyd-B viscoelastic flow, thus allowing
exact tracking of discretization and lagging-errors [9]. Waters and King (1970) studied the
time-dependent start-up flow of viscoelastic fluids and found an analytical solution for
planar Poiseuille flow. This solution can be compared with numerical simulation results
using various model parameters, such as elasticity and Weissenberg number (Wi). The
order of convergence of discretization errors can be established by successive refinement
of the fluid grid, Lagrangian mesh. An important finding during the present course of
study is that refinement of fluid grid or Lagrangian mesh, as well as remeshing of the
Lagrangian mesh can produce velocity profiles that are very similar to the analytical so-
lutions from the corresponding Oldroyd-B model.

2 Oldroyd-B model

The Oldroyd-B formulation [16] is frequently used to model complex fluids. Compared
with Newtonian fluid, viscoelastic fluid can have a dilute suspension of high molecu-
lar weight polymer structures in a Newtonian solvent (water, glycerol, etc.). Distended
polymers provide an extra stress to the solvent stress through random walks caused by
collisions with solvent molecules. The Oldroyd-B (OB) model incorporates this addi-
tional stress by modeling this component separately and adding it to the total stress.
An immersed boundary Oldroyd-B (IB-OB) method was proposed by [18] for Stokesian
peristaltic pumping.

We shall consider the start-up flow of viscoelastic fluids in a planar channel. The flow
is driven by an instantaneously applied uniformly distributed pressure gradient to the
fluid initially at rest. The channel is bounded by two parallel plates with a separation
distance 2H. The channel flow has x-periodic geometry as illustrated in Fig. 1. An IB-OB
model for 2D Poiseuille flow is formulated as follows. With the assumptions that the
fluid is isothermal and incompressible, the fundamental conservation equations of linear
momentum and mass within the fluid domain Ω are given by

ρ

(

Du

Dt

)

=∇·Stot and ∇·u=0 in Ω, (2.1)
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Figure 1: Schematic illustration of start-up planar Poiseuille flow.

with

Stot=Ss+Sp,

τS∇
p =−(Sp−GI) in Ω. (2.2)

Here D/Dt=(∂/∂t)+u·∇ is the material derivative, ρ is fluid density, Stot is total stress
tensor and is the sum of the Newtonian (solvent) stress tensor Ss and the polymer stress
tensor Sp provided by polymer distensions [18]. The solvent stress tensor Ss=−pI+2µE,
where E is the rate of strain tensor E = (1/2)(∇u+∇uT), p is pressure, and µ is the
solvent viscosity. The polymer stress tensor Sp is unique to the complex flow of Oldroyd-
B like fluids; it is zero for viscous fluids such as water and glycerol. τ is the time scale for
polymer relaxation, and GI is the additional isotropic stress. The Oldroyd derivative (or
upper-convected time derivative), S∇

p , is defined as

S∇
p =

DSp

Dt
−∇u·Sp−Sp ·∇uT.

After rearrangement, Eqs. (2.1) and (2.2) are transformed to

ρ
Du

Dt
=−∇p+µ∆u+∇·Sp and ∇·u=0 in Ω, (2.3)

τ

(

DSp

Dt
−∇u·Sp−Sp ·∇uT

)

=−(Sp−GI) in Ω. (2.4)

For parabolic channel flow we have u= 0 at the channel walls, Γ1 and Γ2. The channel
walls are periodic in the x-direction. ρ, p, and µ are assumed to be constant. The time
evolution Eq. (2.4) of Sp is coupled with the fluid momentum Eq. (2.3) to formulate the
Oldroyd-B fluid model.
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2.1 Analytical solutions

We consider the start-up flow of viscoelastic fluids in a planar channel bounded by two
parallel plates as shown in Fig. 1. The flow is driven by a constant pressure gradient
p′ and enters a transient phase, where the velocity and stresses remain dependent upon
time until an asymptotically steady state is reached.

Let u(x,y,t) be the fluid velocity vector with x-component u and y-component v. For
fully developed 2-D Poiseuille flow, v= 0 and ∇·u= ∂u/∂x+∂v/∂y= 0; hence Eq. (2.3)
reduces to

ρ
∂u

∂t
=−

dp

dx
+µ

∂2u

∂y2
. (2.5)

For fully developed viscoelastic fluid the extra-stress tensor Sp is added and the mo-
mentum equation is

ρ
∂u

∂t
=−

dp

dx
+µ

∂2u

∂y2
+

∂S12

∂y
, (2.6)

where S12 is the off-diagonal component of the polymer stress Sp.
Analytical solutions to Eqs. (2.5) and (2.6) exist (see White [22] and Waters et al. [21])

for both Newtonian and viscoelastic Poiseuille flow (Oldroyd-B model). In the Newto-
nian case the analytical solution for start-up Poiseuille flow is given by [22]:

u(t,y)=−
H2 p′

2µ





(

1−
y2

H2

)

−32
∞

∑
n=1

sin
(

π
2 (2n−1)(1+ y

H )
)

exp(− n2µt
4ρH2 )

(2n−1)3π3



. (2.7)

The fluid reaches the average steady-state velocity ū∞ =−H2 p′(x)/(3µ) asymptotically
as t→∞. Note that the fluid has spatial scale H and time scale ρH2/µ.

For viscoelastic fluid the analytical solution is given by [21]:

u(t,y)=−
H2 p′

2η0

[

(

1−
y2

H2

)

−32
∞

∑
n=1

sin
(

π
2 (2n−1)(1+ y

H )
)

Gn(t)exp(− αnt
2τ )

(2n−1)3π3

]

, (2.8)

where

Gn(t)=

{

cosh( βnt
2τ )+

γn

βn
sinh( βnt

2τ ) if α2
n ≥En2,

cos( βnt
2τ )+

γn

βn
sin( βnt

2τ ) if α2
n <En2.

(2.9)

and αn = 1+(1/4)βEn2, βn =
√

|α2
n−En2|, γn = 1−(1/4)(2−β)En2. η0 = µ+τG is total

zero-shear rate viscosity, and β = µ/η0 is the solvent viscosity ratio. E is the elasticity
number defined by the ratio of Weissenberg (Wi) and Reynolds (Re) numbers:

Wi=
τũ∞

H
, Re=

ρHũ∞

η0
, E=

Wi

Re
=

τη0

ρH2
,

where the average steady-state velocity is ũ∞ =−H2p′/(3η0). The relaxation time of the
viscoelastic fluid is τ.
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2.2 Immersed boundary Oldroyd-B

The immersed boundary method, originally introduced by Peskin [17], has been used
to capture coupled fluid-boundary structure interactions in viscoelastic fluid in many
studies including [4, 8, 11, 19]. Here, the computational fluid domain is 4H×4H. The
top and bottom walls of the immersed boundary channel are placed at heights of y= H
and y= 3H. Periodic boundary conditions are imposed on the fluid equations, with x-
periodic conditions on the immersed boundary channel walls. Similar to the Stokes-OB
model proposed by Teran et al. [18] the immersed-boundary Oldroyd-B model (IB-OB)
governing equations are

ρ
Du

Dt
=−∇p+µ∆u+∇·Sp+F(x,t), (2.10)

∇·u=0, (2.11)

τ

(

DSp

Dt
−∇u·Sp−Sp ·∇uT

)

=−(Sp−GI), (2.12)

F(x,t)=
∫

Γ1,2

f(s,t)δh(x−X(s,t))ds, (2.13)

∂X(s,t)

∂t
=u(X(s,t),t)=

∫

Ω
u(x)δh(x−X(s,t))dx. (2.14)

Here, X(s,t) is the Lagrangian description of the immersed boundary walls Γk, k=1,2, at
time t. The Lagrangian force f(s,t) at X(s,t) is the elastic force per unit length along the
walls due to the deformation. δh(x) is the 2-D Dirac delta function using Eulerian grid
spacing h. F(x,t) is the Eulerian force per unit area exerted on the fluid domain Ω by the
immersed boundaries.

In order to hold the channel walls at fixed positions, the wall Lagrangian force f is
modeled with Hookean springs with zero rest lengths connecting the wall points X(s,t)
to the fixed “tether” points Z(s), as shown below in Eq. (2.15) where the stiffness constant
S is chosen as large as possible in order to tether the wall points to their initial positions.

f(s,t)=S
[

Z(s)−X(s,t)
]

. (2.15)

The system is closed in Eq. (2.14) by requiring that the elastic boundaries move at the
local fluid velocity.

2.3 Numerical method

The 2D fluid domain is discretized using a uniform grid. Immersed boundaries, includ-
ing boundary walls and other elastic structures, are modeled as curves which do not
necessarily conform to the Eulerian fluid grid. The processes to convey momentum from
boundaries to fluid and translate velocity from the Eulerian fluid grid to Lagrangian im-
mersed boundaries are represented as two integrals: Eqs. (2.13)-(2.14). In the numerical
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method we employ an approximate delta function as discussed in [6]: δh(x)= d(x)d(y),
where h is Eulerian grid spacing, and

d(x)=

{

1
4h

(

1+cos πx
2h

)

if
|x|
h <2,

0 if |x|
h >2.

(2.16)

The Eulerian force density is obtained from the Lagrangian force density on the immersed
boundary X at each time t:

Fij =∑
m

fmδh(xij−Xm)∆s, (2.17)

where Eq. (2.17) is a discretized version of Eq. (2.13), fm is the Lagrangian force defined
at each point Xm on the immersed boundaries Γk, k=1,2 and Γk is discretized as X=(X1,
X2,··· ,Xp). The Eulerian fluid grid is denoted as xij=(ih, jh), i=1,2,··· ,n, j=1,2,··· ,n. Fij

is the Eulerian force applied on fluid per volume by the boundaries. ∆s is the initial point
separation along immersed boundaries Γk.

The fluid velocity of the mth immersed boundary point is obtained via the following
interpolation:

Um =∑
i,j

uijδh(xij−Xm)h
2 (2.18)

which is a discretized version of Eq. (2.14), uij is the fluid velocity defined on the Eule-
rian fluid grid at xij, Um is the local Lagrangian velocity at the immersed boundary point
Xm. This expression uses δh to interpolate the Eulerian velocity to local Lagrangian struc-
tures. As the time step ∆t is small (10−6), Euler’s method is used to update the immersed
boundary configuration:

Xn+1=Xn+∆tUn+1. (2.19)

Algorithm

The algorithm for solution of the IB-OB system can be summarized as follows. At the be-
ginning of each time step n we have the discretized fluid velocity un, immersed boundary
points of the channel walls Xn, and polymer stress Sn

p. In order to update the system to
time step n+1 we

1. Compute the Lagrangian force density fm at each immersed boundary point.

2. Interpolate the forces to the Eulerian grid to obtain the force density F.

3. Update the polymer stress to Sn+1
p .

4. Solve the Navier-Stokes Eqs. (2.10)-(2.11) for un+1.

5. Interpolate un+1 to the immersed boundary points to obtain boundary velocities
Un+1.

6. Update the boundary configurations Xn+1.
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We use a Fast Fourier Transform method for solving the Navier-Stokes Eqs. (2.10)-
(2.11) [6]. Since the extra-stress matrix Sp is symmetric and u is incompressible, Eq. (2.12)
can be represented by three equations:

∂S11

∂t
=2

(

∂u

∂x
S11+

∂u

∂y
S12

)

−u
∂S11

∂x
−v

∂S11

∂y
−

1

τ
(S11−G), (2.20)

∂S12

∂t
=

∂u

∂y
S22+

∂v

∂x
S11−u

∂S12

∂x
−v

∂S12

∂y
−

1

τ
S12, (2.21)

∂S22

∂t
=2

(

∂v

∂x
S12+

∂v

∂y
S22

)

−u
∂S22

∂x
−v

∂S22

∂y
−

1

τ
(S22−G). (2.22)

We solve Eqs. (2.20)-(2.22) numerically using central differences for the spatial deriva-
tives, upwind divided differences for the material derivative of S and a second-order
Runga Kutta method for the time derivatives. In the application shown here we set S=GI

at time t=0.

3 Lagrangian mesh model

An immersed boundary Lagrangian mesh (IB-LM) method was introduced by Bottino
[2] for modeling cellular actin cytoskeleton using a web of nodes that have viscoelastic
linkages between the nodes. The initial location of nodes could be randomly chosen.
Link connections could form and break, and could depend on the temporal history of the
links. Bottino studied the macroscopic properties of the complex fluid as a property of
these microscopic rules through several rheological experiments. A similar Lagrangian
method has been used by [1] to study biofilm dynamics and by [7] in a computational
rheometer.

We describe an IB-LM model for a viscoelastic fluid using a Lagrangian mesh consist-
ing of a discrete set of immersed boundary mesh points Xm(t) initialized as a regular grid
with equal grid spacing. In a 2D mesh, each immersed boundary node is connected to its
8 nearest neighbors in the vertical, horizontal and diagonal directions with viscoelastic
links. The linkage can be modeled with Jeffreys or Maxwell elements or other types of
linear elements as well as nonlinear viscoelastic links. The links used in this study are
Maxwell elements. Since the nodes in the mesh move at the local fluid velocity, the mesh
can become deformed over time introducing forces into the Navier-Stokes equations. The
IB-LM equations are formulated as follows:

ρ

(

∂u

∂t
+(u·∇)u

)

=−∇p+µ∆u+Fe+Fm, (3.1)

∇·u=0, (3.2)

∂Xi

∂t
=u(Xi(s,t),t)=

∫

u(x,t)δ(x−Xi(s,t))dx (3.3)
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S D 

Figure 2: Maxwell element.

and

Fi(x,t)=
∫

Γ
fi(s,t)δ(x−Xi(s,t))ds, (3.4)

where i=e is the immersed boundary elastic structure and i=m, the immersed boundary
Lagrangian viscoelastic mesh.

Each Maxwell element, as shown in Fig. 2, consists of a dashpot D and a spring S
connected in series. If we let x be the total length of the element, then

x= x1+x2+L, (3.5)

where x1 is the spring extension from its resting length L, and x2 is the creep length in
the dashpot D. In the Maxwell element, the spring force is equal to the dashpot force,

κx1=νẋ2, (3.6)

where κ is the spring stiffness and ν the dashpot viscosity. With ẋ = ẋ1+ ẋ2, this can be
expressed as a first order ordinary differential equation for x1

ẋ1+
1

λ
x1= ẋ, (3.7)

where λ=ν/κ is the relaxation time for the stress generated by a strain to dissipate.
The solution for x1 is given by

x1(t)= e−(t−t0)/λx1(t0)+
∫ t

t0

ẋ(τ)e−(t−τ)/λdτ (3.8)

or equivalently

σ(t)= e−(t−t0)/λσ(t0)+κ
∫ t

t0

ẋ(τ)e−(t−τ)/λdτ (3.9)

for the stress σ(t)=κx1.
In the Lagrangian mesh model, force is interpreted as force per unit length. At each

of the Lagrangian mesh points, we use Eq. (3.9) above to compute the force due to each
Maxwell element. The force at each of the mesh points is spread to the Eulerian grid via
Eq. (3.4).
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A formal relationship between the IB-OB and IB-LM methods was derived by [7].
Using the relationship that the Maxwell element relaxation time λ = ν/κ is the ratio of
dashpot viscosity ν and spring stiffness κ, Eq. (3.7) can be expressed as λσ̇+σ= νẋ and
generalized to the upper convected Maxwell model [13] for the Maxwell stress tensor Σ

λ

(

DΣ

Dt
−(∇u ·Σ+Σ·∇uT)

)

+Σ=2νD, (3.10)

where D=(1/2)(∇u+∇uT). Let Σ=Sp−GI, where GI is the additional isotropic stress
in a complex fluid arising from thermodynamic fluctuations of the polymer chains [14],
and setting λ = τ and λG = ν, Eq. (3.10) becomes formally equivalent to Eq. (2.4). The
equivalence is achieved by setting the Maxwell element relaxation time λ equal to the
OB fluid polymer relaxation time scale τ, and spring stiffness κ equal to the additional
isotropic stress G in the OB fluid.

3.1 Lagrangian mesh regridding

The Lagrangian mesh is initialized as a uniform mesh grid. When the fluid is driven
by a pressure gradient, as in the case of Poiseuille flow, the mesh moves with the local
fluid velocity. The Lagrangian mesh experiences a deformation as the mesh nodes move
away from the original uniform configuration. The deformation can lead to significant
elongation and compaction of the individual mesh elements. In planar Poiseuille flow the
fluid velocity reaches a maximum along the centerline of the fluid domain and gradually
decreases from the centerline to the boundaries where the velocity is zero, forming a
parabolic velocity profile. Mesh nodes near the centerline therefore move at much faster
rates than nodes further away from the centerline. Because of this velocity differential,
the nodes near the walls lag behind the centerline nodes over time.

A regridding step can be employed to solve this problem, remove the lagging effects
caused by velocity differentials, improve the Lagrangian mesh model, and add to algo-
rithm stability. The extra stress contribution to the viscoelastic fluid is modeled using the
Lagrangian mesh. As the mesh is restored to a uniform grid, link forces on the deformed
mesh are interpolated to nodes on the uniform mesh. The restored mesh is a regular grid
and the target link force vectors are along the divisions of the octants. The regridding
procedure is performed on each mesh node, and for each node loops through all eight
link forces. First, each link force is decomposed along the division boundary directions of
the octant in which the force resides (see Fig. 3). Second, the component forces are then
interpolated to nearby nodes on the mesh. In this study, we use a 2-by-2 interpolation
range so that the forces are distributed to the four vertices of the square that includes the
node currently in focus.

Given the forces ~σk for k= 1,2,··· ,8 at locations ~xj (Fig. 3a), which do not in general
coincide with a uniform grid due to the Lagrangian motion, the goal is to interpolate the
forces onto new locations corresponding to nodes on a uniform grid along the 8 directions
mπ/4 for m=1–8.
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(a) (b) (c)

~σ1 ~σ1 ~σ1

v̂2

v̂1

(d) (e) (f)

~σ1
~u2 ~u1

Figure 3: Regridding procedure.

1. Starting with~σ1 in Fig. 3b, find the octant where it lies (Fig. 3c).

2. Using the two unit vectors v̂1 and v̂2 for that octant as a basis for R
2, Fig. 3c, de-

compose~σ1 into~σ1=~u1+~u2 (Fig. 3d).

3. Interpolate the new force vectors ~u1 and ~u2 in Fig. 3e to the nearby nodes of the
uniform grid (Fig. 3f). This procedure is repeated for each of the eight vectors at
each node; then it is done for all the Lagrangian mesh nodes.

3.2 IB-LM Algorithm

At the beginning of each time step tn, we have the immersed boundary configurations
Xn

i , for i = e,m and fluid velocities un. In order to update the fluid velocities and the
immersed boundaries at time tn+1 we:

1. Calculate the force fn
e using the immersed boundary configuration Xn

e .

2. Calculate the Lagrangian mesh link forces using Eq. (3.9) from the Lagrangian mesh
configuration Xn

m to produce the mesh force fn
m.

3. Interpolate the force densities fn
i using Eq. (3.4) to the Eulerian grid to obtain Fn

i .

4. Restore Lagrangian mesh forces to a uniform mesh using regridding every M time
steps.

5. Solve Eqs. ( 3.1) and (3.2) to obtain un+1.

6. Advect the immersed boundary points using Eq. (3.3) to obtain Xn+1
i .
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4 Results

In this section the numerical methods outlined in Sections 2.2 and 3.2 are applied to the
2-D Poiseuille flow problem. For the IB-OB and Newtonian models, analytical fluid ve-
locity profiles at various times are compared with simulation results. Velocity profiles
from IB-LM simulations are then compared with IB-OB results showing the difference
between results over time. The following simulations are carried out with parameter
values shown in Table 1.

Table 1: 2-D Poiseuille flow properties.

Parameter Symbol Units Value

Time step ∆t s 1.0×10−6

Tether constant k g/s2 8.0×108

Density ρ g/cm3 1.0

Viscosity µ g/(cm s) 0.01

Pressure gradient p′ g/(cm2 s2) -1000

Reynolds number Re − 0.1389

Viscosity ratio β − 1/9

Domain size 4H cm 0.06

Weissenberg number. Wi − 0.1389

Spring stiffness κ g/(cm s2) 32

Dashpot viscosity ν g/(cm s) 0.08

Regridding frequency M time step 100

The analytical solutions provide a reference for comparison with numerical simula-
tions by keeping track of discretization errors over time with various spatial and time
discretizations, making possible the comparison of convergence rates across various dis-
cretization and regridding schemes, using different flow parameters (e.g. β) and numeri-
cal methods. To facilitate the comparisons, we use nondimensional spatial scale Y=y/H;
dimensionless time T=µt/(ρH2) in the Newtonian case, T= t/τ in IB-OB with τ= ν/κ
in IB-LM; and dimensionless velocity U=u/ū∞ for Newtonian and U=u/ũ∞ for IB-OB
and IB-LM.

In the case of Poiseuille flow, we define the E(T) as the discretization error of a veloc-
ity profile at a fixed laboratory frame x= X̂ at a given time T as the mean square of the
difference of computational and analytical solutions:

E(T)=

√

1

n

n

∑
i=1

[Û(X̂,Yi,T)−U(Yi,T)]2, (4.1)

where Û(X̂,Yi,T) is numerical grid velocity at X̂ for Yi, i=1,2,··· ,n with fluid grid spacing
2H/n and dimensionless time T. U(Yi,T) is the corresponding analytical solution. The
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relative discretization error

ẽ(T)=

√

√

√

√

√

√

√

n

∑
i=1

[Û(X̂,Yi,T)−U(Yi,T)]2

n

∑
i=1

U(Yi,T)2

(4.2)

expresses the discretization error of simulation results relative to the analytical solution
at each time T.

Newtonian Poiseuille flow exhibits a monotonically accelerating phase during start-
up. Fig. 4 depicts the dimensionless centerline velocity profile at a fixed point over time.
Initially the centerline velocity accelerates rapidly. This acceleration gradually slows as
the centerline velocity approaches an asymptotic steady velocity. During the initial start-
up period, the fluid velocity increases monotonically. The velocity toward the center
of the channel is always greater than that further away from the centerline, with the
maximum speed achieved at the center. As shown in Fig. 4, the Newtonian numerical
simulations closely match the analytical solution.

T

U
0

Centerline velocity

Newtonian Analytic
Newtonian Computation
OB Analytic
OB Computation
Lagrangian Mesh

T

U
0

14 14.5 15

0 2 4 6 8 10 12 14 16

1.4

1.45

1.5

1.55

1.6

0

0.5

1

1.5

2

2.5

3

Figure 4: Centerline velocity of Newtonian, OB analytical, IB-OB simulation and IB-LM model; inset: magnified
view on T∈ [14,15].

Viscoelastic flow also has a rapid acceleration in the initial period before approaching
an asymptotic steady state which is at the same velocity as that of Newtonian fluid. Vis-
coelastic fluid, however, sees noticeable variations in the start-up phase. As in the case of
Newtonian flow, IB-OB flow experiences a rapid rise in velocity, but attains a much higher
speed than Newtonian flow and overshoots the steady state. Subsequently, the centerline
velocity approaches the asymptotic steady state velocity in an oscillatory manner. The
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Figure 6: Viscoelastic flow analytical (IB-OB) and computational (IB-OB, IB-LM) velocity profiles; inset:
discretization error for viscoelastic simulations.

numerical results and analytical solutions in OB flow are very similar. IB-LM Poiseuille
start-up flow results are also very similar to IB-OB. Figs. 5 and 6 show analytical and
numerical velocity profiles at several different times during the start-up phase of Newto-
nian, IB-OB, and IB-LM simulations. Taken at a fixed position in a laboratory frame, these
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velocity profiles record the changes of velocity in this transient process. While Newto-
nian and IB-OB simulations show dissimilar profiles during the transient startup phase,
the steady state profiles are very similar. The OB fluid experiences a much longer (5 times
as long in the simulations shown) transient period before converging to a steady state.
Consistent with the centerline velocity picture, OB fluid velocity profiles shown in Fig. 6
show a rapid overshoot at the beginning (T = 1.0). The velocity profile drop below the
steady velocity (T = 3.0), then move ahead at (T = 5.0). The centerline velocity shows a
diminishing oscillatory form before finally reaching an approximate asymptotic steady
state shown at (T=15).

4.1 IB-LM with regridding

The location of each node in the mesh is updated at every time step moving at the local
fluid velocity. Over time the mesh shows a significant deformation from its initial config-
uration. In 2-D planar Poiseuille flow, the deformation can lead to a significantly lower
steady state velocity levels relative to the OB analytical result. To overcome this difficulty,
a regridding procedure is applied at regular time intervals. This improves stability and
leads to results close to the IB-OB model.

Fig. 7 shows the velocity profiles obtained at different remeshing frequencies in IB-LM
simulations. Consistent with Fig. 6, IB-OB simulation velocity profiles overlap with ana-
lytic predictions in both the initial start-up phrase and as they approach the stable state.
However, velocity profiles from the IB-LM simulations show a discrepancy from the an-
alytic OB solution. This discrepancy grows as the remeshing interval increases. Fig. 7
shows IB-LM velocity profiles at different times under different remeshing intervals.

In Fig. 7 (a-d), remeshing intervals vary from 5000 to 30000. At T = 1 the velocity
profiles of the viscoelastic analytic solution, as well as the IB-OB and IB-LM simulations
are nearly identical. As already noted, the centerline velocity profiles (see Fig. 8) of the
analytic solution have an initial excursion that greatly exceeds the asymptotic steady
state centerline velocity and exhibits a transient oscillation as the centerline velocity ap-
proaches the steady state velocity. The IB-OB simulation results are in close agreement
with the analytical solutions as seen in the centerline velocities shown in Fig. 8 as well as
in the velocity profiles shown in Fig. 7. The discrepancy between the IB-LM simulations
and the analytical results depends rather dramatically on the remeshing frequency. At a
remeshing frequency of 10 the IB-LM centerline velocity as well as the velocity profiles
are in close agreement with the analytical and IB-OB results. As seen in Figs. 7(a) and
8, when the remeshing is much less frequent, velocities significantly lag the IB-OB and
analytical velocities at T=3, and continue to lag the IB-OB and analytical results at T=15.
Moreover, as the remeshing interval increases, the discrepancies between the IB-LM and
IB-OB/analytical solutions increase.

A similar “lagging” effect is seen in IB-LM velocities as shown in Fig. 7d: while the
IB-LM velocity is close to the IB-OB and analytical results in the initial period (T= 1.0),
the IB-LM velocity gradually slows and lags behind the IB-OB/analytical profiles at later
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Figure 7: Velocity profiles at different remeshing frequencies.

times (T=3.0,5.0,15.0). As the remeshing interval becomes large, IB-LM velocities drop
to even lower levels at later times. This effect is also seen in the centerline velocities
shown in Fig. 8. Before T = 2.5 there is no significant departure from the IB-OB results,
but after the first velocity peak, IB-LM centerline velocity differences emerge, becoming
larger with longer remeshing intervals. With remeshing intervals from 10 to 30000, IB-LM
centerline velocity drops to the lowest level over time at the longest remeshing interval
30000. Centerline velocities at a remeshing interval of 10 exhibit much better agreement
with its IB-OB counterpart. Centerline velocities at other remeshing intervals between
10 and 30000 show a “best fit” at 10 and worst at 30000. At less frequent remeshing the
centerline velocity of the fluid still mimics the crest and trough characteristics of the start-
up period in OB but at a lower magnitude; without remeshing IB-LM fluid undergoes
similar velocity oscillations before approaching a steady state. After each remeshing step,
fluid velocities quickly move towards the OB results, forming a peak which tends to rise
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Figure 8: Centerline velocity over time at different remeshing schemes for model: fluid grid: 128-by-128, mesh
grid: 64-by-64.

to or above the OB steady level. The peak then falls below the steady level and reaches
its minimum level at the next remeshing point and then rises again to the next peak (see
Fig. 8). For less frequent remeshing, centerline velocities drop lower and bounce to a
higher level after each remeshing step. At remeshing intervals of 20000 and 30000, the
velocity rises above the OB level before decreasing.

Figs. 9 and 10 show the relative discretization error in comparison with the analytic
solutions over time for remeshing intervals of 5-1250 (Fig. 10) and 1250-30000 (Fig. 9). In-
cluded in each figure is the relative discretization error of the OB solution in comparison
with the analytical results. These results show that there is a relative discretization error
of approximately 10−3 for the IB-OB solutions and a larger error of 10−2 in IB-LM sim-
ulations with frequent remeshing. Moreover, the relative discretization errors are much
larger with less frequent remeshing. As shown in Fig. 10 and highlighted in the figure
inset, the differences between remeshing intervals of 5, 250, 500 are modest.

As regridding become more frequent, relative discretization errors between IB-LM
results and the OB analytical solutions decrease. Less frequent remeshing, shown in
Fig. 9, exhibits a greater deviation from the analytical result than more frequent remesh-
ing, shown in Fig. 10. This effectively shows the result of remeshing: soon after mesh re-
gridding, the discretization errors significantly decrease. As the effect of remeshing dissi-
pates, discretization errors again rise until the next remeshing is applied, forming a series
of peaks and valleys. The centerline velocity exhibits an oscillatory pattern with decreas-
ing amplitudes, consistent with the characteristic of complex parabolic flow which con-
verge to a steady velocity after an initial start-up phase. Like the OB fluid, IB-LM model
at less frequent remeshing intervals eventually approaches a steady state at remeshing
intervals of 20000 and 30000 steps.



128 J. Zhuo, R. Cortez and R. Dillon / Commun. Comput. Phys., 22 (2017), pp. 112-132

T

ẽ
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As shown in Fig. 11, more frequent remeshing reduces the discretization error and in-
creases the computational cost as measured in CPU time. With the fluid and mesh grids
shown here, the discretization error curve is rather flat until a regridding frequency of
about 500. Conversely, the computational cost or regridding is negligible until a regrid-
ding frequency of about 50. Thus, a regridding every 50 to 500 time steps produces low
discretization errors with a minimal computational cost.
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4.2 Refining the IB-LM mesh

In addition to regridding the Lagrangian mesh at regular time intervals, refinement of the
Lagrangian mesh is shown to reduce the discretization errors in the IB-LM simulations.
Fluid grids of 64-by-64, 128-by-128 and 256-by-256 were tested, and for each of these grid
spacings, 7 different Lagrangian mesh grid spacings were considered. CPU-time and
discretization errors are shown in Fig. 12,where the grid ratio is the ratio of fluid grid
to mesh grid, and the error ratio is the ratio of discretization error relative to that of the
finest grid. Similarly, the CPU-time ratio is relative to the base model consuming the
least amount of CPU time. Both ratios start from 1. The simulations with a 256-by-256
fluid grid shows the lowest relative discretization errors. On the 256-by-256 fluid grid
the discretization error ratios are most consistent over different grid ratios. At fluid grids
of 64-by-64 and 128-by-128, the discretization error ratios show dramatic upturns as the
grid ratio increases. While at the fluid grid of 256-by-256, the error ratio remains near
1. As the Lagrangian mesh grid becomes less coarse, the 256-by-256 fluid grid results
show the least increase in the CPU time ratio, while the CPU time ratio rises above 20 as
the mesh grid becomes more dense for 128-by-128 and 64-by-6 simulations. In terms of
relative discretization error, the 256-by-256 fluid grid with 256-by-256 mesh grid is closer
to OB than all the others. The 256-by-256 fluid grid with 128-by-128 mesh grid simulation
shows a high degree of agreement the simulation with 128-by-128 fluid grid and 64-by-64
mesh grid.
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Figure 12: (a)∼(c): Discretization error and CPU time at different fluid and mesh gridding schemes; (d):
relative discretization error at different gridding schemes.

5 Discussion

In this study we developed a Lagrangian mesh model in an immersed boundary frame-
work using 2D planar Poiseuille flow as a test case. The Lagrangian mesh used in this
study is initialized as a regular mesh grid using linear Maxwell connecting elements. In
an earlier numerical rheometer study [7], this form of the Lagrangian mesh model gave
very similar results to an Oldroyd-B model with comparable parameters. Here we com-
pared the two models (IB-LM and IB-OB) in planar Poiseuille flow in terms of centerline
speed, fixed frame velocity profile and discretization error, and we found remeshing, as
well as fluid and/or mesh refinement increase the stability and accuracy of Lagrangian
mesh simulations and produce results highly comparable with that of the Oldroyd-B
model. We showed that the two models gave closer results as the fluid and mesh grid
was refined.
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This study explored the trade-offs between discretization error and CPU time con-
sumption at various regridding frequencies, and determined an optimal regridding in-
terval. Fixing the regridding scheme, this study then explored the same trade-offs of
different fluid and mesh gridding schemes and found the optimal scheme.

Here we focused on planar Poiseuille flow with a low Reynolds number and a fixed
set of parameters including the Weissenberg number Wi and the viscosity ratio β. In
principle, Lagrangian mesh models can be used to model a variety of viscoelastic fluids.
The form of the mesh could be regarded as a coarse grain model of the physical structure
of the viscoelastic component of the fluid and, in some contexts, distortion of the mesh
may have a physical interpretation and regridding would be unnecessary. Future inves-
tigations will examine alternative models for the viscoelastic links and comparisons with
properties of viscoelastic media such as mucus, biological tissues, and biofilms.
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