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Abstract. By combining the characteristic method and the local discontinuous Galerkin
method with carefully constructing numerical fluxes, variational formulations are es-
tablished for time-dependent incompressible Navier-Stokes equations in R2. The non-
linear stability is proved for the proposed symmetric variational formulation. More-
over, for general triangulations the priori estimates for the L2−norm of the errors in
both velocity and pressure are derived. Some numerical experiments are performed to
verify theoretical results.
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1 Introduction

Based on the assumption that the fluid, at the scale of interest, is a continuum, and the
conservation of momentum (often alongside mass and energy conservation), the equa-
tion to describe the motion of fluid substances can be derived, which is named after the
French engineer and physicist Claude-Louis Navier and the Ireland mathematician and
physicist George Gabriel Stokes to recognize their fundamental contributions. Nowa-
days, it is still the central equation to fluid mechanics. Let Ω be a bounded polygonal
domain in R2 with Lipschitz-continuous boundary ∂Ω and T>0 is a finite quantity. The
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time-dependent Navier-Stokes equation for an incompressible viscous fluid confined in
Ω is [27]:















∂tu+(u·∇)u−ν∆u+∇p= f , (x,t)∈Ω×[0,T],
∇·u=0, (x,t)∈Ω×[0,T],
u(x,0)=u0(x), x∈Ω,
u(x,t)=0, (x,t)∈∂Ω×[0,T].

(1.1)

It is well-known that the problem has a unique solution and u ∈ L2(0,T;H1
0(Ω)2)∩

L∞(0,T;L2(Ω)2), p∈W−1,∞(0,T;L2
0(Ω)) for ut ∈ L2(0,T;X ′), the body force function f ∈

L2(0,T;H−1(Ω)2) and u0∈H(div,Ω) [27]. The constant ν is the fluid viscosity coefficient.
Since p is uniquely defined up to an additive constant, we also assume that

∫

Ω
p dx= 0.

The (u·∇)u is a nonlinear convective term and

(u·∇)u=u1
∂u

∂x
+u2

∂u

∂y
.

The idea of the characteristic methods dates back to the works of Douglas and Russell
in 1982 [15]. Later on Süli [26] and Boukir et al. [4] extended the idea to two and three di-
mensional nonlinear coupled system, and performed the detailed numerical analysis for
the incompressible Navier-Stokes equation. In the context of linear advection-diffusion
equations, Eulerian-Lagrangian characteristic methods were proved to converge inde-
pendent of the vanishing viscosity parameter [28, 29] or even in the case of degener-
ate diffusion coefficient [32]. The Eulerian-Lagrangian characteristic method was also
used to solve the equation modelling the subsurface porous medium flow with error es-
timate [30]. Being different from the above ideas, here we use the characteristic method
to tackle the time derivative term and the nonlinear convective term together and solve
the considered equation with first order accuracy in time. It seems that the character-
istic methods have many advantages compared to a high-order Runge-Kutta scheme or
a high-order finite difference scheme [14], such as 1) efficient in solving the advection-
dominated diffusion problems; 2) easily obtaining the existence and uniqueness of the
solutions of the discretized system; 3) making the nonlinear equations linear and con-
veniently tackling the nonlinear obstacles; 4) easily performing the numerical stability
analysis; 5) physically discretizing the material derivative [8].

Because of the inherent performances of the Navier-Stokes or Stokes equations in
characterizing the turbulence (most flows occurring in nature are turbulent) in fluids
or gases, from the finite element methods to discontinuous Galerkin methods a lot of
research works on these topics have been done [3, 9–12, 17–19, 21, 24]. To our knowl-
edge, there are less works on the discontinuous Galerkin method to solve the time-
dependent incompressible Navier-Stokes equation, and much less on the local discontin-
uous Galerkin method (LDG). Recently splitting the nonlinearity and incompressibility,
and using discontinuous or continuous finite element methods in space, Girault et al.
solved the time-dependent incompressible Navier-Stokes equation [17] with discontinu-
ous Galerkin methods.
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In this paper, we use the local discontinuous Galerkin methods to discretize the space
derivative of the considered equation. By introducing the local auxiliary variable, the or-
der of the diffusion term can be reduced. The symmetric formulation arising from using
penalty terms makes stability and error analysis possible. The introduced auxiliary vari-
able σ̄=

√
ν∇u lessens the challenges caused by the big Reynold number since

√
ν is not

as small as ν. The lucky thing is that we still keep the general advantages of discontinu-
ous Galerkin methods, namely, to get high order accuracy and to perform hp-adaptivity,
and the high parallelizability, etc.

The contribution of this work is an extension of local discontinuous Galerkin methods
for the Stokes system [10] with the characteristic local discontinuous Galerkin (CLDG)
method to the time dependent incompressible Navier-Stokes equations. We use some
similar schemes in [10] to carry out the existence and error estimate of the pressure.

The outline of this paper is as follows. In Section 2 we derive the CLDG scheme
and prove the existence, uniqueness of numerical solution. In Section 3 we prove the
nonlinear stability. In Section 4 we carry out the priori estimates for L2−norm of the
errors in the velocity and pressure. In Section 5 some numerical experiments are given
to verify theoretical results and illustrate the performance of the proposed scheme. In
Section 6 some concluding remarks are given.

2 Derivation of the numerical scheme

We first introduce the notations, and then focus on deriving the full discrete numerical
scheme of the time-dependent incompressible Navier-Stokes equations.

2.1 Preliminaries

For the mathematical setting of the Navier-Stokes problems, we describe some Sobolev
spaces. The L2(Ω) and L2

0(Ω) are the classical space of square integrable functions with
the inner product ( f ,g)=

∫

Ω
f g dx and the subspace of functions of L2(Ω) with zero mean

value respectively,

L2
0(Ω)=

{

v∈L2(Ω) :
∫

Ω
v dx=0

}

.

It is well-known that C∞
0 (Ω) and H1

0(Ω) are the space of infinitely differentiable func-
tions with compact support and the closure of C∞

0 (Ω) in H1(Ω) respectively.

H1(Ω)=
{

v∈L2(Ω) :∇v∈L2(Ω)
}

,

and H−1(Ω) is the dual space of H1
0(Ω). Denote X as the space of functions of H1

0(Ω)2

with zero divergence,

X=
{

v∈H1
0(Ω)2 :∇·v=0

}

,

and X ′ as its dual space.
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For any Banach space W, let Lp[0,T;W],1≤ p<∞ and L∞[0,T;W] denote the spaces of
p-integrable functions with norms

‖v‖Lp [0,T;W]=

(

∫ T

0
‖v(t)‖p

W

)1/p

, ‖v‖L∞ [0,T;W]=esssupt∈[0,T]‖v‖W .

Let H1[0, T;W] denote the space of functions with square integral derivatives with norm

‖v‖H1 [0,T;W]=

(

∫ T

0
‖v‖2

W dt+
∫ T

0
‖∂tv‖2

W dt

)1/2

.

The fundamental work spaces for solving the Navier-Stokes equations are X and M :=
L2

0(Ω).
The inner product and norm of vector functions v=(vi)1≤i≤d are defined by

(u,v)=
∫

Ω
u·v dx, ‖v‖0=

(

d

∑
i=1

‖vi ‖2
L2(Ω)

)1/2

.

The gradient of a vector function v : Rd → Rd and the divergence of a matrix function
σ̄ :Rd→Rd×d are given by

∇v=

(

∂vi

∂xj

)

1≤i,j≤d

, ∇·σ̄=

(

d

∑
j=1

∂σ̄ij

∂xj

)

1≤i,j≤d

.

Consequently, for a vector function v=(vi)1≤i≤d, we have

∆v=∇·∇v=(∆vi)1≤i≤d.

The L2 inner product of two matrix functions σ̄ and τ̄ is defined by

(σ̄,τ̄)=
∫

Ω
σ̄ : τ̄ dx=

∫

Ω
∑

1≤i,j≤d

σ̄ijτ̄ij dx,

equipped with the norm

‖ σ̄ ‖0=(σ̄,σ̄)1/2
Ω

=

(

∫

Ω
σ̄ : σ̄ dx

)1/2

=

(

∫

Ω
∑

1≤i,j≤d

σ̄2
ij dx

)1/2

.

Let Ω be a bounded polygonal domain subdivided into elements E. Here E is a tri-
angle or a quadrilateral in 2D. We assume that the intersection of two elements is either
empty, or an edge (2D). The regular mesh is considered which means

∀E∈Eh,
hE

ρE
≤C,
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where Eh is the subdivision of Ω, C is a constant, hE is the diameter of the element E,
and ρE is the diameter of the inscribed circle in element E. Throughout this work h =
maxE∈Eh

hE.

We introduce the Broken Sobolev space [23] for any real number s,

Hs(Eh)
2=
{

v∈L2(Ω)2 : ∀E∈Eh,v|E ∈Hs(E)2
}

,

equipped with the Broken Sobolev norm:

‖v‖s=

(

∑
E∈Eh

d

∑
i=1

‖vi ‖2
Hs(E)

)1/2

.

We denote by E B
h the set of edges of the subdivision Eh. Let E i

h denote the set of
interior edges; and E b

h = E B
h \E i

h the set of edges on ∂Ω. With each edge e, we have a
unit normal vector ne. If e is on the boundary ∂Ω, then ne is taken to be the unit outward
vector normal to ∂Ω [23].

If v belongs to H1(Eh)
2, the trace of v along any side of one element E is well defined.

If two elements Ee
1 and Ee

2 are neighbors and share one common side e, there are two
traces of v belonging to e. We assume that the normal vector ne is oriented from Ee

1 to Ee
2,

the average and jump are defined by respectively

{v}= 1

2

(

v|∂Ee
1
+v|∂Ee

2

)

and [v]=(v|∂Ee
1
−v|∂Ee

2
), ∀e∈∂Ee

1

⋂

∂Ee
2.

If e is on ∂Ω, we have the definition:

{v}=[v]=v|∂E, ∀e∈∂E
⋂

∂Ω.

2.2 CLDG scheme

By introducing an auxiliary variable σ̄=
√

ν∇u [3, 13], we rewrite (1.1) as a mixed form:























∂tu+(u·∇)u−√
ν∇·σ̄+∇p= f , (x,t)∈Ω×[0,T],

σ̄=
√

ν∇u, (x,t)∈Ω×[0,T],
∇·u=0, (x,t)∈Ω×[0,T],
u(x,0)=u0(x), x∈Ω,
u(x,t)=0, (x,t)∈∂Ω×[0,T],

(2.1)

where ν=1/Re is the viscosity coefficient. Obviously,
√

ν is small enough we have
√

ν>ν.

Before presenting the variational form, we clarify the notation: v·σ̄·n:=∑
2
i,j=1viσ̄ijnj:=

σ̄ :(v⊗n). Multiplying the first, second, and the third equation of (2.1) by the smooth test
functions (v,τ̄,q) respectively, and integrating by parts over an arbitrary subset E∈ Eh,
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we get the following weak variational formulation, namely to find the solution (u,σ̄,p)∈
V×V2×Q such that for any functions (v,τ̄,q)∈V×V2×Q,































∫

E
(∂tu+(u·∇)u)·v dx+

∫

E

√
νσ̄ :∇v dx−

∫

∂E

√
νv·σ̄ ·nE ds

−
∫

E p∇·v dx+
∫

∂E pv·nE ds=
∫

E f ·v dx,

∫

E σ̄ : τ̄ dx−
∫

E

√
ν∇u : τ̄ dx=0,

∫

E
∇·uq dx=0,

(2.2)

where nE is the outward unit normal to ∂E, and

V=
{

v∈L2(Ω)2 : v|E ∈H1(E)2,∀E∈Eh

}

,

V2=
{

σ̄∈ (L2(Ω)2)2 : σ̄|E ∈ (H1(E)2)2,∀E∈Eh

}

,

Q=
{

q∈M : q|E ∈H1(E),∀E∈Eh

}

.

The exact solution (u,σ̄,p) will be approximated by the functions (uh,σ̄h,ph) belonging
to the finite element spaces Vh×V2

h×Qh

Vh =
{

v∈L2(Ω)2 : v|E ∈Pk(E)2,∀E∈Eh

}

,

V2
h =
{

σ̄∈ (L2(Ω)2)2 : σ̄|E ∈ (Pk(E)2)2,∀E∈Eh

}

,

Qh =
{

q∈M : q|E ∈Pk(E),∀E∈Eh

}

,

where Pk(E) denotes the set of all polynomials of degree at most k≥1 on E.

To find (uh,σ̄h,ph)∈Vh×V2
h×Qh for any functions (v,τ̄,q)∈Vh×V2

h×Qh and E∈Eh,
the following holds































∫

E
(∂tuh+(uh ·∇)uh)·v dx+

∫

E

√
νσ̄h :∇v dx−

∫

∂E

√
νv·σ̄∗

h ·nE ds

−
∫

E ph∇·v dx+
∫

∂E p∗hv·nE ds=
∫

E f ·v dx,

∫

E σ̄h : τ̄ dx−
∫

E

√
ν∇uh : τ̄ dx=0,

∫

E∇·uhq dx=0,

(2.3)

where σ̄∗
h and p∗h are to be determined by numerical fluxes. By carefully adding penalty

terms and choosing the numerical fluxes

σ̄∗
h ={σ̄h}, p∗h ={ph}, (2.4)
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we develop the following numerical scheme































(

∂tuh+(uh ·∇)uh,v
)

+(σ̄h,
√

ν∇v)−({σ̄h},
√

ν[v]⊗ne)E B
h

−(ph,∇·v)+({ph},[v]·ne)E B
h
+([uh],[v])E B

h
=( f ,v),

(σ̄h,τ̄)−(
√

ν∇uh,τ̄)+({τ̄},
√

ν[uh]⊗ne)E B
h
=0,

(q,∇·uh)−({q},[uh ]·ne)E B
h
+([ph],[q])E i

h
=0,

(2.5)

for any functions (v,τ̄,q)∈Vh×V2
h×Qh. The exact solution (u,p) of (1.1) is expected to be

at least continuous with homogeneous boundary. So added penalty terms ({τ̄},
√

ν[uh]⊗
ne)E B

h
, ([uh],[v])E B

h
, ({q},[uh]·ne)E B

h
and ([ph],[q])E i

h
still keep the consistency of the scheme.

Moreover, the locality of the discontinuous Galerkin method still remains since the penalty
term ({τ̄},

√
ν[uh]⊗ne)E B

h
in the second equation is independent of σ̄h. The most impor-

tant thing is that these additions make the variational formulation symmetric, which
makes the stability and error analysis possible.

Throughout this work, we use the notations

(w,v)= ∑
E∈Eh

(w,v)E, (w,v)
E i

h
= ∑

e∈E i
h

(w,v)e, (w,v)
E B

h
= ∑

e∈E B
h

(w,v)e.

Definitions of the bilinear forms:

a(σ̄h,v)=(σ̄h,
√

ν∇v)−({σ̄h},
√

ν[v]⊗ne)E B
h

,

b(ph,v)=−(ph,∇·v)+({ph},[v]·ne)E B
h

,

(uh,v)=([uh],[v])E B
h

,

d(ph,q)=([ph],[q])E i
h
.

By integration by parts, the forms a(σ̄h,v) and b(ph,v) also can be rewritten as

a(σ̄h,v)=−(∇·σ̄h,
√

νv)+([σ̄h],
√

ν{v}⊗ne)E i
h
,

b(ph,v)=(∇ph,v)−([ph],{v}·ne)E i
h
.

(2.6)

2.3 Characteristic method

For each positive integer N, let 0=t0
<t1

< ···<tN=T be a partition of T into subintervals
Jn = (tn−1,tn], with uniform mesh and the interval length ∆t = tn−tn−1,1 ≤ n ≤ N and
un =u(x,tn). The characteristic tracing back along the field un−1 of a point x∈Ω at time
tn to tn−1 is approximated by [1, 6, 25]:

ẋ(x,tn−1) := x−un−1∆t.
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We assume that the characteristics do not cross each other, which can be satisfied by
choosing sufficiently small ∆t, since physically there are no crossings for the character-
istics. Consequently, the approximation for the hyperbolic part of (1.1) at time tn can be
derived by

∂tu
n+un ·∇un ≈ un−u̇n−1

∆t
,

where u̇n−1=u(ẋ(x,tn−1)).

Lemma 2.1 (Time truncation error [25]). Let E(x,n) = un−u̇n−1

∆t −(∂tu
n+un ·∇un). If u ∈

C4([∆t,T];H3(Ω)2) and tn
>∆t, then

E(x,n)=−∆t

(

1

2

d2gn
x

dt2
+

∂u

∂t
·∇u(x,tn)

)

+O(∆t2), (2.7)

where gn
x (t)=u(x−(tn−t)u(x,t),t).

Hence the fully discretized scheme, the characteristic local discontinuous Galerkin
(CLDG) scheme, corresponding to the variational formulation (2.5) is to find (un

h ,σ̄n
h ,pn

h)∈
Vh×V2

h×Qh for any functions (v,τ̄,q)∈Vh×V2
h×Qh such that



































(

un
h−ǔn−1

h
∆t ,v

)

+(σ̄n
h ,
√

ν∇v)−({σ̄n
h },

√
ν[v]⊗ne)E B

h

−(pn
h ,∇·v)+({pn

h},[v]·ne)E B
h
+([un

h ],[v])E B
h
=( f n,v),

(σ̄n
h ,τ̄)−(

√
ν∇un

h ,τ̄)+({τ̄},
√

ν[un
h ]⊗ne)E B

h
=0,

(q,∇·un
h)−({q},[un

h ]·ne)E B
h
+([pn

h ],[q])E i
h
=0,

(2.8)

where ǔn−1
h =uh(x̌(x,tn−1))=uh(x−un−1

h ∆t,tn−1), and ǔ0
h=u0.

We rewrite (2.8) as a compact formulation: Find (un
h ,σ̄n

h ,pn
h) ∈ Vh×V2

h×Qh for any
functions (v,τ̄,q)∈Vh×V2

h×Qh such that



















(

un
h−ǔn−1

h
∆t ,v

)

+a(σ̄n
h ,v)+b(pn

h ,v)+(un
h ,v)=( f ,v),

(σ̄n
h ,τ̄)−a(τ̄,un

h)=0,

−b(q,un
h)+d(pn

h ,q)=0.

(2.9)

For notational and analytic convenience, we define the following equality:

A (un
h ,σ̄n

h ,pn
h ;v,τ̄,q)

=a(σ̄n
h ,v)+b(pn

h ,v)+(un
h ,v)+(σ̄n

h ,τ̄)

−a(τ̄,un
h)−b(q,un

h)+d(pn
h ,q), (2.10)

and the right side hand
F (v)=( f n,v). (2.11)
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Remark 2.1. Note that we take (v,τ̄,q)=(un
h ,σ̄n

h ,pn
h) at (2.10) to obtain a semi-norm

∣

∣·
∣

∣

A
,

that is

∣

∣(un
h ,σ̄n

h ,pn
h)
∣

∣

2

A

=A (un
h ,σ̄n

h ,pn
h ;un

h ,σ̄n
h ,pn

h)

=(un
h ,un

h)+(σ̄n
h ,σ̄n

h )+d(pn
h ,pn

h)

= ∑
e∈E B

h

‖ [un
h ]‖2

L2(e)+‖ σ̄n
h ‖2

0+ ∑
e∈E i

h

‖ [pn
h ]‖2

L2(e) . (2.12)

2.4 Existence and uniqueness of CLDG solution

In order to prove the existence and uniqueness of approximation solution of the CLDG
scheme of problem (1.1), we shall introduce the following mild condition on the local
spaces

q∈Pk(E) :
∫

E
v·∇q dx=0, ∀ v∈Pk(E)2, then ∇q=0 on E. (2.13)

Obviously ∇Pk(E)⊂Pk(E)2; Eq. (2.13) is satisfied with k≥1; see [5, 10].

Lemma 2.2. If the approximation spaces Vh×V2
h×Qh are spanned by the polynomial space

Pk(E) with k≥1, then there exists a unique solution (un
h ,σ̄n

h ,pn
h)∈Vh×V2

h×Qh satisfying (2.8).

Proof. To ensure the computability of the CLDG scheme for problem (1.1), we begin by
showing that the variational formulation of (2.8) is uniquely solvable for (un

h ,σ̄n
h ,pn

h) at
each time step n. As (2.8) represents a finite system of linear equations, the uniqueness of
(un

h ,σ̄n
h ,pn

h) is equivalent to the existence.

Setting ǔn−1
h = f =0 and taking v=un

h ,τ̄= σ̄n
h ,q= pn

h in (2.9), we have

1

∆t
‖un

h‖2
0+|(un

h ,σ̄n
h ,pn

h)|2A =0, (2.14)

which implies un
h =0,σ̄n

h = 0̄, and [pn
h ]
∣

∣

e
=0,∀ e∈E i

h. It follows from (2.9), that

∀v∈Vh, b(v,pn
h)=0.

From identity (2.6), we get

b(v,pn
h)= ∑

E∈Eh

∫

E
∇pn

h ·v dx=0, ∀ v∈Vh.

We conclude from Eq. (2.13) that ∇pn
h =0 on each E∈Eh, and [pn

h ]
∣

∣

e
=0,∀ e∈E i

h, that pn
h is

a constant. Since pn
h ∈M, that is,

∫

Ω
pn

h dx=0, we have pn
h =0.
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3 Stability analysis

In this subsection, before presenting and proving the numerical stability result, we shall
give the following lemma.

Lemma 3.1 ([4,7,15,25]). Define X̌ n
x (t)= x−(tn−t)un−1

h ,∀t∈ [tn−2,tn],2≤n≤N. Under the

condition ∆t< 1
2Ln

,Ln =max1≤i≤n ‖ ui
h ‖1,∞ on each time step tn, for any function v∈ L2(Ω),

there is

‖ v̌‖2
0 −‖v‖2

0≤C∆t‖v‖2
0, (3.1)

where un
h ∈Vh ⊂W1,∞(Ω) and v̌=v(x−∆tun−1

h ).

The proof can be found in [7, 15, 25].

Theorem 3.1 (Numerical stability). The CLDG scheme of (2.8) is nonlinear stable, for any
integer N=1,2,3,··· ,

‖uN
h ‖2

0+2∆t
N

∑
n=1

∣

∣(un
h ,σ̄n

h ,pn
h)
∣

∣

2

A
+

N

∑
n=1

‖un
h−ǔn−1

h ‖2
0

≤C∆t
N

∑
n=1

‖ f n ‖2
0+C‖u0 ‖2

0,

where ∆t< 1
2Ln

,Ln=max1≤i≤n‖ui
h‖1,∞, u0=u0

h,|·|A is defined by (2.12)), C is a generic constant.

Proof. Taking v=2∆tun
h , τ̄=2∆tσ̄n

h , and q=2∆tpn
h respectively in (2.9), we get the follow-

ing equations

2(un
h−ǔn−1

h ,un
h)+2∆t

∣

∣(un
h ,σ̄n

h ,pn
h)
∣

∣

2

A
=2∆tF (un

h ),

and

2(un
h−ǔn−1

h ,un
h)=‖un

h ‖2
0−‖ ǔn−1

h ‖2
0+‖un

h−ǔn−1
h ‖2

0 .

Now, we estimate the bound of ‖ ǔn−1
h ‖2

0 −‖ un−1
h ‖2

0. Since Vh is a subset of W1,∞(Ω),
from Lemma 3.1, it follows that

‖ ǔn−1
h ‖2

0−‖un−1
h ‖2

0≤C∆t‖un−1
h ‖2

0 . (3.2)

By the definition of F , Hölder inequality and Young inequality, there is

‖un
h ‖2

0−‖un−1
h ‖2

0+2∆t
∣

∣(un
h ,σ̄n

h ,pn
h)
∣

∣

2

A
+‖un

h−ǔn−1
h ‖2

0

≤C∆t‖un−1
h ‖2

0+∆t‖ f n ‖2
0+∆t‖un

h ‖2
0 . (3.3)
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Summing up the above equation from n=1 to N, we have

‖uN
h ‖2

0−‖u0
h ‖2

0+2∆t
N

∑
n=1

∣

∣(un
h ,σ̄n

h ,pn
h)
∣

∣

2

A
+

N

∑
n=1

‖un
h−ǔn−1

h ‖2
0

≤C∆t
N

∑
n=1

‖un−1
h ‖2

0+∆t
N

∑
n=1

‖ f n ‖2
0+∆t

N

∑
n=1

‖un
h ‖2

0 .

Then the following holds

‖uN
h ‖2

0+2∆t
N

∑
n=1

∣

∣(un
h ,σ̄n

h ,pn
h)
∣

∣

2

A
+

N

∑
n=1

‖un
h−ǔn−1

h ‖2
0

≤C∆t
N

∑
n=1

‖un
h ‖2

0+∆t
N

∑
n=1

‖ f n ‖2
0+(C∆t+1)‖u0

h ‖2
0 .

From the discrete Grönwall inequality, we have

‖uN
h ‖2

0+2∆t
N

∑
n=1

∣

∣(un
h ,σ̄n

h ,pn
h)
∣

∣

2

A
+

N

∑
n=1

‖un
h−ǔn−1

h ‖2
0

≤ eCT

(

∆t
N

∑
n=1

‖ f n ‖2
0+(C∆t+1)‖u0

h ‖2
0

)

.

The proof is completed.

4 Error analysis

In this section, we shall give error estimates for the CLDG scheme of (2.8). For the sake
of simplicity, we introduce some notations as follows

ξn
1 =Πun−un

h , ξn
2 =Πun−un, en

u =ξn
1−ξn

2 =un−un
h ,

η̄n
1 = Π̄σ̄n−σ̄n

h , η̄n
2 = Π̄σ̄n−σ̄n, ēn

σ̄ = η̄n
1− η̄n

2 = σ̄n−σ̄n
h ,

ζn
1 =Πpn−pn

h , ζn
2 =Πpn−pn, en

p = ζn
1 −ζn

2 = pn−pn
h ,

where Π:V 7→Vh,Π̄:V2 7→V2
h and Π:Q 7→Qh are linear continuous L2-projection operators

onto the corresponding finite element spaces.
Throughout this work, we assume that the solution (u,p) of (1.1) satisfies the regular-

ity

u∈L∞(0,T;W1,∞(Ω)2)∩L∞(0,T;Hk+1(Ω)2)∩C4([∆t,T];H3(Ω)2),

u∈H1(0,T;H−1(Ω)2), ∂tu∈L2(0,T;Hk+1(Ω)2), ∂ttu∈L2(0,T;L2(Ω)2),

p∈L2(0,T;Hk+1(Ω))∩L2(0,T;L2
0(Ω)),

(4.1)
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where k is the degree of approximation polynomials.
Next we review some lemmas for our analysis. The first one is the standard ap-

proximation result for any linear continuous projection operator Π from Hs+1(E) onto
Vh(E) =

{

v : v
∣

∣

E
∈ Pl(E), l ≥ 0

}

satisfying Πv = v for any v ∈ Pl(E). The second one is
the standard trace inequality. The other two are some results about the characteristic
methods.

Lemma 4.1 ([5, 10]). Let v∈ Hs+1(E),s≥ 0. Let Π be a linear continuous projection operator
from Hs+1(E) onto Vh(E) such that Πv=v for any v∈Pl(E). For m=0,1, there is







∣

∣v−Πv
∣

∣

Hm(E)
≤Ch

min(s,l)+1−m
E ‖v‖Hs+1(E),

‖v−Πv‖L2(∂E)≤Ch
min(s,l)+1/2
E ‖v‖Hs+1(E) .

(4.2)

Lemma 4.2 ([5, 10]). For any v∈Vh(E),

‖v‖L2(∂E)≤Ch−1/2
E ‖v‖L2(E), (4.3)

where C is a generic constant independent of hE.

Lemma 4.3 ([7, 15, 25]). If ∆t< 1
2Ln

,Ln =max1≤i≤n ‖ui
h ‖1,∞, then for any function v∈H1(Ω)

and each time step n, there is a constant C, such that

‖v(x)−v(x̌)‖0≤C∆t‖∇v‖0 , (4.4)

where x̌= x−∆tun−1
h .

See the proof in page 12 of [25].

Lemma 4.4 ([7, 15, 25]). If v∈ L2(Ω) and ∆t< 1
2Ln

,Ln =max1≤i≤n ‖ui
h ‖1,∞, then for any time

step n, there exists a constant C such that

‖v(x)−v(x̌)‖−1≤C∆t‖v‖0 , (4.5)

where x̌= x−∆tun−1
h .

The proof can be found in [7, 15, 25].

4.1 Error in velocity

Theorem 4.1 (Error estimate of the velocity). Let (un,pn) be the solution of (1.1)) at time
t= tn and σ̄n ∈ (Hk+1(Ω)2)2, (un

h ,σ̄n
h ,pn

h) the solution of the CLDG scheme of (2.8)). If ∆t<
1

2Ln
,Ln=max1≤i≤n ‖ui

h ‖1,∞, and the regularity (4.1)) satisfied, then for any integer N=1,2,··· ,

‖eN
u ‖2

0+∆t
N

∑
n=1

∣

∣(en
u, ēn

σ̄,en
p)
∣

∣

2

A
+

N

∑
n=1

‖en
u− ěn−1

u ‖2
0

≤C∆t2+νCh2k+Ch2k, (4.6)
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where k≥1, C is a generic constant independent of the parameters ν,∆t,h but depends on certain
Sobolev norms of the exact solution. Note that the above error estimate derived holds uniformly
with respect to the small viscosity ν (0<ν≪1).

Proof. The weak form of the exact solution (un,σ̄n,pn) satisfies (2.5) since the consistency
of the scheme. Taking v= ξn

1 , τ̄= η̄n
1 , q= ζn

1 in (2.5) at t= tn and in (2.8), subtracting (2.8)
from (2.5), we obtain

(

∂tu
n+(un ·∇)un− un

h−ǔn−1
h

∆t
,ξn

1

)

+|(ξn
1 ,η̄n

1 ,ζn
1 )|2A

=A (ξn
2 ,η̄n

2,ζn
2 ;ξn

1 ,η̄n
1,ζn

1 )

=a(η̄n
2 ,ξn

1)+b(ζ
n
2 ,ξn

1)+(ξ
n
2 ,ξn

1)+(η̄n
2 ,η̄n

1)

−a(η̄n
1 ,ξn

2)−b(ζn
1 ,ξn

2)+d(ζ
n
2 ,ζn

1 )

=
7

∑
i=1

Ii, (4.7)

where

I1=a(η̄n
2 ,ξn

1), I2=b(ζn
2 ,ξn

1), I3=(ξn
2 ,ξn

1), I4=(η̄n
2 ,η̄n

1),

I5=−a(η̄n
1 ,ξn

2), I6=−b(ζn
1 ,ξn

2), I7=d(ζn
2 ,ζn

1 ).

Now, we estimate each term Ii, respectively. By the property of L2-projection operator
Π̄, the Hölder inequality, and Lemma 4.1, we obtain

I1=(η̄n
2 ,
√

ν∇ξn
1)−({η̄n

2},
√

ν[ξn
1 ]⊗ne)E B

h

≤ ∑
e∈E B

h

√
ν‖{η̄n

2}‖L2(e)‖ [ξn
1 ]⊗ne ‖L2(e)

≤C
(

∑
e∈E B

h

ν‖{η̄n
2}‖2

L2(e)

)1/2(

∑
e∈E B

h

‖ [ξn
1 ]‖2

L2(e)

)1/2

≤
√

νChk+1/2
∣

∣(ξn
1 ,η̄n

1,ζn
1 )
∣

∣

A
.

Similarly, we deduce

I2=−(ζn
2 ,∇·ξn

1)+({ζn
2},[ξn

1 ]·ne)E B
h

≤
(

∑
e∈E B

h

‖{ζn
2}‖2

L2(e)

)1/2(

∑
e∈E B

h

‖ [ξn
1 ]‖2

L2(e)

)1/2

≤Chk+1/2
∣

∣(ξn
1 ,η̄n

1 ,ζn
1 )
∣

∣

A
,

and

I3≤
(

∑
e∈E B

h

‖ [ξn
2 ]‖2

L2(e)

)1/2(

∑
e∈E B

h

‖ [ξn
1 ]‖2

L2(e)

)1/2

≤Chk+1/2
∣

∣(ξn
1 ,η̄n

1 ,ζn
1 )
∣

∣

A
.
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Note that I4 = 0 because the property of L2-projection operator Π̄. By the property of
L2-projection operator Π, the Young inequality, and trace inequality,

I5=(∇·η̄n
1 ,
√

νξn
2)−([η̄n

1 ],
√

ν{ξn
2}⊗ne)E i

h

=−
(

[η̄n
1 ],

√
ν{ξn

2}⊗ne

)

E i
h

≤ ∑
e∈E i

h

√
ν‖{ξn

2}⊗ne ‖L2(e)‖ [η̄n
1 ]‖L2(e)

≤ ∑
e∈E i

h

√
ν‖{ξn

2}⊗ne‖L2(e)

(

Ch−1/2
Ee

1
‖η̄n

1‖L2(Ee
1)
+Ch−1/2

Ee
2

‖η̄n
1‖L2(Ee

2)

)

≤
√

νCh−1/2
(

∑
e∈E i

h

‖{ξn
2}‖2

L2(e)

)1/2(

∑
e∈E i

h

(‖η̄n
1‖L2(Ee

1)
+‖η̄n

1‖L2(Ee
2)
)2
)1/2

≤
√

νChk
∣

∣(ξn
1 ,η̄n

1,ζn
1 )
∣

∣

A
.

From identity (2.6), with the same deduction, there are

I6=−(∇ζn
1 ,ξn

2)+([ζn
1 ],{ξn

2}·ne)E i
h

=([ζn
1 ],{ξn

2}·ne)E i
h

≤C
(

∑
e∈E i

h

‖{ξn
2}·ne ‖2

L2(e)

)1/2(

∑
e∈E i

h

‖ [ζn
1 ]‖2

L2(e)

)1/2

≤Chk+1/2
∣

∣(ξn
1 ,η̄n

1,ζn
1 )
∣

∣

A
,

and

I7≤ ∑
e∈E i

h

‖ [ζn
2 ]‖L2(e)‖ [ζn

1 ]‖L2(e)

≤
(

∑
e∈E i

h

‖ [ζn
2 ]‖2

L2(e)

)1/2(

∑
e∈E i

h

‖ [ζn
1 ]‖2

L2(e)

)1/2

≤Chk+1/2
∣

∣(ξn
1 ,η̄n

1 ,ζn
1 )
∣

∣

A
.

Now let us tackle the first term of the left side of Eq. (4.7). It is easy to obtain that

(

∂tu
n+(un ·∇)un− un

h−ǔn−1
h

∆t
,ξn

1

)
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=

(

∂tu
n+(un ·∇)un− un−u̇n−1

∆t
,ξn

1

)

+

(

ǔn−1−u̇n−1

∆t
,ξn

1

)

+

(

ξn
1− ξ̌n−1

1

∆t
,ξn

1

)

−
(

ξn
2− ξ̌n−1

2

∆t
,ξn

1

)

=
4

∑
i=1

Bi. (4.8)

From Lemma 2.1 and Hölder’s inequality, there is

|B1|=
∣

∣

∣

∣

(

∂tu
n+(un ·∇)un− un−u̇n−1

∆t
,ξn

1

)∣

∣

∣

∣

≤C∆t‖ξn
1 ‖0

≤C∆t2+C‖ξn
1 ‖2

0 .

By the definitions of x̌ and ẋ,

x̌−ẋ=∆t(un−1
h −un−1).

Using the Taylor formula, we have

|ǔn−1−u̇n−1|= |un−1(x̌)−un−1(ẋ)|
≤∆t‖∇un−1 ‖∞ |un−1

h −un−1|
≤C∆t‖∇un−1 ‖∞ (|ξn−1

1 |+|ξn−1
2 |).

Therefore,

‖ ǔn−1−u̇n−1 ‖0

≤C∆t‖∇un−1 ‖∞ (‖ξn−1
1 ‖0+‖ξn−1

2 ‖0)

≤C∆t(hk+1+‖ξn−1
1 ‖0). (4.9)

From inequality (4.9), we deduce

∣

∣B2

∣

∣=

∣

∣

∣

∣

(

ǔn−1−u̇n−1

∆t
,ξn

1

)∣

∣

∣

∣

≤ 1

∆t
‖ ǔn−1−u̇n−1‖0‖ξn

1 ‖0

≤Ch2k+2+C‖ξn−1
1 ‖2

0 +C‖ξn
1 ‖2

0 .
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By Lemma 3.1, there is

B3=

(

ξn
1− ξ̌n−1

1

∆t
,ξn

1

)

=
1

2∆t

(

‖ξn
1 ‖2

0−‖ ξ̌n−1
1 ‖2

0

)

+
1

2∆t
‖ξn

1− ξ̌n−1
1 ‖2

0

≥ 1

2∆t

(

‖ξn
1 ‖2

0−‖ξn−1
1 ‖2

0

)

−C‖ξn−1
1 ‖2

0+
1

2∆t
‖ξn

1− ξ̌n−1
1 ‖2

0 .

From the definition, we can get

B4=−
(

ξn
2− ξ̌n−1

2

∆t
,ξn

1

)

=−
(

ξn
2−ξn−1

2

∆t
,ξn

1

)

−
(

ξn−1
2 − ξ̌n−1

2

∆t
,ξn

1

)

.

Consequently, from Taylor formula and Hölder’s inequality, it follows that
∣

∣

∣

∣

∣

(

ξn
2−ξn−1

2

∆t
,ξn

1

)∣

∣

∣

∣

∣

≤C
(

‖ξn
1 ‖2

0 +
1

∆t
‖∂tξ2 ‖2

L2(Jn;Ω)

)

.

Using the Hölder inequality, Young inequality and Lemma 4.3, we have
∣

∣

∣

∣

∣

(

ξn−1
2 − ξ̌n−1

2

∆t
,ξn

1

)∣

∣

∣

∣

∣

≤C
(

‖ξn
1 ‖2

0+‖∇ξn−1
2 ‖2

0

)

.

Combining Bi, i=1,··· ,4, there is
(

∂tu
n+(un ·∇)un− un

h−ǔn−1
h

∆t
,ξn

1

)

≥ 1

2∆t

(

‖ξn
1 ‖2

0−‖ξn−1
1 ‖2

0

)

−C‖ξn−1
1 ‖2

0

+
1

2∆t
‖ξn

1− ξ̌n−1
1 ‖2

0−C‖ξn
1 ‖2

0 −
C

∆t
‖∂tξ2 ‖2

L2(Jn;Ω)

−C‖∇ξn−1
2 ‖2

0−Ch2k+2−C∆t2. (4.10)

Substituting Ii, i=1,··· ,7 and (4.10) into (4.7) and rearranging the terms in above inequal-
ity, we can obtain

1

2∆t

(

‖ξn
1 ‖2

0−‖ξn−1
1 ‖2

0

)

+
1

2

∣

∣(ξn
1 ,η̄n

1 ,ζn
1 )
∣

∣

2

A
+

1

2∆t
‖ξn

1− ξ̌n−1
1 ‖2

0

≤C‖ξn−1
1 ‖2

0 +C‖ξn
1 ‖2

0+
C

∆t
‖∂tξ2 ‖2

L2(Jn;Ω)

+C‖∇ξn−1
2 ‖2

0+C∆t2+Ch2k+1+νCh2k . (4.11)
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Summing over n from 1 to N and multiplying 2∆t from the both sides of (4.11), and using
discrete Grönwall inequality, we finally obtain

‖ξN
1 ‖2

0+∆t
N

∑
n=1

∣

∣(ξn
1 ,η̄n

1,ζn
1 )
∣

∣

2

A
+

N

∑
n=1

‖ξn
1− ξ̌n−1

1 ‖2
0

≤C
N

∑
n=1

‖∂tξ2 ‖2
L2(Jn;Ω)+C∆t

N

∑
n=1

‖∇ξn−1
2 ‖2

0

+C∆t2+Ch2k+1+νCh2k. (4.12)

By the triangular inequality, the desired error bound of (4.6) is obtained.

Remark 4.1. Note that from (4.12) for any integer N=1,2,··· , there are

‖ξN
1 ‖2

0≤C
(

∆t2+h2k
)

,
N

∑
n=1

‖ξn
1− ξ̌n−1

1 ‖2
0≤C

(

∆t2+h2k
)

.

4.2 Error in pressure

Lemma 4.5 (Div-grad relation [22]). If v∈H1
0(Ω)2, then

‖∇·v‖0≤‖∇v‖0 . (4.13)

Lemma 4.6 (Inverse inequality). For any polynomial function v of degree i defined on E. There
exists a constant C independent of hE such that

∀0≤ j≤ i, ‖∇jv‖L2(E)≤Ch
−j
E ‖v‖L2(E) . (4.14)

To obtain the error estimate in the pressure, we shall recall the continuous inf-sup
condition for the spaces H1

0(Ω)2 and L2
0(Ω).

Lemma 4.7 ([10, 16, 23]). There exists a positive constant β, such that

inf
q∈L2

0(Ω)
sup

v∈H1
0(Ω)2

(∇·v,q)

‖q‖0‖∇v‖0
≥β. (4.15)

Equivalently for any q∈L2
0(Ω), there is a function ṽ∈H1

0(Ω)2 such that

−
∫

Ω
q∇·ṽ dx≥β1 ‖q‖2

0, ‖ ṽ‖1≤β2 ‖q‖0, (4.16)

where β1>0, β2>0 are positive constants independent of h,∆t,q and ṽ.
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Lemma 4.8. For any functions (v,τ̄,q)∈Vh×V2
h×Qh, there exists a function ṽ∈H1

0(Ω)2 such
that for two positive constants K1 and K2 independent of h,∆t and q, there are

K1 ‖q‖2
0≤A (v,τ̄,q;Πṽ,0̄,0)+K2

∣

∣(v,τ̄,q)
∣

∣

2

A
, ‖Πṽ‖1≤C‖q‖0, (4.17)

where Πṽ is the L2-projection of ṽ onto the finite element space Vh, C is a generic constant.

Proof. With similar deduction as [10], we fix q∈Qh⊂L2
0(Ω). From Lemma 4.7 for (v,τ̄,q)∈

Vh×V2
h×Qh, there is a function ṽ∈H1

0(Ω)2 satisfying (4.16). Then by equality (2.10), we
have

A (v,τ̄,q;Πṽ,0̄,0)

=a(τ̄,Πṽ)+b(q,Πṽ)+(v,Πṽ)

=T1+T2+T3. (4.18)

Next we shall estimate Ti respectively. By the definition of T1
∣

∣T1

∣

∣=
∣

∣

a(τ̄,Πṽ)
∣

∣

≤
∣

∣

a(τ̄,Πṽ−ṽ)
∣

∣+
∣

∣

a(τ̄,ṽ)
∣

∣

=
∣

∣−(∇·τ̄,
√

ν(Πṽ−ṽ))+([τ̄],
√

ν{Πṽ−ṽ}⊗ne)E i
h

∣

∣+
∣

∣(τ̄,
√

ν∇ṽ)
∣

∣

=
∣

∣([τ̄],
√

ν{Πṽ−ṽ}⊗ne)E i
h

∣

∣+
∣

∣(τ̄,
√

ν∇ṽ)
∣

∣

≤C
√

ν
(

∑
e∈E i

h

‖[τ̄]‖2
L2(e)

)1/2(

∑
e∈E i

h

‖{Πṽ−ṽ}⊗ne‖2
L2(e)

)1/2
+C

√
ν‖τ̄‖0‖ṽ‖1

≤C
√

νh1/2
(

∑
e∈E i

h

‖ [τ̄]‖2
L2(e)

)1/2
‖ ṽ‖1+C

√
ν‖ τ̄ ‖0‖ ṽ‖1

≤C
√

ν‖ τ̄ ‖0‖ ṽ‖1

≤C
√

ν
∣

∣(v,τ̄,q)
∣

∣

A
‖q‖0 .

Hence

T1≥−νCǫ1 ‖q‖2
0 −Cǫ−1

1

∣

∣(v,τ̄,q)
∣

∣

2

A
. (4.19)

By the definition of T2, we obtain

T2=b(q,Πṽ)=b(q,Πṽ−ṽ)+b(q,ṽ).

Since
∣

∣

b(q,Πṽ−ṽ)
∣

∣=
∣

∣([q],{Πṽ−ṽ}·ne)E i
h

∣

∣

≤
(

∑
e∈E i

h

‖ [q]‖2
L2 (e)

)1/2(

∑
e∈E i

h

‖{Πṽ−ṽ}·ne ‖2
L2(e)

)1/2

≤Ch1/2
∣

∣(v,τ̄,q)
∣

∣

A
‖ ṽ‖1

≤Ch1/2
∣

∣(v,τ̄,q)
∣

∣

A
‖q‖0, (4.20)
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and

b(q,ṽ)=−(q,∇·ṽ)≥β1 ‖q‖2
0 . (4.21)

Combining (4.20) and (4.21), there is

T2≥β1 ‖q‖2
0 −Chǫ2 ‖q‖2

0 −Cǫ−1
2

∣

∣(v,τ̄,q)
∣

∣

2

A
. (4.22)

Observe that

T3=(v,Πṽ−ṽ)

≤
(

∑
e∈E B

h

‖ [v]‖2
L2(e)

)1/2(

∑
e∈E B

h

‖ [Πṽ−ṽ]‖2
L2(e)

)1/2

≤Ch1/2
∣

∣(v,τ̄,q)
∣

∣

A
‖ ṽ‖1

≤Ch1/2
∣

∣(v,τ̄,q)
∣

∣

A
‖q‖0 .

Then

T3≥−Chǫ3 ‖q‖2
0 −Cǫ−1

3

∣

∣(v,τ̄,q)
∣

∣

2

A
. (4.23)

Substituting T1,T2,T3 into (4.18), we deduce

A (v,τ̄,q;Πṽ,0̄,0)

≥ (β1−νCǫ1−Chǫ2−Chǫ3)‖q‖2
0 −(Cǫ−1

1 +Cǫ−1
2 +Cǫ−1

3 )
∣

∣(v,τ̄,q)
∣

∣

2

A
, (4.24)

where ǫ1,ǫ2,ǫ3 are chosen such that K1=β1−νCǫ1−Chǫ2−Chǫ3>0 and K2=Cǫ−1
1 +Cǫ−1

2 +

Cǫ−1
3 >0, and K1,K2 are positive constants independent of h.
Furthermore, from Lemma 4.1 we have

‖Πṽ‖1≤‖Πṽ−ṽ‖1+‖ ṽ‖1≤C‖ ṽ‖1≤C‖q‖0 . (4.25)

The proof is completed.

Theorem 4.2 (Error estimate of the pressure). Let (un,pn) be the solution of (1.1) at time
t= tn and σ̄n∈(Hk+1(Ω)2)2, (un

h ,σ̄n
h ,pn

h) the solution of the CLDG scheme of (2.8). If ∆t< 1
2Ln

,

Ln=max1≤i≤n ‖ui
h ‖1,∞, and the regularity (4.1) satisfied, then for any integer N=1,2,··· ,

∆t
N

∑
n=1

‖ en
p ‖2

0≤C(∆t+h2k/∆t). (4.26)

Proof. From Lemma 4.7 and Lemma 4.8, for ζn
1 ∈Qh, there exists a function w∈ H1

0(Ω)2

and its L2-projection Πw satisfying Eq. (4.17), namely

K1 ‖ζn
1 ‖2

0≤A (ξn
1 ,η̄n

1 ,ζn
1 ;Πw,0̄,0)+K2

∣

∣(ξn
1 ,η̄n

1 ,ζn
1 )
∣

∣

2

A
, ‖Πw‖1≤C‖ζn

1 ‖0 .
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From the first equation of (2.5) and the first equation of (2.9), it follows that
(

∂tu
n+(un ·∇)un− un

h−ǔn−1
h

∆t
,Πw

)

+A (ξn
1 ,η̄n

1,ζn
1 ;Πw,0̄,0)

=A (ξn
2 ,η̄n

2 ,ζn
2 ;Πw,0̄,0). (4.27)

By Lemma 4.8 and rearranging identity (4.27),

K1 ‖ζn
1 ‖2

0≤A (ξn
1 ,η̄n

1 ,ζn
1 ;Πw,0̄,0)+K2

∣

∣(ξn
1 ,η̄n

1 ,ζn
1 )
∣

∣

2
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≤
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∣

∣

(
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h
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,Πw
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∣

∣

∣

∣

+
∣

∣A (ξn
2 ,η̄n

2 ,ζn
2 ;Πw,0̄,0)

∣

∣+K2

∣

∣(ξn
1 ,η̄n

1,ζn
1 )
∣

∣

2

A
. (4.28)

From the same deduction of the characteristic term, and Lemma 4.4, we have
∣

∣

∣

∣

∣

(

∂tu
n+(un ·∇)un− un

h−ǔn−1
h

∆t
,Πw

)∣

∣

∣

∣

∣

≤C∆t‖Πw‖0 +
1
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‖ ǔn−1−u̇n−1‖0‖Πw‖0

+

∣

∣

∣

∣

∣
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2
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With the same deduction of I1,I2,I3, there is
∣

∣A (ξn
2 ,η̄n

2 ,ζn
2 ;Πw,0̄,0)

∣
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≤Chk+ 1
2
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A
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1 ‖0 .

(4.29)
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From (4.28) and the Young inequality, it follows that

K1 ‖ζn
1 ‖2

0≤C

(

∆t+hk+

∥

∥

∥

∥

∥

ξn
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∥

∥
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∥

∥

∥
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∣
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1 ,η̄n

1,ζn
1 )
∣

∣

2

A
. (4.30)

Rearranging above inequality, multiplying 2∆t for both sides, and summing n from 1 to
N, from Remark 4.1 we have

∆t
N

∑
n=1

‖ζn
1 ‖2

0≤C((∆t)2+h2k)+C∆t
N
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2
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∥

∥

∥

∥
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1
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∥

∥

∥

∥

∥

2

0

≤C
(

∆t2+h2k
)

+
C

∆t

N

∑
n=1

‖ξn
1− ξ̌n−1

1 ‖2
0

≤C
(

∆t+h2k/∆t
)

.

Using triangular inequality, we complete the proof.

5 Numerical experiment

In this section, we give two examples to verify our theoretical error estimates. In all our
experiments the uniform triangulations of squares are used. For numerical computation,
the characteristic part is calculated by the higher-order accurate Gaussian quadrature rule
[20] and the CLDG scheme is performed with (Pk,Pk,Pk) finite element pair (k≥1). The
time stepsize is taken as ∆t=O(h) for the local P1-DG scheme and ∆t=O(h2) for the local
P2-DG scheme. In Tables 1-6, K and k denote the number of elements in triangulation
and the degree of approximation polynomials, respectively. Comparing the numerical
solutions with the constructed analytical ones, the suboptimal convergence orders are
displayed for the presented numerical schemes with a wide range of Reynolds numbers,
such as Re=102,103,106,108,1012,1015.

Example 5.1. Consider the time-dependent incompressible Navier-Stokes equation in a
square domain Ω=[−1,1]2. The exact solution is specified as











u1(x,y,t)= 1
4 eνty(y2−1)(x2−1)2,

u2(x,y,t)=− 1
4 eνtx(x2−1)(y2−1)2,

p(x,y,t)= eνt(x2−1)(y2−1).

(5.1)
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Then the exact solution has homogenous boundary value and the forcing term f can
be determined by (1.1) for any given ν.

Tables 1-3 display the L2-norm errors and convergence orders of velocity and pressure
for Example 5.1 at time T = 0.25 with different choices of Reynolds numbers, such as
Re = 103,106,1012. Note that the numerical convergence are greater than the analytical
ones. Furthermore, the errors and convergence orders for both velocity and pressure are
still uniform with analytical ones when Re=1012 is chosen.

Table 1: The L2-norm errors and convergence orders of velocity and pressure for Example 5.1 with T= 0.25,
Re=103.

K k=1 k=2 k=1 k=2

‖ eu ‖0 order ‖ eu ‖0 order ‖ ep ‖0 order ‖ ep ‖0 order

8 7.3307e-02 – 2.1805e-02 – 7.4411e-01 – 9.2279e-02 –

32 3.0062e-02 1.29 6.1735e-03 1.82 1.7126e-01 2.12 7.6043e-03 3.60

128 1.1684e-02 1.36 8.0651e-04 2.94 3.9616e-02 2.11 9.1111e-04 3.06

512 3.2724e-03 1.84 1.1109e-04 2.86 9.0959e-03 2.12 1.1663e-04 2.97

2048 8.4909e-04 1.95 1.4178e-05 2.97 2.1376e-03 2.09 1.4947e-05 2.96

Table 2: The L2-norm errors and convergence orders of velocity and pressure for Example 5.1 with T= 0.25,
Re=106.

K k=1 k=2 k=1 k=2

‖ eu ‖0 order ‖ eu ‖0 order ‖ ep ‖0 order ‖ ep ‖0 order

8 7.3405e-02 – 2.1811e-02 – 7.4408e-01 – 9.2308e-02 –

32 3.0176e-02 1.28 6.2362e-03 1.81 1.7144e-01 2.12 7.5987e-03 3.60

128 1.1803e-02 1.35 8.3770e-04 2.90 3.9716e-02 2.11 9.1076e-04 3.06

512 3.3761e-03 1.81 1.2512e-04 2.74 9.1327e-03 2.12 1.1639e-04 2.97

2048 9.0460e-04 1.90 2.0576e-05 2.60 2.1469e-03 2.09 1.4813e-05 2.97

Table 3: The L2-norm errors and convergence orders of velocity and pressure for Example 5.1 with T= 0.25,
Re=1012.

K k=1 k=2 k=1 k=2

‖ eu ‖0 order ‖ eu ‖0 order ‖ ep ‖0 order ‖ ep ‖0 order

8 7.3405e-02 – 2.1811e-02 – 7.4408e-01 – 9.2308e-02 –

32 3.0177e-02 1.28 6.2363e-03 1.81 1.7144e-01 2.12 7.5986e-03 3.60

128 1.1803e-02 1.35 8.3773e-04 2.90 3.9716e-02 2.11 9.1076e-04 3.06

512 3.3762e-03 1.81 1.2514e-04 2.74 9.1327e-03 2.12 1.1639e-04 2.97

2048 9.0467e-04 1.90 2.0588e-05 2.60 2.1469e-03 2.09 1.4813e-05 2.97
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Example 5.2. We further verify theoretical results of the CLDG scheme (2.8) in the domain
Ω=[0,1]2. For the exact solution defined by











u1(x,y,t)=cos(νt)sin2(πx)sin(2πy),

u2(x,y,t)=−cos(νt)sin(2πx)sin2(πy),

p(x,y,t)=cos(νt)sin(2πx)sin(2πy).

(5.2)

The forcing term f can be determined by (1.1) for any given ν. In Tables 4-6, we
choose big Reynolds numbers to demonstrate the efficiency of the presented scheme,
such as Re=103,108,1015. Note that errors and convergence orders for both velocity and
pressure almost do not change with Re = 108, Re = 1015, since cos(νt) does not change

Table 4: The L2-norm errors and convergence orders of velocity and pressure for Example 5.2 with T = 0.5,
Re=102.

K k=1 k=2 k=1 k=2

‖ eu ‖0 order ‖ eu ‖0 order ‖ ep ‖0 order ‖ ep ‖0 order

32 8.1469e-02 – 4.6263e-02 – 2.1081e-01 – 3.2568e-02 –

128 3.8797e-02 1.07 4.5086e-03 3.36 4.1743e-02 2.34 6.1042e-03 2.42

512 1.3465e-02 1.53 5.6697e-04 2.99 9.8853e-02 2.08 1.0498e-03 2.54

2048 5.4458e-03 1.31 1.0132e-04 2.48 4.3669e-03 1.18 2.3419e-04 2.16

Table 5: The L2-norm errors and convergence orders of velocity and pressure for Example 5.2 with T = 0.5,
Re=108.

K k=1 k=2 k=1 k=2

‖ eu ‖0 order ‖ eu ‖0 order ‖ ep ‖0 order ‖ ep ‖0 order

32 1.0755e-01 – 1.1246e-01 – 2.1007e-01 – 4.9090e-02 –

128 7.6459e-02 0.49 1.7180e-02 2.71 4.0161e-02 2.39 1.2860e-02 1.93

512 2.9048e-02 1.40 2.9317e-03 2.55 1.7924e-02 1.16 3.1689e-03 2.02

2048 1.3325e-02 1.12 1.0135e-03 1.53 1.0965e-02 0.71 7.3794e-04 2.10

Table 6: The L2-norm errors and convergence orders of velocity and pressure for Example 5.2 with T = 0.5,
Re=1015.

K k=1 k=2 k=1 k=2

‖ eu ‖0 order ‖ eu ‖0 order ‖ ep ‖0 order ‖ ep ‖0 order

32 1.0755e-01 – 1.1246e-01 – 2.1007e-01 – 4.9090e-02 –

128 7.6459e-02 0.49 1.7180e-02 2.71 4.0161e-02 2.39 1.2860e-02 1.93

512 2.9048e-02 1.40 2.9318e-03 2.55 1.7924e-02 1.16 3.1689e-03 2.02

2048 1.3325e-02 1.12 1.0136e-03 1.53 1.0965e-02 0.71 7.3795e-04 2.10
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when ν is small enough (corresponding Re big enough). Comparing with the errors and
convergence orders for Example 5.1, even the errors and the convergence orders are not
good as Example 5.1, they still coincide with theoretical results.

6 Conclusions

By carefully constructing the numerical fluxes, adding the penalty terms, and using the
characteristic method to discretize the time derivative and nonlinear convective term,
we design the effective LDG scheme to solve the time-dependent incompressible Navier-
Stokes equations in R2. Besides the general advantages of the LDG scheme, the proposed
scheme is theoretically proved or numerically verified to have the following benefits: 1)
it is symmetric, so easy to do theoretical analysis and numerical computation; 2) theo-
retically proved to be nonlinear stable; 3) numerically verified to have the suboptimal
convergence orders; 4) the scheme is efficient for a wide range of Reynolds numbers.

Acknowledgments

This work was partially supported by the National Basic Research (973) Program of China
under Grant 2011CB706903, the National Natural Science Foundation of China under
Grant 11271173, Grant 11471150, Grant 11671182, and the CAPES and CNPq in Brazil.

References

[1] Y. Achdou, J.-L. Guermond, Convergence analysis of a finite element projection/lagrange-
Galerkin method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal. 37
(2000), 799–826.

[2] T. Arbogast, M. F. Wheeler, A characteristics-mixed finite element method for advection-
dominated transport problems, SIAM J. Numer. Anal., 32 (1995), 404–424.

[3] F. Bassi, S. Rebay, A high-order accurate discontinuous finite elemnet method for the nu-
merical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997),
267–279.

[4] K. Boukir, Y. Maday, B. Métivet, A high order characteristics/ finite element method for the
incompressible Navier-Stokes equations, Int. J. Comput. Numer. Methods Fluids, 25 (1997),
1421–1454.

[5] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An a priori error analysis of the local
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