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Abstract. The lobe dynamics and mass transport between separation bubble and main
flow in flow over airfoil are studied in detail, using Lagrangian coherent structures
(LCSs), in order to understand the nature of evolution of the separation bubble. For
this problem, the transient flow over NACA0012 airfoil with low Reynolds number
is simulated numerically by characteristic based split (CBS) scheme, in combination
with dual time stepping. Then, LCSs and lobe dynamics are introduced and devel-
oped to investigate the mass transport between separation bubble and main flow, from
viewpoint of nonlinear dynamics. The results show that stable manifolds and unstable
manifolds could be tangled with each other as time evolution, and the lobes are formed
periodically to induce mass transport between main flow and separation bubble, with
dynamic behaviors. Moreover, the evolution of the separation bubble depends essen-
tially on the mass transport which is induced by lobes, ensuing energy and momentum
transfers. As the results, it can be drawn that the dynamics of flow separation could be
studied using LCSs and lobe dynamics, and could be controlled feasibly if an appro-
priate control is applied to the upstream boundary layer with high momentum.
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1 Introduction

Flow separation is a kind of common phenomenon in flow over airfoil, building or blade
etc., and it usually leads the airfoil or blade to stall, resulting in negative effects on the
aerodynamic performance of airfoil or blade. However, flow separation is still one of the
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main problems in aerodynamics, and there is a rich variety of nonlinear phenomena in
flow separation, such as the evolution of separation bubble.

Some studies have been carried out on the separation of laminar flow since Horton [1]
described initially the structure of classical two-dimensional laminar separation bubble.
These studies are mainly focused on the formation of separation bubble and the change
of lift with angles of attack [2], the structures and behaviors of laminar separation bubbles
[3, 4], the vortex shedding phenomena in the flow over airfoil [5,6], the stability of laminar
separation bubbles in the flow over airfoil [7-9] and other properties or phenomena in
separation bubbles [10-12].

Indeed, for the flow around a body in turbo-machinery and aerospace engineering,
the mass transport between separation bubble and main flow has an important influence
on the aerodynamic performance of blade and airfoil near stall, and such kind of trans-
port is a dynamic behavior. The nature for such phenomenon is still open, and hence it
is necessary to study the evolution of the mass transport between separation bubble and
main flow in depth, from viewpoint of dynamics. However, none of the above studies an-
alyzed the separation bubble from the viewpoint of mass transport and energy exchange
in the generation, evolution and breaking of the separation bubble. Most of traditional
flow field numerical methods are based on Eulerian perspective. However, for the un-
steady flow, Eulerian description can only describe the instantaneous state of flow but
couldn’t reveal the dynamic properties. In fact, flow over a body is a kind of nonlinear
dynamic system. Flow separation, which is a kind of Lagrangian behavior, means that
the fluid particles are separated from the boundary wall. Conventional Eulerian descrip-
tion is not sufficient to describe and analyze the unsteady flow anymore. Nevertheless,
the transport process between the separation bubbles and the free stream can be captured
from viewpoint of Lagrangian dynamics.

Recently, using Lagrangian description of the fluid and nonlinear dynamics to study
the dynamic behaviors is indeed becoming more and more popular. Van Dommelen [13]
studied the boundary layer equation in Lagrangian frame, and he also put forward the
flow separation criterion on the basis of Lagrangian dynamics. From the point of view
of dynamics, the phenomenon of periodic vortex shedding from the wake of flow over
cylinder is numerically analyzed by Shariff et al. [14]. Duan and Wiggins [15] quanti-
tatively described the mass transport between the separation zone and the free stream
around circle cylinder by lobe dynamics. However, traditional manifolds in nonlinear
dynamics can only be available in infinite-time flow. For the finite-time flow, the con-
cepts of finite-time manifolds and Lagrangian Coherent Structures (LCSs) are proposed
by Haller [16] to define the separatrix of different basins in finite-time flow. Haller [17]
and Shadden [18] proposed using LCS as the transport boundary. Following that, Lei
[19] numerically simulated the mass transport in transient flow over impulsively started
circular cylinder by LCS. Currently, the LCS has been widely used to study the various
flow phenomena, such as separation [20, 21] oceanic flow [22], turbulence [23] and atmo-
spheric flow [24], etc.

In this paper, the flows over NACA0012 airfoil are studied numerically, and La-
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grangian Coherent Structures and lobe dynamics are introduced to study the mass trans-
port between separation bubble and main flow in the flow over airfoil with low Reynolds
number.

2 Lagrangian coherent structures and lobe dynamics

2.1 Lagrangian coherent structures

The flow over an airfoil is a kind of finite-time transient flow. Haller and Yuan [25]
proposed finite-time stable and unstable manifolds, which form the Lagrangian coher-
ent structures of the fluid, to act as the boundaries of the different dynamic regions in
the flow. For two-dimensional flow, the finite-time stable manifolds are regarded as re-
pelling LCSs because the fact that the stable manifolds have maximum repelling rate and
are defined as locally maximum repelling material lines. Similarly, the finite-time unsta-
ble manifolds also are regarded as attracting LCSs and are defined as locally maximum
attracting material lines. Mathematically, Lyapunov exponent of a dynamical system is
a quantity that can characterize the rate of separation of infinitesimally close trajectories.
Inspired by this, Haller and Shadden [18] proposed that finite-time Lyapunov exponent
(FTLE) can be used to measure the repelling and attracting properties of the finite-time
system. On the other hand, the finite-time manifolds can be depicted by the contour plot
of FTLE field. Of course, there are other definitions of LCSs and computation strategies
proposed by Haller [26] and other researchers [27]. In this paper, the contour plot of FTLE
field is used to locate the LCSs in flow field.

The two-dimensional flow can be considered as a dynamical system,

ẋ(t;t0,x0)=u(x,t), x∈U, (2.1)

where u(x,t) is the velocity field and x(t;t0,x0) describe the trajectory of a fluid element
starting at initial position x0 at time t0. The flow domain is denoted by U. The flow of the
dynamical system, namely Eq. (2.1), are denoted by,

Ft
t0
(x0)= x(t;t0,x0), x∈U. (2.2)

If two fluid particles separated by a small distance at time t0, and their positions are
x0 and x0+δx0, respectively, and then at time t,

δx=x(t;t0,x0+δx0)−x(t;t0,x0)=Ft
t0
(x0+δx0)−Ft

t0
(x0)=∇Ft

t0
(x0)δx0+o

(

‖δx‖2
)

. (2.3)

The stretching coefficient between the two particles is denote by,

lim
|δx0|→0

|δx|

|δx0|
=
√

e
∗ ·∇Ft

t0
(x0)

∗ ·∇Ft
t0
(x0)·e=

√

e
∗ ·C(x0)·e, (2.4)
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where e=δx0/|δx0|, and superscript * denotes transpose of matrix. C(x0) is the Cauchy-
Green strain tensor defined as C(x0) =∇Ft

t0
(x0)

∗ ·∇Ft
t0
(x0). For two-dimensional flow,

C(x0) is a 2×2 symmetric positive definite matrix, ξ1 and ξ2 denote the eigenvectors
of C(x0), λ1 and λ2 are the eigenvalues associated with ξ1 and ξ2, respectively. These
eigenvalues and eigenvectors satisfy 0<λ1 ≤λ2, ξ1⊥ξ2. For incompressible flows, these
eigenvalues satisfy λ1λ2 = 1. So, the eigenvalues of C(x0) are not repeated, and the fol-
lowing condition should be satisfied 0<λ1<1<λ2. The deformation of the fluid clusters
includes tension, compression and rotation in different directions, so C(x0) can be used to
describe the tension and compression of fluid clusters. In the time interval |t−t0|, FTLE
can be expressed by λ2,

σt
t0
(x0)=

1

|t−t0|
ln
√

λ2. (2.5)

The velocity field, which is obtained by numerical computation, is used to integral to
get the trajectories of the particles. After obtaining the distribution of FTLE in the flow
field, contours that will visualize LCSs in the flow field are plotted. Then, the repelling
LCSs can be depicted by the contour plot of FTLE field with t−t0 > 0, and the attract-
ing LCSs can be depicted by the contour plot with t−t0 < 0. Detailed definitions and
calculations for LCSs can be referred to literature [28].

2.2 Lobe dynamics

A brief introduction to the lobe dynamics is given in the following. For periodic and
quasi-periodic dynamical system with period T, a volume- and orientation- preserving
Poincaré map PM : M→M is introduced and defined on a two-dimensional phase space
M. Consequently, Poincaré map can be used to find the fixed points and their invariant
manifolds on Poincaré section. For the sake of clarity, the hyperbolic fixed points of PM in
Poincaré section are denoted by pi with associated stable manifold Ws (pi) and unstable
manifold Wu (pi), and the unstable manifold between point X and point Y can be denoted
by U [X,Y], and the stable manifold by S[X,Y].

A region is a connected subset of M with boundaries, consisting of parts of the bound-
ary of M and segments of stable and unstable manifolds of hyperbolic fixed points. The
notion of a ”lobe”, formed by stable and unstable manifolds of hyperbolic orbits in two-
dimensional flows, plays an important role in the study of transport in time-periodic and
quasi-periodic flows.

Suppose q ∈Ws (p2)∩Wu (p1). If U [p1,q] and S[p2,q] intersect only at q, then q is a
primary intersection point (pip). Following this definition, there are five pips in Fig. 1,
namely, q−2, q−1, q0, q1 and q2. These primary intersection points should satisfy the
Poincaré map: q0=MP(q−2), q1=MP(q−1), q2=MP(q0).

As shown in Fig. 1, the region on Poincaré section bounded by the segments of Wu (p1)
and Ws (p2) connecting qi and qj is called a lobe if qi and qj are two different primary in-
tersection points, such that there are no other primary intersection points on the segment
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Figure 1: Lobes formed by tangling of stable manifold and unstable manifold in a periodic system.

of Wu (p1) and Ws (p2) that connect qi and qj. So, there are four lobes in Fig. 1, that is, A0,
B0, A1 and B1. These lobes should also satisfy Poincaré map, A1=MP(A0), B1=MP(B0).

The lobes getting entrained or detrained in forward and backward time, leading to
transport across these invariant manifolds, is referred to as turnstile mechanism [29]. As
shown in Fig. 1, q−1 is the only pip between the two pips q−2 and q0 in Ws (p1)∩Wu (p2),
thus S[q−2,q0]∪U [q−2,q0] forms the boundary of two lobes in a precise way, one in R1,
labeled with B0, and the other in R2, labeled with A0. Under one iteration of MP, the
only points that can move from R1 into R2 by crossing the boundary B are those in B0.
Similarly, under one iteration of MP, the only points that can move from R2 into R1 by
crossing B are those in A0. After a period, lobe A0 evolves and enters into lobe A1, and
lobe B0 evolves and enters into lobe B1. Therefore, transport occurs between region R1
and R2. Detailed definitions for lobe dynamics can be referred to in the literature [29].

3 Numerical method for CFD

3.1 Governing equations of unsteady flow

In this paper, the flow studied is laminar and incompressible flow because of the low
Reynolds number. Under the condition of low Reynolds number, the governing equations
for unsteady, incompressible, viscous flow are Navier-Stokes equations, which are given
by



















ρ f

(

∂ui

∂t
+uj

∂ui

∂xj

)

=−
∂p

∂xi
+µ

∂2ui

∂xj∂xj
,

∂uj

∂xj
=0,

(3.1)

where ρ f is the free stream density, µ the coefficient of dynamic viscosity, p the pressure.
The Einstein summation convention is used in Eq. (3.1). The index j in Eq. (3.1) is a
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dummy index which just indicates summation, and the index i is a free index. For two-
dimensional flow, i, j ∈ {1,2}. Typically, (x1,x2) would be equivalent to the traditional
(x,y), and u1 and u2 represent the velocities in the x and y direction, respectively. For
the airfoil, set the chord of airfoil c be the characteristic length, free stream velocity U be
the characteristic velocity. Based on the above variables, the dimensionless variables are
defined as

xi
∗=

xi

c
, t∗=

Ut

c
, p∗=

p

ρ f U2
, u∗

i =
ui

U
. (3.2)

For the sake of simplicity, the stars superscript of dimensionless variables are re-
moved, and the standard summation conventions are used hereinafter. Then, Eq. (3.1)
can be written in dimensionless form,
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∂uj
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(3.3)

where Re=ρ f Uc/µ.

3.2 Dual time stepping method and algorithm for unsteady viscous flow

In this paper, the numerical simulation of the flow around an airfoil focus on the transient
process. In order to obtain more accurate results of the transient process, the dual time
stepping scheme is introduced in the numerical simulation. By introducing the pseudo
time, the governing equations can be written as
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+

∂ui

∂t
+uj

∂ui

∂xj
=−

∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
, (3.4)

where τ is the pseudo time, t the real time. In each real time step, by considering the
local acceleration terms as source terms, the problem becomes solving a steady solution
in pseudo time tending to steady. As the solution in the pseudo time tends to be steady,
namely, ∂ui/∂t→0, Eq. (3.4) will approach Eq. (3.3).

The characteristic based split (CBS) scheme [30] is used to solve the governing equa-
tions. By this algorithm, the first term in Eq. (3.4) is discretized along the characteristic
line, which can eliminate the advection terms to avoid the numerical oscillation. The
algorithm is divided into following steps,
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where ∆τ is the pseudo time step, ∆t the real time step, un
i the velocity in nth pseudo

time step, uN
i the velocity in Nth real time step, and uN−1

i the velocity in real time step.
Finally, the finite element method is used to solve Eq. (3.5).

3.3 Verification of numerical method

In order to verify the algorithm mentioned above for flow over the airfoil, a numerical
example related to flow over NACA0012 airfoil with Re= 2000 is simulated at different
angles of attack. The numerical simulation is carried out at angles of attack α= 0◦−6◦,
and the lift coefficients at different angles of attack are obtained. As shown in Fig. 2, it is
clear that the numerical simulation results are in good agreement with the experimental
results [31]. So it can be drawn that the algorithm used is available for studying the
transient flow over the airfoil.

Figure 2: Comparisons between experiments and numerical results.

In order to ensure the high requirements in mesh quality, flow over the NACA0012
airfoil at Re= 5000 and attack angle of 6 is simulated using five types of meshes, which
are obtained by the Easymesh program. As shown in Table 1, it can be seen that all of the
mean lift coefficients obtained from five types of meshes are close to each other. Mesh4 is
chosen as the computational mesh in following studies.

4 Numerical results and discussions

The flow over NACA0012 airfoil is simulated numerically, and the Reynolds number
based on the chord of airfoil is chosen as 5000. The boundary condition on the surface of
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Table 1: Lift coefficients at α=6◦ and Re=5000.

Mesh nodes elements Lift coefficient

Mesh1 17026 33449 0.2774

Mesh2 21624 42685 0.2772

Mesh3 25775 50972 0.2746

Mesh4 32108 63616 0.2744

Mesh5 36235 71730 0.2741

airfoil is no-slip boundary condition, and the boundary condition on the boundary of the
flow field is velocity boundary condition that is set to U.

4.1 Flow structure of separation bubble

In the case with Re=5000, the numerical computation is carried out at various angles of
attack (α=1◦−8◦), and Fig. 3 shows the lift coefficient versus time at each angle of attack.

Figure 3: Lift coefficients versus time at various angles of attack.

As the angle of attack is 1◦ or 2◦, the lift coefficient keeps constant with time, implying
that the flow is steady. As the angle of attack is not less than 3◦, the lift coefficient changes
periodically with the time, meaning that the flow tends to be unsteady.

The velocity field information obtained from numerical simulation can be used to
follow the path or trajectories of fluid particles. That is, on the basis of velocity field
information, the FTLE fields in both forward and backward time can be used to capture
the stable and unstable manifolds of the flow, namely, LCSs.
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Figure 4: Separation bubble structure.

Fig. 4 shows the manifolds map of flow near NACA0012 airfoil, the red lines denote
the unstable manifolds, and the blue lines the stable manifolds. The dynamic behavior
of the flow can be obtained from stable manifolds near the trailing edge, and the contact
point of the unstable manifold near the leading edge and the upper surface is the sepa-
ration point which is denoted by S1. The contact point of the stable manifold near the
trailing edge and the upper surface is the reattachment point which is denoted by S2.
As shown in Fig. 4, the gray area between the separation point and reattachment point,
surrounded by the stable and unstable manifolds, is a typical flow structure of separation
bubble. Following lobe dynamics, P can be considered as a primary intersection point.
Therefore, {S(P,S2)∪U(S1,P)} and the upper surface of the airfoil can be chosen as the
boundary of the separation bubble from viewpoint of Lagrangian dynamics.

4.2 Mass transport in flow over airfoil

4.2.1 Lobe dynamics

Fig. 5 shows the lift coefficient of NACA0012 airfoil in a period at α= 8◦, T denotes the
period of the lift coefficient at α=8◦ (T=0.86s). In the following, the changes of the stable
and unstable manifolds near the surface of the airfoil in a period are studied in detail,
as shown in Fig. 6. And the mass transport in the process of the flow over NACA0012
airfoil is analyzed based on the lobe dynamics. In addition, the changes of position of the
particles around the airfoil in a period can be used to analyze the mass transport process
and verify the results obtained by lobe dynamics.

As a typical flow structure, the manifolds or lobes at moment t=0.26T are chosen to
analyze mass transport process. Fig. 7 shows the stable and unstable manifolds near the
surface of the airfoil at t=0.26T. For the sake of simplicity, the schematic diagram of the
manifolds near the surface of the airfoil at t=0.26T is drawn in Fig. 8.

From Fig. 8, it is clear that the stable and unstable manifolds near the surface of the
airfoil divides the flow into three regions, the region I, the region II and the region III.
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Figure 5: Lift coefficient of NACA0012 airfoil in a period at α=8◦.

Among them, region I is the main flow above the airfoil and region II the main flow
below the airfoil. In particular, region III, which is filled with dead-air, is the separation
bubble. For the sake of clarity, separation point is denoted by S1 and reattachment point
S2. Both {S(P,S2)∪U(S1,P)} and the upper surface of the airfoil could be chosen as
the boundary of separation bubble, following the lobe dynamics. According to the lobe
dynamics, it can be found there exist six primary intersection points (P0, Q0, P1, Q1, P2 and
Q2) in the intersection points of Wu (S1) and Ws (S2). Further, the stable manifold and
unstable manifold between two adjacent primary intersection points form the boundary
of a lobe. So the tangling of Wu (S1) and Ws (S2) generate five lobes, namely, L1, L2, L3,
L4 and L5. As numerical computational domain is not large enough, the blue dashed line,
which is a part of Ws (S2) at the boundary of lobe L1 in Fig. 8, is not shown in Fig. 7. With
the evolution of time, lobe L1 moves into the computational domain gradually, showing
the whole stable manifold on the boundary of lobe L1, such as in Fig. 6(h). Similarly, the
red dotted line, which is a part of Wu (S1) in Fig. 8, is not shown in the Fig. 7. From Fig. 6,
it can be found that U [A,B] breaks up as time goes on. In fact, if U [A,B] did not break in
the process of movement, then it should develop into the red dashed line. It can be seen
that U [A,B] has been broken in Fig. 6(f). Even if there is a fracture, the unstable manifold
after breaking point B still maintains the characteristics of the unstable manifold of S1.
On the part of the unstable manifold after the breaking point B, the lobe dynamics theory
still works. Therefore, for the sake of simplicity, the red dashed line is used to replace the
broken unstable manifold in Fig. 8.

In Fig. 8, mass transport between main flow and separation bubble happens, it is the
result from these lobes. Obviously, the fluid elements in lobe L1 will move to location of
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(a) t=0 (b) t=0.18T

(c) t=0.26T (d) t=0.35T

(e) t=0.44T (f) t=0.53T

(g) t=0.61T (h) t=0.79T

(i) t=0.88T (j) t=T

Figure 6: Change of stable and unstable manifolds near the surface of airfoil in a period. Six particle groups
are taken in the vicinity of the airfoil, � (the first group), N (the second group), ∇ (the third group), � (the
fourth group), ⊲ (the fifth group) and ◭ (the sixth group).
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Figure 7: Stable and unstable manifolds near the surface of airfoil at t=0.26T.

Figure 8: Schematic diagram of stable and unstable manifolds near the surface of airfoil at t=0.26T (the red
lines denote the unstable manifolds, and the blue lines the stable manifolds).

lobe L3 after a period. With the evolution of time, lobe L1, located in the main flow region
I, enters the separation bubble. Similarly, the fluid in lobe L2 will move to the location of
lobe L4 after a period, and then lobe L2, located in the separation bubble, enters the main
flow region I. Clearly, the fluid entering the separation bubble is mainly derived from the
boundary layer in upstream. That is the mass transport which could not be described by
Eulerian description.

4.2.2 Verification by motions of particle groups

In order to verify the results of lobe dynamics, we are now refer to Fig. 6 which shows
the changes of stable and unstable manifolds and the position of the particles around the
surface of the airfoil in a period. As shown in the Fig. 6, six particle groups are taken in
the vicinity of the airfoil at t=0.

It is clear that the particles far away from the airfoil are moving horizontally along
the direction of the main flow. In the whole period, there is a singular point S3 in front
of airfoil. Following the physical meaning, LCSs can be considered as the boundary or
barriers of the flow area, the stable manifold of S3 divides the fluid near the leading edge
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of the airfoil into two regions: region I and region II, as mentioned above. The fluid in
region I flows over the airfoil to the downstream, and the fluid in region II flows beneath
the airfoil. As a conclusion, it can be drawn that the stable manifold of S3 divides the
fluid near the leading edge of the airfoil into two regions by the motion of the first particle
group. Fluid particles near separation point S1 at t=0 flow along unstable manifold near
S1 and do not pass through the unstable manifold near S1 in the whole period. So, S1
can be used as the separation point of airfoil surface. There is a dead-air zone below the
unstable manifold near to S1, so that the fluid particles in this zone move slowly.

Fig. 6 shows that the first particle group in lobe L1 at t= 0 moves to area above the
airfoil at t= 0.26T, and eventually the fluid in the lobe L1 moves to the position of lobe
L3.

By observing the boundary of lobe L2 and the third particle group located in lobe L2,
it can be seen that the fluid in lobe L2 rotates counterclockwise near the trailing edge,
and the fluid moves upstream then moves downstream reaching lobe L4 at the end of the
period. As a result, lobe L2 carries the fluid from separation bubble to the main flow. In
the same way, it can be seen that the fluid in lobe L4 falls off and becomes a clockwise
vortex which will shed in the wake. Therefore, the fluid in lobe L2 will arrive in lobe L4

and then will shed in the wake.

However, there is a special zone in both lobe L2 and lobe L3. That is, the boundary of
this zone breaks in the process of lobe L2 reaching to lobe L4, leading to a mixture of the
fluid in this zone and the fluid remained in lobe L2. On the other hand, the remaining
fluid in lobe L3 is gradually close to the trailing edge of the airfoil and moves clockwise
to the inner of the separation bubble.

There is an interesting phenomenon, that is, the position of the separation point does
not change in the whole period, while the position of the reattachment changes over time.
There are a short distance and a counter clockwise vortex between the reattachment point
and tip point of the airfoil at t=0. Over the period, the vortex moves backwards, and the
reattachment point moves to the tip of the airfoil as the vortex moves backwards.

When t = 0.35T, the vortex completely leaves the upper surface of the airfoil and
moves to downstream, and the separation point also moves to the trailing edge of the
airfoil.

Then, when t= 0.53T, the fluid from the lower surface of the airfoil moves over the
trailing edge of the airfoil and moves to the upper surface of airfoil. A new counter
clockwise vortex is generated, and the volume of the new vortex begins to increase with
time. That is the reason that the reattachment point moves forward.

When t=T, the position of reattachment point is same as the position of reattachment
point at t = 0, and the distribution of manifolds is exactly the same as that at t = 0. In
this process, the reattachment point position on the upper surface of the airfoil changes
periodically, and the period is also equals T.

Through the analyses above, it can be found that the results obtained by lobe dynam-
ics are much more intuitive than the kinetic description, such as streamline etc.
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4.3 Relationship between mass transport and lift

4.3.1 Distributions of pressure coefficient of NACA0012 airfoil

Fig. 9 shows the distributions of pressure coefficient of NACA0012 airfoil in a period
at α = 8◦. The flow is divided into 3 parts with the airfoil chord length. The part that
chord length range from 0 to 0.2c is the front of the airfoil; The part that chord length
range from 0.2c to 0.7c is the central section of the airfoil; The part that chord length
range from 0.7c to c is the rear of the airfoil. It can be obtained from Fig. 10 that the
distribution of the pressure coefficient in the front of airfoil in the whole period remains
unchanged. However, the distributions of the pressure coefficient in the central section
and rear of airfoil change with time. Especially, the pressure coefficient in the rear of the
airfoil changes intensely. In addition, the distribution curve of the pressure coefficient at
t=0 is completely coincident with that at t=T.

Figure 9: Distributions of pressure coefficient at various time in a period (Re=5000, α=8◦).

When t=0, the pressure is higher on the upper surface at rear of the airfoil than that
on the lower surface at the rear of the airfoil. On the trailing edge, the pressure of upper
and lower surface is very low.

When t= 0.26T, the pressure on the lower surface of the central section is risen, and
the pressure on the upper surface of the central section is decreased. The length of the
area where the pressure on the upper surface is higher than that on the lower surface is
reduced greatly, and this area is getting close to the trailing edge. And the pressure on
the airfoil is raised near the trailing edge.
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When t=0.44T, the area where the pressure on the upper surface is higher than that
on the lower surface is completely disappeared. The pressure on the lower surface of the
central section and rear is obviously increased. Therefore, in the first half of the period,
the lift coefficient of the airfoil is enhanced. When t= 0.61T, the pressure on the upper
surface of the central section is risen, and the pressure on the lower surface of the central
section begins to drop. The pressure on the upper and lower surface near the trailing
edge of the airfoil is also reduced greatly.

When t=0.88T, the pressure on the upper surface of the central section is still rising,
and the pressure on the upper surface of the central section remains dropping. Also, the
pressure on the upper surface of the rear is rising, and the pressure on the upper surface
of the rear remains dropping. The area where the pressure on the upper surface is higher
than that on the lower surface appears again. Consequently, the volume of this area is
increasing. When t=T, the pressure distribution on the airfoil surface is exactly the same
as that at t=0. Accordingly, the lift coefficient of the airfoil is decreased in the second half
of the period. In each of the following periods, the variation of the pressure coefficient
and the lift coefficient of the airfoil surface is exactly the same as that described above.

4.3.2 Relationship between mass transport and lift

In a period, the unstable manifold near the leading edge keeps constant mostly, indicating
that there is no mass transport between the front region of the separation bubble III and
the main flow region I. So the energy exchange between the front region of the separation
bubble III and the main flow I mainly depends on the molecular diffusion. The fluid in
this region is greatly influenced by viscosity, meaning there exists a large area of dead air
near airfoil surface.

In Fig. 8, when t=0, the fluid in the lobe L3, which is in the separation bubble (region
III), is derived from the main flow (region I). The fluid in the lobe L3 is near to the central
section of the airfoil at t=0, then the fluid moves to the rear of the airfoil and mixes with
the fluid in the separation bubble as the time evolution. The mean velocity of the fluid in
the main flow is higher than that in the separation bubble. Through the mass transport
between main flow and separation bubble, the kinetic energy and the momentum of the
fluid in the separation bubble are enhanced, and the pressure is dropped. The fluid in
both lobes L2 and L3 moves to lobe L4 and leaves the separation bubble, and eventually
the fluid sheds to the wake and falls off as a clockwise vortex. As the results, pressure in
separation bubble is raised, and the lift coefficient is increased in the first half period and
decreased in the second half period.

The pressure of the upper surface near the trailing edge is increased in the first half pe-
riod and decreased in the second half period, which is mainly influenced by the counter
clockwise vortex near the trailing edge. The fluid in this vortex is composed of fluid from
the main flow (region II). In the process of the vortex formation, the mean velocity of
the surrounding fluid is increased, and the pressure on the upper surface of the airfoil
near the vortex can be reduced. On the contrary, in the process of vortex shedding, the
pressure on the upper surface of the airfoil near the vortex can be increased. However,
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the effect from the mass transport on the lift coefficient is more powerful than the effect
of the vortex on the lift coefficient. Therefore, the lift coefficient of the airfoil is mainly
controlled by the mass transport process in the main flow and the separation bubble.

5 Conclusion

LCSs and lobe dynamics are introduced to investigate the mass transport between sep-
aration bubble and main flow, from viewpoint of nonlinear dynamics. The structures of
the separation bubble from viewpoint of Lagrangian dynamics are shown by LCSs, and
the position of the reattachment point on the upper surface of the airfoil changes peri-
odically, as well the lift coefficient. The results show that stable manifolds and unstable
manifolds could be tangled with each other as time evolution, and the lobes are formed
periodically to induce mass transport between main flow and separation bubble. More-
over, the evolution of the separation bubble depends essentially on the mass transport
which is induced by lobes. Also, the lift coefficient of the airfoil is mainly controlled by
the mass transport process in the main flow and the separation bubble. As a conclusion,
it can be drawn that the flow separation could be studied by LCSs and lobe dynamics,
and the flow separation could be controlled feasibly if an appropriate control is applied
to the upstream boundary layer with high momentum from the main flow.

Besides, mass transport and energy exchange exists widely in oceanic flow, atmo-
spheric flow and heat transport process. It is valuable to study these problems. Looking
to the future,the LCS and lobe dynamics can be used to study the problem of air pol-
lutants and the ocean flow, and maybe it is likely to be used to study the heat transfer
problem.
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