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Abstract

Most iterative algorithms for eigenpair computation consist of two main steps: a sub-

space update (SU) step that generates bases for approximate eigenspaces, followed by

a Rayleigh-Ritz (RR) projection step that extracts approximate eigenpairs. So far the

predominant methodology for the SU step is based on Krylov subspaces that builds or-

thonormal bases piece by piece in a sequential manner. In this work, we investigate block

methods in the SU step that allow a higher level of concurrency than what is reachable

by Krylov subspace methods. To achieve a competitive speed, we propose an augmented

Rayleigh-Ritz (ARR) procedure. Combining this ARR procedure with a set of polynomial

accelerators, as well as utilizing a few other techniques such as continuation and deflation,

we construct a block algorithm designed to reduce the number of RR steps and elevate

concurrency in the SU steps. Extensive computational experiments are conducted in C on

a representative set of test problems to evaluate the performance of two variants of our

algorithm. Numerical results, obtained on a many-core computer without explicit code

parallelization, show that when computing a relatively large number of eigenpairs, the per-

formance of our algorithms is competitive with that of several state-of-the-art eigensolvers.

Mathematics subject classification: 65F15, 90C06.
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1. Introduction

In this paper, we consider to compute k � n eigenpairs corresponding to k largest or

smallest eigenvalues of a given large-scale real symmetric matrix A ∈ Rn×n. Let λ1, λ2, · · · , λn
be the eigenvalues of A sorted in a descending order: λ1 ≥ λ2 ≥ · · · ≥ λn, and q1, . . . , qn ∈ Rn

be the corresponding eigenvectors such that Aqi = λiqi, ‖qi‖2 = 1, i = 1, . . . , n and qTi qj = 0

for i 6= j. The eigenvalue decomposition of A is defined as A = QnΛnQ
T
n , where, for any integer

i ∈ [1, n],

Qi = [q1, q2, . . . , qi] ∈ Rn×i, Λi = diag(λ1, λ2, . . . , λi) ∈ Ri×i, (1.1)
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where diag(·) denotes a diagonal matrix with its arguments on the diagonal. For simplicity, we

also write A = QΛQT where Q = Qn and Λ = Λn.

Most algorithms for computing a subset of eigenpairs of large matrices are iterative in which

each iteration consists of two main steps: a subspace update (SU) step and a projection step.

The subspace update step varies from method to method but with a common goal in finding

a matrix X ∈ Rn×k so that its column space is a good approximation to the k-dimensional

eigenspace spanned by k desired eigenvectors. At present, the predominant methodology for

subspace updating is still Krylov subspace methods, as represented by Lanczos type method-

s [12, 15] for real symmetric matrices. These methods generate an orthonormal matrix X one

(or a few) column at a time in a sequential mode. Along the way, each column is multiplied

by the matrix A and made orthogonal to all the previous columns. In contrast to Krylov

subspace methods, block methods, as represented by the classic simultaneous subspace iter-

ation method [22], carry out the multiplications of A to all columns of X at the same time

in a batch mode. As such, block methods generally demand a lower level of communication

intensity. Once X is obtained and orthonormalized, the projection step aims to extract from

X a set of approximate eigenpairs (see more details in Section 2) that are optimal in a sense.

For the projection step often the method of choice is the Rayleigh-Ritz (RR) procedure. More

complete treatments of iterative algorithms for computing subsets of eigenpairs can be found,

for example, in the books [1, 3, 19,25,30].

The purpose of this work is to construct and test a framework for block algorithms that can

efficiently, reliably and accurately compute a relatively large number of exterior eigenpairs of

large-scale matrices. The algorithm framework is constructed to take advantages of multi/many-

core or parallel computers, although a study of parallel scalability itself will be left as a future

topic. It appears widely accepted that a key property hindering the competitiveness of block

methods is that their convergence can become intolerably slow when decay rates in relevant

eigenvalues are excessively flat. A central task of our algorithm construction is to rectify this

issue of slow convergence.

Our framework starts with an outer iteration loop that features an enhanced RR step called

the augmented Rayleigh-Ritz (ARR) projection which can provably accelerate convergence

under mild conditions. For the SU step, we consider two block iteration schemes whose com-

putational cost is dominated by block SpMVs (the sparse matrix A multiplying a vector): (i)

the classic power method applied to multiple vectors without periodic orthogonalization, and

(ii) a recently proposed Gauss-Newton method. For further acceleration, we apply our block

SU schemes to a set of polynomial accelerators, say ρ(A), aiming to suppress the magnitudes of

ρ(λj) where λj ’s are the unwanted eigenvalue of A for j > k. In addition, a deflation scheme is

utilized to enhance the algorithm’s efficiency. Some of these techniques have been studied in the

literature over the years (e.g. [24,34] on polynomial filters), and are relatively well understood.

In practice, however, it is still a nontrivial task to integrate all the aforementioned components

into an efficient and robust eigensolver. For example, an effective use of a set of polynomial

filters involves the choice of polynomial types and degrees, and the estimations of intervals in

which eigenvalues are to be promoted or suppressed. There are quite a number of choices to be

made and parameters to be chosen that can significantly impact algorithm performance.

Specifically, our main contributions are summarized as follows.

1. The augmented Rayleigh-Ritz (ARR) procedure proposed in [33] is carefully implemented

and extensively evaluated in numerical experiments. Our ARR provably speeds up con-

vergence without increasing the block size of the iterate matrix X in the SU step (thus
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without increasing the cost of SU steps). It can significantly reduce the number of RR

projections needed, at the cost of increasing the size of a few RR calls.

2. A versatile and efficient algorithmic framework is constructed that can accommodate

different block methods for subspace updating. In particular, we revitalize the power

method as an exceptionally competitive choice for a high level of concurrency. Besides

ARR, our framework features several important components, including

• a set of low-degree, non-Chebyshev polynomial accelerators that seem less sensitive

to erroneous intervals than the classic Chebyshev polynomials;

• a bold stopping rule for SU steps that demands no periodic orthogonalizations and

welcomes a (near) loss of numerical rank.

With regard to the issue of basis orthogonalization, we recall that in traditional block

methods such as the classic subspace iteration, orthogonalization is performed either at every

iteration or frequently enough to prevent the iterate matrix X from losing rank. On the

contrary, our algorithms aim to make X numerically rank-deficient right before performing an

RR projection.

The rest of this paper is organized as follows. An overview of relevant iterative algorithms

for eigenpair computation is presented in Section 2. The ARR procedure and our algorithm

framework are proposed in Section 3. The polynomial accelerators used by us are given in

Section 4. A detailed pseudocode for our algorithm is outlined in Section 5. Numerical results

are presented in Section 6. Finally, we conclude the paper in Section 7.

2. Overview of Iterative Algorithms for Eigenpair Computation

Algorithms for the eigenvalue problem have been extensively studied for decades. We will

only briefly review a small subset of them that are most closely related to the present work.

Without loss of generality, we assume for convenience that A is positive definite (after a

shift if necessary). Our task is to compute k largest eigenpairs (Qk,Λk) for some k � n where

by definition AQk = QkΛk and QT
kQk = I ∈ Rk×k. Replacing A by a suitable function of A,

say λ1I−A, one can also in principle apply the same algorithms to finding k smallest eigenpairs

as well.

An RR step is to extract approximate eigenpairs, called Ritz-pairs, from a given matrix Z ∈
Rn×m whose range space, R(Z), is supposedly an approximation to a desired m-dimensional

eigenspace of A. Let orth(Z) be the set of orthonormal bases for the range space of Z. The

RR procedure is described as Algorithm 2.1 below, which is also denoted by a map (Y,Σ) =

RR(A,Z) where the output (Y,Σ) is a Ritz pair block.

Algorithm 2.1: Rayleigh-Ritz procedure: (Y,Σ) = RR(A,Z)

1 Given Z ∈ Rn×m, orthonormalize Z to obtain U ∈ orth(Z).

2 Compute H = UTAU ∈ Rm×m, the projection of A onto the range space of U .

3 Compute the eigen-decomposition H = V ΣV T , where V TV = I and Σ is diagonal.

4 Assemble the Ritz pairs (Y,Σ) where Y = UV ∈ Rn×m satisfies Y TY = I.

It is known (see [19], for example) that Ritz pairs are, in a certain sense, optimal approxi-

mations to eigenpairs in R(Z), the column space of Z.
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2.1. Krylov Subspace Methods

Krylov subspaces are the foundation of several state-of-the-art solvers for large-scale eigen-

value calculations. By definition, for given matrix A ∈ Rn×n and vector v ∈ Rn, the Krylov

subspace of order k is span{v,Av,A2v, . . . , Ak−1v}. Typical Krylov subspace methods include

Arnoldi algorithm for general matrices (e.g., [14,15]) and Lanczos algorithm for symmetric (or

Hermitian) matrices (e.g., [13, 27]). In either algorithm, orthonormal bases for Krylov sub-

spaces are generated through a Gram-Schmidt type process. Some variants of Jacobi-Davidson

methods (e.g., [2,28]) are based on a different framework, but they too rely on Krylov subspace

methodologies to solve linear systems at every iteration.

As is mentioned in the introduction, Krylov-subspace type methods are generally most

efficient in terms of the number of SpMVs (sparse matrix-dense vector multiplications). Indeed,

they remain the method of choice for computing a small number of eigenpairs. However,

due to the sequential process of generating orthonormal bases, Krylov-subspace type methods

incur a low degree of concurrency, especially as the dimension k becomes relatively large. To

improve concurrency, multiple-vector versions of these algorithms have been developed where

each single vector in matrix-vector multiplication is replaced by a small number of multiple

vectors. Nevertheless, such a remedy can only provide a limited relief in the face of the inherent

scalability barrier as k grows. Another well-known limitation of Krylov subspace methods is the

difficulty to warm-start them from a given subspace. Warm-starting is important in an iterative

setting in order to take advantages of available information computed at previous iterations.

2.2. Classic Subspace Iteration

The simple (or simultaneous) subspace iteration (SSI) method (see [22, 23, 29, 31], for ex-

ample) extends the idea of the power method which computes a single eigenpair corresponding

to the largest eigenvalue (in magnitude). Starting from an initial (random) matrix U , SSI

performs repeated matrix multiplications AU , followed by periodic orthogonalizations and RR

projections. The main purpose of orthogonalization is to prevent the iterate matrix U from

losing rank numerically. In addition, since the rates of convergence for different eigenpairs are

uneven, numerically converged eigenvectors can be deflated after each RR projection. A version

of SSI algorithm is presented as Algorithm 2.2 below, following the description in [30].

Algorithm 2.2: Simple Subspace Iteration (SSI)

1 Initialize orthonormal matrix U ∈ Rn×m with m = k + q ≥ k.

2 while the number of converged eigenpairs is less than k, do

3 while convergence is not expected, do

4 while the columns of U are sufficiently independent, do

5 Compute U = AU .

6 Normalize each column of U .

7 Orthogonalize the columns of U .

8 Perform an RR step using U .

9 Check convergence and deflate.

In the above SSI framework, q extra vectors, often called guard vectors, are added into

iterations to help improve convergence at the price of increasing the iteration cost. A main
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advantage of SSI is the use of simultaneous matrix-block multiplications instead of individual

matrix-vector multiplications. It reduces average memory access time by increasing arithmetic

intensity and allowing better cache utilization. Hence, highly parallelizable computation is

possible on modern computer architectures. Furthermore, SSI method has a guaranteed con-

vergence to the largest k eigenpairs from any generic starting point as long as there is a gap

between the k-th and the (k+ 1)-th eigenvalues of A. As is pointed out in [30], “combined with

shift-and-invert enhancement or Chebyshev acceleration, it sometimes wins the race”. How-

ever, a severe shortcoming of the SSI method is that its convergence speed depends critically

on eigenvalue distributions that can, and often does, become intolerably slow in the face of

unfavorable eigenvalue distributions. Thus far, this drawback has essentially prevented the

SSI method from being used as a computational engine to build robust, reliable and efficient

general-purpose eigensolvers.

2.3. Trace Maximization Methods

Computing a k-dimensional eigenspace associated with k largest eigenvalues of A is equiv-

alent to solving an orthogonality constrained trace maximization problem:

max
X∈Rn×k

tr(XTAX), s.t. XTX = I. (2.1)

This formulation can be easily extended to solving the generalized eigenvalue problem

max
X∈Rn×k

tr(XTAX), s.t. XTBX = I, (2.2)

where B is a symmetric positive definite matrix. When maximization is changed to mini-

mization, one computes an eigenspace associated with k smallest eigenvalues. The algorithm

TraceMin [26] solves the trace minimization problem using a Newton type method.

Some block algorithms have been developed based on solving (2.1), including the locally

optimal block preconditioned conjugate gradient method (LOBPCG) [10] and more recently the

limited memory block Krylov subspace optimization method (LMSVD) [16]. At each iteration,

these methods solve a subspace trace maximization problem of the form

Y = arg max
X∈Rn×k

{
tr(XTAX) : XTX = I, X ∈ S

}
, (2.3)

where X ∈ S means that each column of X is in the given subspace S which varies from method

to method. LOBPCG constructs S as the span of the two most recent iterates X(i−1) and X(i),

and the residual at X(i), which is essentially equivalent to

S = span
{
X(i−1), X(i), AX(i)

}
, (2.4)

where the term AX(i) may be pre-multiplied by a pre-conditioning matrix. In the LMSVD

method, on the other hand, the subspace S is spanned by the current i-th iterate and the

previous p iterates; i.e.,

S = span
{
X(i), X(i−1), ..., X(i−p)

}
. (2.5)

In general, the subspace S should be constructed such that the cost of solving (2.3) can be

kept relatively low. The parallel scalability of these algorithms, although improved from that

of Krylov subspace methods, is now limited by the frequent use of basis orthogonalizations and

RR projections involving m × m matrices where m is the dimension of the subspace S (for

example, m = 3k in LOBPCG).
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2.4. Polynomial Acceleration

Polynomial filtering has been used in eigenvalue computation in various ways (see, for ex-

ample, [6, 24, 30, 34]). For a polynomial function ρ(t) : R → R and a symmetric matrix with

eigenvalue decomposition A = QΛQT , it holds that

ρ(A) = Qρ(Λ)QT =

n∑
i=1

ρ(λi)qiq
T
i , (2.6)

where ρ(Λ) = diag(ρ(λ1), ρ(λ2), . . . , ρ(λn)). By choosing a suitable polynomial function ρ(t) and

replacing A by ρ(A), we can change the original eigenvalue distribution into a more favorable one

at a cost. To illustrate the idea of polynomial filtering, suppose that ρ(t) is a good approximation

to the step function that is one on the interval [λk, λ1] and zero otherwise. For a generic

initial matrix X ∈ Rn×k, it follows from (2.6) that ρ(A)X ≈ QkQ
T
kX, which would be an

approximate basis for the desired eigenspace. In practice, however, approximating a non-

smooth step function by polynomials is an intricate and demanding task which does not always

lead to efficient algorithms.

For the purpose of convergence acceleration, the most often used polynomials are the Cheby-

shev polynomials (of the first kind), defined by the three-term recursion:

ρd+1(t) = 2tρd(t)− ρd−1(t), d ≥ 1, (2.7)

where ρ0(t) = 1 and ρ1(t) = t. Some recent works that use Chebyshev polynomials include

[6, 34], for example.

2.5. A Gauss-Newton Algorithm

A Gauss-Newton (GN) algorithm is recently proposed in [17] to compute the eigenspace

associated with k largest eigenvalues of A based on solving the nonlinear least squares problem:

min ‖XXT −A‖2F,where X ∈ Rn×k, ‖ · ‖2F is the Frobenius norm squared and A is assumed to

have at least k positive eigenvalues. If the eigenpairs of A are required, then an RR projection

must be performed afterwards.

Algorithm 2.3: A GN Algorithm: X = gn(A,X)

1 Initialize X ∈ Rn×k to a rank-k matrix.

2 while “the termination criterion” is not met, do

3 Compute Y = X
(
XTX

)−1
and Z = AY .

4 Compute X = Z −X(Y TZ − I)/2.

5 Perform an RR step using X if Ritz-pairs are needed.

It is shown in [17] that at any full-rank iterate X ∈ Rn×k, the gn method takes the simple

closed form

X+ = X + α

(
I − 1

2
X(XTX)−1XT

)(
AX(XTX)−1 −X

)
,

where the parameter α > 0 is a step size. Notably, this method requires to solve a small k × k
linear system at each iteration. It is also shown in [17] that the fixed step α ≡ 1 is justifiable

from either a theoretical or an empirical viewpoint, which leads to a parameter-free algorithm

given as Algorithm 2.3, named simply as gn. For more theoretical and numerical results on

this gn algorithm, we refer readers to [17].
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3. Augmented Rayleigh-Ritz Projection and Our Algorithm

Framework

We first introduce the augmented Rayleigh-Ritz or ARR procedure. It is easy to see that

the RR map (Y,Σ) = RR(A,Z) is equivalent to solving the trace-maximization subproblem

(2.3) with the subspace S = R(Z), while requiring Y TAY to be a diagonal matrix Σ. For a

fixed number k, the larger the subspace R(Z) is, the greater chance there is to extract better

Ritz pairs. The classic SSI always sets Z to the current iterate X(i), while both LOBPCG [10]

and LMSVD [16] augment X(i) by additional blocks (see (2.4) and (2.5), respectively). Not sur-

prisingly, such augmentations are the main reason why algorithms like LOBPCG and LMSVD

generally achieve faster convergence than that of the classic SSI.

In this work, we define our augmentation based on a block Krylov subspace structure. That

is, for some integer p ≥ 0 we define

S = span
{
X,AX,A2X, . . . , ApX

}
. (3.1)

This choice (3.1) of augmentation is made mainly because it enables us to conveniently analyze

the acceleration rates induced by such an augmentation (see [33] for more details). It is more

than likely that some other choices of S may be equally effective as well.

The optimal solution of the trace maximization problem (2.3), restricted in the subspace

S in (3.1), can be computed via the RR procedure, i.e., Algorithm 2.1. We formalize our

augmented RR procedure as Algorithm 3.1, which will often be referred to simply as ARR. The

analysis of ARR in [33, Corollary 4.6] shows that the convergence rate of SSI is improved from

|ρ(λk+1)/ρ(λk)| for RR (p = 0) to |ρ(λ(p+1)k+1)/ρ(λk)| for ARR (p > 0). Therefore, a significant

improvement is possible with a suitably chosen polynomial ρ(·) such that |ρ(λ(p+1)k+1)| �
|ρ(λk+1)|.

Algorithm 3.1: ARR: (Y,Σ) = Arr(A,X, p)

1 Input X ∈ Rn×m and p ≥ 0 so that (p+ 1)m < n.

2 Construct augmentation Xp = [X AX A2X · · · ApX].

3 Perform an RR step using (Ŷ , Σ̂) = RR(A,Xp).

4 Extract k leading Ritz pairs (Y,Σ) from (Ŷ , Σ̂).

We next introduce an abstract version of our algorithmic framework with ARR projections.

It will be named arrabit (standing for ARR and block iteration). A set of polynomial functions

{ρd(t)}, where d is the polynomial degree, and an integer p ≥ 0 are chosen at the beginning of

the algorithm. At each outer iteration, we perform the two main steps: subspace update (SU)

step and augmented RR (ARR) step. There are two sets of stopping criteria: inner criteria for

the SU step, and outer criteria for detecting the convergence of the whole process.

In principle, the SU step can be fulfilled by any reasonable updating scheme and it does not

require orthogonalizations. In this paper, we consider the classic power iteration as our main

updating scheme, i.e., for X = [x1 x2 · · · , xm] ∈ Rn×m, we do

xi = ρ(A)xi and xi =
xi
‖xi‖2

, i = 1, · · · ,m.

Since the power iteration is applied individually to all columns of the iterate matrix X, we call

this scheme multi-power method or mpm. Here we intentionally avoid to use the term subspace
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iteration because, unlike in the classic SSI, we do not perform any orthogonalization during the

entire inner iteration process.

To examine the versatility of the arrabit framework, we also use the Gauss-Newton (gn)

method, presented in Algorithm 2.3, as a second updating scheme. Since the gn variant requires

solving k×k linear systems, its scalability with respect to k may be somewhat lower than that of

the mpm variant. Together, we present our arrabit algorithmic framework in Algorithm 3.2.

The two variants, corresponding to “inner solvers” mpm and gn, will be named arrabit-

mpm and arrabit-gn, or simply mpm and gn.

Algorithm 3.2: Algorithm arrabit (abstract version)

1 Input A ∈ Rn×n, k, p and ρ(t). Initialize X ∈ Rn×m with m = k + q ≥ k.

2 while not “converged”, do

3 while “inner criteria” are not met, do

4 if MPM is the inner solver, then

5 X = ρ(A)X, then normalize columns individually.

6 if GN is the inner solver, then

7 X = gn(ρ(A), X), as is given by Algorithm 2.3.

8 ARR projection: (X,Σ) = Arr(A,X, p), as in Algorithm 3.1.

9 Possibly adjust p, the degree of ρ(t), and perform deflation.

It is worth mentioning that the “inner criteria” in the arrabit framework can have a

significant impact on the efficiency of Algorithm 3.2. Let U and U⊥ be the subspace spanned

by the wanted and unwanted eigenvectors of A, respectively. With proper polynomial filters,

the projection of X onto U⊥ shrinks faster than that onto U as mpm or gn is applied. Against

the conventional wisdom, we do not attempt to keep X numerically full rank by periodic

orthogonalizations which can be quite costly. Instead, we keep iterating until we detect that X is

about to lose, or has just lost, numerical rank since it most likely implies that we have succeeded

in eliminating the unwanted eigenspace. In this case an RR step is needed immediately to

extract the approximate eigenvalues and eigenvectors, otherwise a part of the wanted eigenspace

will probably also be sacrificed. More details on the proposed “inner criteria” will be given in

Algorithm 5.1 in Section 5. The “inner criteria” and the use of ARR together can generally

improve the qualities of both SU and RR steps, hence reducing the number of outer iterations (or

ARR calls) required to reach a relatively high accuracy. Of course, there are extra computational

costs in SU (and ARR) steps, but they are predominantly SpMVs.

4. Polynomial Accelerators

To construct polynomial accelerators (or filters) ρ(t), we use Chebyshev interpolants on

highly smooth functions. Chebyshev interpolants are polynomial interpolants on Chebyshev

points of the second kind, defined by

tj = − cos(jπ/N), 0 ≤ j ≤ N, (4.1)

where N ≥ 1 is an integer. Obviously, this set of N + 1 points are in the interval [−1, 1]

inclusive of the two end-points. Through any given data values fj , j = 0, 1, · · · , N , at these

N + 1 Chebyshev points, the resulting unique polynomial interpolant of degree N or less is a

Chebyshev interpolant. It is known that Chebyshev interpolants are “near-best” [5].
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Our choices of functions to be interpolated are

fd(t) = (f1(t))d where f1(t) = max(0, t)10, (4.2)

and d is a positive integer. Obviously, fd(t) ≡ 0 for t ≤ 0 and fd(1) ≡ 1. The power 10 is rather

arbitrary and exchangeable with other numbers of similar magnitude without making notable

differences.

The functions in (4.2) are many times differentiable so that their Chebyshev interpolants

converge relatively fast, see [18]. Interpolating such smooth functions on Chebyshev points

helps reducing the effect of the Gibbs phenomenon and allows us to use relatively low-degree

polynomials.

There is a well-developed open-source Matlab package called Chebfun [4] for doing Cheby-

shev interpolations, among many other functionalities1) . In this work, we have used Chebfun

to construct Chebyshev interpolants as our polynomial accelerators. Specifically, we interpolate

the function fd(t) by the d-th degree Chebyshev interpolant polynomial, say,

ψd(t) = γ1t
d + γ2t

d−1 + . . .+ γdt+ γd+1. (4.3)

Suppose that we want to dampen the eigenvalues in an interval [a, b], where a ≤ λn and

b < λk, while magnifying eigenvalues to the right of [a, b]. Then we map the interval [a, b] onto

[−1, 1] by an affine transformation and then apply ψd(·) to A. That is, we apply the following

polynomial function to A,

ρd(t) = ψd

(
2t− a− b
b− a

)
. (4.4)

Let Γd = (γ1, γ2, · · · , γd+1) denote the coefficients of the polynomial ψd(t) in (4.3). The corre-

sponding matrix operation Y = ρd(A)X can be implemented by Algorithm 4.1 below.

Algorithm 4.1: Polynomial function: Y = poly(A,X, a, b,Γd)

1 Compute c0 = a+b
a−b and c1 = 2

b−a . Set Y = γ1X.

2 for j = 1, 2, . . . , d do Y = c0Y + c1AY + γj+1X.

For a quick comparison, we plot our Chebyshev interpolants of degrees 2 to 7 and the

Chebyshev polynomials of degrees 2 to 7 side by side in Fig. 4.1. For both kinds of polynomials,

the higher the degree is, the closer the curve is to the vertical line t = 1. We observe that inside

the interval [−1, 1], our Chebyshev interpolants have lower profiles (with magnitude less than or

around 0.2 except near 1) than the Chebyshev polynomials which oscillate between ±1, while

outside [−1, 1] the Chebyshev polynomials grow faster.

The idea of polynomial acceleration is straightforward and old, but its success is far from

foolproof, largely due to inevitable errors in estimating intervals within which eigenvalues are

supposed to be suppressed or promoted. The main reason for us to prefer our Chebyshev inter-

polants over the classic Chebyshev polynomials is that their lower profiles tend to make them

less sensitive to erroneous intervals, hence easier to control. Indeed, our numerical comparison,

albeit limited, appears to justify our choice.

1) Also see the website http://www.chebfun.org/docs/guide/guide04.html
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Fig. 4.1. Illustration of polynomial functions.

5. Details of arrabit Algorithms

In this section, we describe technical details and give parameter choices for our arra-

bit algorithm which computes k eigenpairs corresponding to k algebraically largest eigenvalues

of a given symmetric matrix A. We first present a pseudo-code of a detailed version of the

arrabit algorithm in Algorithm 5.1, then explain each feature in detail. As one can see, the

arrabit algorithm uses A only in matrix multiplications. The main memory requirements are

three n × (k + q) matrices for X, Y and Z in the GN method and two n × ((k + q)(p + 1))

matrices in the ARR step. These matrices usually become smaller as the iteration proceeds.

Algorithm 5.1: Algorithm arrabit (detailed version)

1 Input A ∈ Rn×n, integer k ∈ (0, n) and tolerance tol > 0.

2 Choose d and dmax, the initial and maximum polynomial degrees. Choose p and pmax,

the initial and maximum number of augmentation blocks.

3 Choose q ≥ 0, the number of guard vectors, so that (p+ 1)(k + q) < n.

4 Set tolerance parameters: t = 1, tolt ≥ tol and told = max(10−14, tol2t ).

5 Initialize converged Ritz pairs (Qc,Σc) to be empty sets for deflation purposes.

6 Initialize a matrix X ∈ Rn×(k+q) and estimate the interval [λn, λk+q] ≈ [a, b].

7 for j = 1, . . . ,maxit do /* outer loop */

8 Initialize rc to infinity.

9 for i1 = 1, 2, · · · ,maxit1, do /* inner loop */

10 for i2 = 1, 2, · · · ,maxit2, do /* call inner solvers */

11 if mpm is the inner solver, then /* MPM */

12 Call X = poly(A− aI,X, 0, b− a,Γd). /* accelerator */

13 Normalize the columns of X individually.

14 if gn is the inner solver, then /* GN */

15 Compute Y = X
(
XTX

)−1
.

16 Call Z = poly(A− aI, Y, 0, b− a,Γd). /* accelerator */
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17 Compute X = Z −X(Y TZ − I)/2.

18 Compute X = X −Qc(Q
T
c X) if Qc is not empty.

19 Set rcp = rc and compute rc = rcond(XTX).

20 if the inner stop rule (5.4) is met, then break. /* end inner loop */

21 Compute Y = [X,AX, . . . , ApX]. /* augmentation */

22 Y = Y −Qc(Q
T
c Y ) if Qc is not empty. /* projection */

23 Perform ARR step: (X,Σ) = RR(A, Y ). /* ARR */

24 Extract k + q leading Ritz pairs (xi, µi) from (Qc,Σc) and (X,Σ).

25 Overwrite (X,Σ) by the k + q Ritz pairs. Compute residuals by (5.2).

26 if the outer stop rule (5.1) is met for tol, then

27 output the Ritz pairs (X,Σ) and exit. /* output and exit */

28 if the outer stop rule (5.1) is met for tolt, then /* continuation */

29 Set tolt+1 = max
(
10−2tolt, tol

)
, b = µk+q and t = t+ 1.

30 Collect converged Ritz pairs in (Qc,Σc) that satisfy (5.5). /* deflation */

31 Overwrite (X,Σ) by the remaining not yet converged Ritz pairs.

32 if rules in (5.6) are met, then set p = min(p+ 1, pmax).x /* update p */

33 Update the polynomial degree by rules (5.7)-(5.8). /* update degree */

Guard vectors (Line 3). When computing k eigenpairs, it is a common practice to compute

a few extra eigenpairs to help guard against possible slow convergence. For this purpose, a small

number of “guard vectors” are added to the iterate matrix X. In general, the more guard vectors

are used, the fewer iterations are needed for convergence, but at a higher cost per iteration on

memory and computing time. In our implementation, we set the number of columns in iterate

matrix X to k + q, where by default q is set to 0.1k (rounded to the nearest integer).

Estimation of λn and λk+q (Line 6 and 29). To apply polynomial accelerators, we need

to estimate the interval [a, b] = [λn, λk+q] which contains unwanted eigenvalues. The smallest

eigenvalue λn can be computed by calling the arpack [15]). Alternatively, it can be estimated

by the Gershgorin circle theorem or the Lanczos algorithm with a few iterations. Given an

initial matrix X ∈ Rn×(k+q) whose columns are orthogonalized, an under-estimation of λk+q

can be taken as the smallest eigenvalue of the projected matrix XTAX (which requires an RR

projection). As the iterations progress, more accurate estimates of λk+q will become available

after each later ARR projection. In general, arrabit can be slow if it is difficult to construct

a suitable polynomial due to the poor spectral distribution.

Outer loop stop rule (Line 26). Let (xi, µi), i = 1, 2, · · · , k, be computed Ritz pairs

where xTi xj = δij . We terminate the algorithm when the following maximum relative residual

norm becomes smaller than a prescribed tolerance tol, i.e.,

maxres := max
i=1,...,k

{resi} ≤ tol, (5.1)

where

resi :=
‖Axi − µixi‖2
max(1, |µi|)

, i = 1, · · · , k. (5.2)

The algorithm is also stopped in the following three cases: (i) if a maximum number of iterations,

denoted by “maxit”, is reached (by default maxit = 30); or (ii) if the maximum relative residual

norm has not been reduced after three consecutive outer iterations; or (iii) if most Ritz pairs

have residuals considerably smaller than tol and the remaining have residuals slightly larger
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than tol; specifically, maxres < (1 + 9h/k)tol (< 10 ∗ tol), where h is the number of Ritz pairs

with residuals less than 0.1 × tol. In our experiments we also monitor the computed partial

trace
∑k

i=1 µi at the end for all solvers as a check for correctness.

Continuation (Line 28). When a high accuracy (say, tol ≤ 10−8) is requested, we use a

continuation procedure to compute Ritz-pairs satisfying a sequence of tolerances: tol1 > tol2 >

· · · ≥ tol, and use the computed Ritz-pairs for tolt as the starting point to compute the next

solution for tolt+1. In our implementation, we use the update scheme

tolt+1 = max(10−2 tolt, tol), (5.3)

where tol1 is chosen to be considerably larger than tol. A main reason for doing such a contin-

uation is that our deflation procedure (see below) is tolerance-dependent. At the early stages

of the algorithm, a stringent tolerance would delay the activation of deflation and likely cause

missed opportunities in reducing computational costs.

Inner loop parameters and stop rule (Line 20). Both mpm and gn are tested as

inner solvers to update X. These inner solvers are applied to the shifted matrix A−aI which is

supposedly positive semidefinite since a is a good approximation to λn (computed by arpack in

our implementation). We check inner stopping criteria every maxit2 iterations and check them

at most maxit1 times. In the present version, the default values for these two parameters are

maxit1 = 10 and maxit2 = 5 Therefore, the maximum number of inner iterations allowed is

maxit1 ×maxit2 = 50.

The inner loop stopping criteria are either

rc = rcond(XTX) ≤ max(10× tol2t , 10−15) or rc/rcp > 0.99, (5.4)

where tolt is the current tolerance (in a continuation sequence) and rcp is the previously

computed rcond(XTX). The notation rcond(XTX) is the reciprocal of the 1-norm condition

number of XTX. We use the dgecon subroutine in LAPACK to estimate this condition number,

which we find to be relatively cheap. The first condition in (5.4) indicates that X is about to lose

(or have just lost) rank numerically, which implies that we achieve the goal of eliminating the

unwanted eigenspace numerically. However, it is probable that a part of the desired eigenspace

is also sacrificed, especially when there are clusters among the desired eigenvalues. Fortunately,

this problem can be corrected, at a cost, in later iterations after deflation. On the other

hand, the second condition is used to deal with the situation where the conditioning of X does

not deteriorate, which occurs from time to time in later iterations when there exists little or

practically no decay in the relevant eigenvalues.

Deflation (Line 18, 22 and 30). Since Ritz pairs normally have uneven convergence rates,

a procedure of detecting and setting aside Ritz pairs that have “converged” is called deflation

or locking, which is regularly used in eigensolvers because it not only reduces the problem size

but also facilitates the convergence of the remaining pairs. In our algorithm, a Ritz pair (xi, µi)

is considered to have “converged” with respect to a tolerance tolt if its residual (see (5.2) for

definition) satisfies

resi ≤ max(10−14, tol2t ). (5.5)

After each ARR projection, we collect the converged Ritz vectors into a matrix Qc, and start

the next iteration from those Ritz vectors “not yet converged”, which we continue to call X.

Obviously, whenever Qc is nonempty X is orthogonal to Qc. Each time we check the stopping

rule in the inner loop, we also perform a projection X = X −Qc(Q
T
c X) to ensure that X stays
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orthogonal to Qc. In addition, the next ARR projection will also be performed in the orthogonal

complement of R(Qc). That is, we apply an ARR projection to the matrix Y −Qc(Q
T
c Y ) for

Y = [X AX · · · ApX]. At the end, we always collect and keep k + q leading Ritz pairs from

both the “converged” and the “not yet converged” sets.

Augmentation blocks (Line 32). The default value for the number of augmentation blocks

is p = 1, but this value may be adjusted after each ARR projection. We increase p by one when

we find that the relevant Ritz values show a small decay and at the same time the latest decrease

in residuals is not particularly impressive. Specifically, we set p = p+ 1 if

µk+q

µk
> 0.95 and

maxres

maxresp
> 0.1, (5.6)

where maxresp is the maximum relative residual norm at the previous iteration. The values 0.95

and 0.1 are set after some limited experimentation and by no means optimal. For k relatively

large, since the memory demand grows significantly as p increases, we also limit the maximum

value of p to pmax = 3.

Polynomial degree (Line 33). Under normal conditions, the higher degree is used in a

polynomial accelerator, the fewer iterations will be required for convergence, but at a higher

cost per iteration. A good balance is needed. Let d and dmax be the initial and the largest

polynomial degrees, respectively. We use the default values d = 3 and dmax = 15. Let ρd(t)

be the polynomial function defined in (4.4). After each ARR step, we adjust the degree based

on estimated spectral information of ρd(A) computable using the current Ritz values. We

know that the convergence rate of the inner solvers would be satisfactory if the eigenvalue ratio

ρd(λk+q)/ρd(λk) is small. Based on this consideration, we calculate

d̂ = min
d≥3

{
d ∈ Z :

ρd(µ∗k+q)

ρd(µ∗k)
< 0.9

}
, (5.7)

then apply the cap dmax by setting

d = min(d̂, dmax) (5.8)

where µ∗k and µ∗k+q are a pair of Ritz values corresponding to the iteration with the smallest

residual “maxres” defined in (5.1) (therefore the most accurate so far). The value of 0.9 is of

course adjustable.

6. Numerical Results

In this section, we evaluate the performance of arrabit on a set of sixteen sparse matrices

and test the algorithm on a single computing node (2 processors) to determine how it performs

in comparison to established solvers. We have implemented our arrabit algorithm, as is

described by the pseudocode Algorithm 5.1, in C. For brevity, the two variants, corresponding

to the two choices of inner solvers, will be called mpm and gn, respectively.

We test two levels of accuracy in the sequential experiments : tol = 10−6 or tol = 10−12.

By our stopping rule, upon successful termination the largest eigenpair residual will not exceed

10−5 or 10−11, respectively. Since our algorithm checks the termination rule only after each

ARR call, it often returns solutions of higher accuracies than what is prescribed by the tol

value.
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6.1. Solvers, Platform and Test Matrices

Since it is impractical to carry out numerical experiments with a large number of solvers,

we have carefully chosen two high-quality packages to compare with our arrabit code. One

package is arpack1) [15], which is behind the Matlab built-in iterative eigensolver eigs, and

will naturally serve as the benchmark solver since it is robust and has a long history in the

eigenvalue computation field. Another is the Scalable Library for Eigenvalue Problem Compu-

tations [8, 21] (slepc, verrsion 3.5.4)2) , which implements multiple methods based on Krylov

subspace. arpack is written in Fortran and it can be accessed from C without much ef-

fort. slepc is written in C and can be called directly. In our experiments, all parameters in

arpack and slepc are set to their default values, and each solver terminates with its own stop-

ping rules using either tol = 10−5 or tol = 10−11. Besides, we choose the Krylov Schur solver [7]

in slepc, which is the default option and also the fastest. The threaded version Intel Math

Kernel Library (MKL) is used as the external dependency for BLAS/LAPACK/SpMV/block

SPMV subroutines for all three solvers, which implies that we utilize the parallel codes as possi-

ble as we could. Consequently, no explicit code parallelization is performed outside Intel MKL.

We have also examined a few other solvers as potential candidates but decided not to

use them in this paper, including but not limited to the filtered Lanczos algorithm3) [6], the

Chebyshev-Davidson algorithm4) [34], the Block Locally Optimal Preconditioned Eigenvalue

Xolvers (BLOPEX 5) ) [9] and the feast algorithm [20, 32]. The reason of not using feast is

that it is a package designed to compute all eigenvalues (and their eigenvectors) in an interval

and its performance is greatly affected by the quality of the estimation of this interval and the

efficiency of solving the linear systems of equations involved in applying the rational filter. For

the other solvers, our initial tests indicated that their overall performance could not measure

up with that of the commercial-grade software packages arpack and slepc on a number of test

problems. This fact may be more of a reflection on the current status of software development

for these solvers than on the merits of the algorithms behind.

Our numerical experiments are performed on a single computing node of Edison6) , a Cray

XC30 supercomputer maintained at the National Energy Research Scientific Computer Center

(NERSC) in Berkeley. The node consists of two twelve-core Intel “Ivy Bridge” processors at

2.4 GHz with a total of 64 GB shared memory. Each core has its own L1 and L2 caches of 64

KB and 256 KB, respectively; A 30-MB L3 cache shared between 12 cores on the “Ivy Bridge”

processor. We generate C standalone executable programs and submit them as batch jobs to

Edison. The reported runtimes are wall-clock times.

Our test matrices are selected from the University of Florida Sparse Matrix Collection7) .

For each matrix, we compute both k eigenpairs corresponding to k largest eigenvalues and

those corresponding to k smallest eigenvalues. Many of the selected matrices are produced by

PARSEC [11], a real space density functional theory (DFT) based code for electronic structure

calculation in which the Hamiltonian is discretized by a finite difference method. We do not

take into account any background information for these matrices; instead, we simply treat them

algebraically as matrices.

1) See http://www.caam.rice.edu/software/ARPACK/
2) Downloadable from http://slepc.upv.es/download
3) See http://www-users.cs.umn.edu/ saad/software/filtlan
4) See http://faculty.smu.edu/yzhou/code.htm
5) Downloadable from http://code.google.com/p/blopex
6) See http://www.nersc.gov/users/computational-systems/edison/
7) See http://www.cise.ufl.edu/research/sparse/matrices



Block Algorithms with Augmented Rayleigh-Ritz Projections for Eigenpair Computation 903

Table 6.1 lists, for each matrix A, the dimensionality n, the number of nonzeros nnz(A) and

the density of A, i.e., the ratio (nnz(A)/n2)100%. The number of eigenpairs to be computed

is set either to 1% of n rounded to the hundreds place or to k = 1000 whichever is smaller.

We mention that the spectral distributions of the test matrices can behave quite differently

from matrix to matrix. Even for the same matrix, the spectrum of a matrix can change

behavior drastically from region to region. Most notably, computing k smallest eigenpairs of

many matrices in this set turns out to be more difficult than computing k largest ones. The

largest matrix size for the sequential test is more than a quarter of million. Relative to the

computing resources in use, we consider these selected matrices to be fairly large scale. Overall,

we consider this test set reasonably diverse and representative, fully aware that there always

exist instances out there that are more challenging to one solver or another.

Table 6.1: Information of Test Matrices.

matrix name n k nnz(A) density of A

Andrews 60000 600 760154 0.021%

C60 17576 176 407204 0.132%

cfd1 70656 707 1825580 0.037%

finance 74752 748 596992 0.011%

Ga10As10H30 113081 1000 6115633 0.048%

Ga3As3H12 61349 613 5970947 0.159%

shallow water1s 81920 819 327680 0.005%

Si10H16 17077 171 875923 0.300%

Si5H12 19896 199 738598 0.187%

SiO 33401 334 1317655 0.118%

wathen100 30401 304 471601 0.051%

Ge87H76 112985 1000 7892195 0.062%

Ge99H100 112985 1000 8451395 0.066%

Si41Ge41H72 185639 1000 15011265 0.044%

Si87H76 240369 1000 10661631 0.018%

Ga41As41H72 268096 1000 18488476 0.026%

6.2. Comparison between RR and ARR

We first evaluate the performance difference between ARR and RR for both mpm and gn.

Table 6.2 gives results for computing both k largest and smallest eigenpairs on the first six

matrices in Table 6.1 to the accuracy of tol = 10−12. We note that RR and ARR correspond to

p = 0 and p > 0, respectively, in Algorithm 5.1. In order to differentiate the effect of changing

p from that of changing the polynomial degree, we also test a variant of Algorithm 5.1 with

a fixed polynomial degree at d = 8 (by skipping line 33). In Table 6.2, “maxres” denotes the

maximum relative residual norm in (5.1), “time” is the wall-clock time measured in seconds,

“RR” is the total number of the outer iterations, i.e., the total number of the RR or ARR calls

made (excluding the one called in preprocessing for estimating λk+q), and “p” and “d” are the

number of augmentation blocks and the polynomial degree, respectively, used at the final outer

iteration. In addition, on the matrices cfd1 and finance we plot the (outer) iteration history of

maxres in Figures 6.1 and 6.2 for computing k largest and smallest eigenpairs, respectively.

The following observations can be drawn from the table and figures.
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• The performances of mpm and gn are similar. For both of them, ARR can accelerate

the convergence, reduce the number of outer iterations needed, and improve the accuracy,

often to a great extent.

• The scheme of adaptive polynomial degree generally works better than a fixed polynomial

degree. A more detailed look at the effect of polynomial degrees is presented in Section 6.3.

• The default value p = 1 for the number of augmentation blocks in ARR is generally kept

unchanged (recall that it can be increased by the algorithm).

• The total number of ARR called is mostly very small, especially in the cases where the

adaptive polynomial degree scheme is used and the k largest eigenpairs are computed

(which tend to be easier than the k smallest ones). We observe from Figure 6.1 that in

several cases a single ARR is sufficient to reach the accuracy of tol=1e-6 (even of tol=1e-10

in one case).

Table 6.2: Comparison results between RR and ARR with tol=1e-12.

mpm with RR mpm with ARR gn with RR gn with ARR

matrix maxres time RR p/d maxres time RR p/d maxres time RR p/d maxres time RR p/d

computing k largest eigpairs by fix deg = 8

Andrew. 9.2e-13 113 4 0/8 8.7e-13 47 3 1/8 7.1e-12 89 6 0/8 9.7e-13 53 2 1/8

C60 3.6e-12 17 14 0/8 4.1e-12 6 3 1/8 9.4e-12 18 18 0/8 7.6e-13 6 4 1/8

cfd1 1.0e-12 162 4 0/8 9.9e-13 92 4 1/8 9.9e-13 112 4 0/8 9.7e-13 79 2 1/8

financ. 8.9e-13 58 3 0/8 1.3e-12 54 2 1/8 2.5e-12 69 3 0/8 1.0e-12 49 2 1/8

Ga10As. 2.9e-10 800 10 0/8 3.6e-12 636 7 3/8 7.7e-09 589 16 0/8 4.3e-11 474 6 3/8

Ga3As3. 9.9e-13 251 6 0/8 9.8e-13 165 5 1/8 2.1e-07 288 30 0/8 9.7e-13 112 4 1/8

computing k largest eigpairs with adaptive polynomial degree

Andrew. 9.2e-11 133 9 0/5 7.2e-12 49 4 1/5 2.6e-12 156 17 0/5 5.9e-12 55 3 1/5

C60 4.9e-12 18 10 0/8 8.2e-12 6 3 1/8 9.1e-12 21 22 0/8 9.7e-13 6 4 1/8

cfd1 6.4e-12 147 6 0/3 6.9e-12 79 5 2/3 7.4e-12 213 18 0/3 9.6e-12 86 4 1/3

financ. 1.0e-12 112 5 0/3 1.0e-12 34 3 2/3 2.6e-12 192 16 0/3 2.3e-12 57 2 1/3

Ga10As. 8.2e-12 669 6 0/5 5.0e-12 269 5 1/5 8.5e-12 860 19 0/5 1.0e-12 353 4 1/5

Ga3As3. 8.4e-12 283 9 0/5 1.1e-12 135 5 1/5 5.4e-12 312 19 0/5 1.3e-12 118 4 1/4

computing k smallest eigpairs by fix deg = 8

Andrew. 4.2e-12 179 6 0/8 3.6e-13 86 5 1/8 1.0e-11 218 19 0/8 8.7e-12 84 4 1/8

C60 3.0e-12 12 6 0/8 9.1e-13 10 6 1/8 2.7e-12 15 16 0/8 1.1e-12 6 4 1/8

cfd1 3.8e-05 1412 30 0/8 9.8e-12 809 21 3/8 1.2e-04 1284 30 0/8 6.6e-12 813 24 3/8

financ. 3.7e-07 584 30 0/8 7.0e-12 277 10 3/8 8.1e-06 689 30 0/8 1.3e-12 343 12 3/8

Ga10As. 2.1e-05 1508 9 0/8 2.1e-12 935 11 3/8 2.6e-03 2431 11 0/8 6.4e-06 936 5 3/8

Ga3As3. 7.4e-12 543 8 0/8 9.9e-12 229 4 1/8 4.9e-12 523 22 0/8 9.7e-13 183 4 1/8

computing k smallest eigpairs with adaptive polynomial degree

Andrew. 5.0e-12 203 8 0/8 6.9e-12 84 4 1/8 5.0e-12 245 21 0/8 1.0e-12 81 4 1/8

C60 4.7e-12 13 9 0/7 3.5e-12 6 8 1/6 8.1e-12 21 19 0/7 5.0e-12 6 6 1/6

cfd1 1.7e-08 1302 30 0/15 4.0e-12 391 6 2/15 8.1e-07 1207 30 0/15 7.6e-12 565 16 3/15

financ. 4.6e-12 492 12 0/15 8.9e-12 191 6 1/15 4.9e-12 572 26 0/15 1.5e-12 238 7 1/15

Ga10As. 3.8e-06 1992 12 0/8 9.3e-12 713 5 1/8 5.5e-11 2281 29 0/8 1.8e-12 628 6 1/8

Ga3As3. 1.7e-12 619 9 0/8 1.4e-12 259 4 1/8 4.1e-12 550 23 0/8 1.1e-12 214 6 1/8
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Fig. 6.1. ARR vs RR: Iteration history of maxres for computing k largest eigenpairs.

5 10 15 20 25 30
10−12

10−9

10−6

10−3

number of RRs

m
a
x
re

s

MPM-RR deg=8
MPM-ARR deg=8
GN-RR deg=8
GN-ARR deg=8
MPM-RR adap. deg
MPM-ARR adap. deg
GN-RR adap. deg
GN-ARR adap. deg

(a) matrix: cfd1

5 10 15 20 25 30

10−12

10−9

10−6

10−3

100

number of RRs

m
ax

re
s

MPM-RR deg=8
MPM-ARR deg=8
GN-RR deg=8
GN-ARR deg=8
MPM-RR adap. deg
MPM-ARR adap. deg
GN-RR adap. deg
GN-ARR adap. deg

(b) matrix: finance

Fig. 6.2. ARR vs RR: Iteration history of maxres for computing k smallest eigenpairs.

• In some rare cases (e.g. MPM-ARR Adap. deg.), “maxres” may increase occasionally but

the trend is often corrected in the next outer iteration. The main reason of the increase

is that a few eigenvectors with large residual may appear after ARR. However, other

eigenvectors are very likely to converge better. This phenomenon is usually caused by a

rank-deficient X (note that X may have lost rank before RR), which indicates that a part

of the desired eigen-space is lost.

6.3. Comparison on Polynomials

We next examine the effect of polynomial degrees on the convergence behavior of mpm and

gn, again on the first six matrices in Table 6.1. We compare two schemes: the first is to use

a fix degree among {4, 8, 15} and skip line 33 of Algorithm 5.1, and the second is the adaptive

scheme in Algorithm 5.1. The computational results are summarized in Table 6.3. We also

plot the iteration history of maxres, for computing both k largest and smallest eigenpairs on

the matrices cfd1 and finance in Figures 6.3 and 6.4, respectively. The numerical results lead

to the following observations:

• Again the performances of mpm and gn are similar, and the default value p = 1 for

augmentation is mostly unchanged.
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• In general, the number of outer iterations is decreased as the polynomial degree is in-

creased, but the wall-clock time is not necessarily reduced because of the extra cost in

using higher-degree polynomials. Overall, our adaptive strategy seems to have achieved

a reasonable balance.

• With fixed polynomial degrees, in a small number of test case mpm and gn fail to reach

the required accuracy.

Table 6.3: Comparison results of different polynomial degrees on tol=1e-12.

deg=4 deg=8 deg=15 adaptive deg

matrix maxres time RR p/d maxres time RR p/d maxres time RR p/d maxres time RR p/d

MPM for k largest eigpairs

Andrew. 1.2e-12 44 4 1/4 8.7e-13 47 3 1/8 9.5e-13 126 5 1/15 7.2e-12 49 4 1/5

C60 8.0e-12 5 6 3/4 4.1e-12 6 3 1/8 7.4e-12 8 3 1/15 8.2e-12 6 3 1/8

cfd1 1.0e-12 69 4 1/4 9.9e-13 92 4 1/8 9.7e-13 162 5 1/15 6.9e-12 79 5 2/3

financ. 9.7e-13 40 3 1/4 1.3e-12 54 2 1/8 1.9e-12 85 4 1/15 1.0e-12 34 3 2/3

Ga10As. 7.6e-12 284 4 1/4 3.6e-12 636 7 3/8 2.8e-01 1683 4 1/15 5.0e-12 269 5 1/5

Ga3As3. 1.3e-12 109 4 1/4 9.8e-13 165 5 1/8 2.8e-01 512 4 1/15 1.1e-12 135 5 1/5

GN for k largest eigpairs

Andrew. 1.5e-12 66 5 1/4 9.7e-13 53 2 1/8 8.7e-13 54 2 1/15 5.9e-12 55 3 1/5

C60 2.4e-13 10 11 3/4 7.6e-13 6 4 1/8 9.9e-13 4 2 1/15 9.7e-13 6 4 1/8

cfd1 9.7e-13 67 3 1/4 9.7e-13 79 2 1/8 8.9e-12 73 1 1/15 9.6e-12 86 4 1/3

financ. 1.0e-12 51 3 2/4 1.0e-12 49 2 1/8 1.7e-13 52 1 1/15 2.3e-12 57 2 1/3

Ga10As. 2.7e-11 823 18 3/4 4.3e-11 474 6 3/8 0.0e+00 2578 30 1/15 1.0e-12 353 4 1/5

Ga3As3. 1.1e-12 151 7 2/4 9.7e-13 112 4 1/8 1.1e-01 1123 30 1/15 1.3e-12 118 4 1/4

MPM for k smallest eigpairs

Andrew. 7.2e-13 107 9 3/4 3.6e-13 86 5 1/8 9.4e-13 109 4 1/15 6.9e-12 84 4 1/8

C60 7.1e-12 6 8 3/4 9.1e-13 10 6 1/8 8.3e-13 7 5 1/15 3.5e-12 6 8 1/6

cfd1 4.5e-07 876 30 3/4 9.8e-12 809 21 3/8 5.3e-12 416 9 3/15 4.0e-12 391 6 2/15

financ. 2.9e-12 573 18 3/4 7.0e-12 277 10 3/8 1.2e-12 158 6 1/15 8.9e-12 191 6 1/15

Ga10As. 2.1e-12 1028 10 3/4 2.1e-12 935 11 3/8 6.2e-10 1664 8 2/15 9.3e-12 713 5 1/8

Ga3As3. 1.8e-12 312 9 3/4 9.9e-12 229 4 1/8 9.7e-13 416 4 1/15 1.4e-12 259 4 1/8

GN for k smallest eigpairs

Andrew. 1.2e-12 153 10 3/4 8.7e-12 84 4 1/8 9.7e-13 71 2 1/15 1.0e-12 81 4 1/8

C60 7.6e-12 8 9 3/4 1.1e-12 6 4 1/8 4.4e-13 10 8 3/15 5.0e-12 6 6 1/6

cfd1 2.2e-06 1085 30 3/4 6.6e-12 813 24 3/8 4.1e-12 443 11 3/15 7.6e-12 565 16 3/15

financ. 4.3e-08 646 24 3/4 1.3e-12 343 12 3/8 9.8e-12 182 6 1/15 1.5e-12 238 7 1/15

Ga10As. 7.1e-12 1162 13 3/4 6.4e-06 936 5 3/8 1.3e-12 515 3 1/15 1.8e-12 628 6 1/8

Ga3As3. 4.9e-12 317 10 3/4 9.7e-13 183 4 1/8 9.9e-13 210 3 1/15 1.1e-12 214 6 1/8

Finally, we compare the performance of Algorithm 5.1 either using Chebyshev interpolants

defined in (4.3) or the Chebyshev polynomials defined in (2.7) on the first six matrices in Table

6.1. The comparison results are given in Table 6.4. Even though both types of polynomials

work well on these six problems, some performance differences are still observable in favor of

our polynomials.
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Fig. 6.3. ARR: Iteration history of maxres for computing k largest eigenpairs using different polynomial

degrees.
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Fig. 6.4. ARR: Iteration history of maxres for computing k smallest eigenpairs using different polyno-

mial degrees.

6.4. Comparison with ARPACK and SLEPc

We now compare mpm and gn with arpack and slepc for computing both k largest and

smallest eigenpairs for the sixteen test matrices presented in Table 6.1 (which also lists the k

values). Computational results are summarized in Tables 6.5 and 6.6, where “SpMV” denotes

the total number of SpMVs, counting each operation AX ∈ Rn×k as k SpMVs.

In addition, the speedup with respect to the benchmark time of arpack is measured by the

quantity log2(timearpack/time), as shown in Figures 6.5 and 6.6 where a positive bar represents

a “speedup” and a negative one a “slowdown”. In these two figures, matrices are ordered from

left to right in ascending order of the solution time used by arpack; that is, when moving from

the left towards the right, problems become progressively more and more time-consuming for

arpack to solve. A quick glance at the figures tells us that mpm and gn provide clear speedups

over arpack on most problems, especially on the more time-consuming problems towards the
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Table 6.4: Comparison results on Chebyshev interpolants in (4.3) and Chebyshev polynomials in (2.7).

mpm mpm, Cheb. poly. gn gn, Cheb. poly.

matrix maxres time RR p/d maxres time RR p/d maxres time RR p/d maxres time RR p/d

computing k largest eigpairs, tol=1e-6

Andrew. 8.8e-08 38 2 1/5 1.0e-06 31 2 1/3 4.3e-08 44 2 1/5 1.8e-07 43 2 1/3

C60 1.6e-08 6 2 1/8 2.2e-08 3 2 1/5 1.3e-06 3 2 1/7 2.6e-06 4 3 1/5

cfd1 6.2e-06 36 1 1/3 9.2e-08 47 2 1/2 4.9e-08 73 2 1/3 1.7e-07 43 1 1/3

financ. 3.7e-11 21 1 1/3 6.3e-07 18 1 1/3 7.5e-09 31 1 1/3 2.2e-07 32 1 1/3

Ga10As. 6.6e-08 152 2 1/5 9.1e-07 197 3 1/3 3.3e-06 228 2 1/5 3.1e-07 299 3 1/3

Ga3As3. 5.8e-08 62 2 1/5 9.7e-08 69 3 1/2 1.4e-06 77 2 1/5 6.9e-06 70 2 1/3

computing k largest eigpairs, tol=1e-12

Andrew. 7.2e-12 49 4 1/5 5.9e-10 65 7 3/3 5.9e-12 55 3 1/5 3.1e-12 82 7 3/3

C60 8.2e-12 6 3 1/8 1.1e-12 5 5 2/5 9.7e-13 6 4 1/8 4.8e-12 10 13 3/2

cfd1 6.9e-12 79 5 2/3 3.9e-12 86 7 2/2 9.6e-12 86 4 1/3 9.4e-12 88 4 2/2

financ. 1.0e-12 34 3 2/3 3.7e-12 37 3 1/2 2.3e-12 57 2 1/3 6.1e-12 76 4 2/2

Ga10As. 5.0e-12 269 5 1/5 3.4e-12 439 10 3/3 1.0e-12 353 4 1/5 1.4e-11 777 15 3/3

Ga3As3. 1.1e-12 135 5 1/5 9.7e-12 131 8 3/2 1.3e-12 118 4 1/4 2.7e-12 151 9 2/3

computing k smallest eigpairs, tol=1e-6

Andrew. 5.2e-07 54 2 1/8 1.1e-07 49 2 1/5 2.0e-06 55 2 1/8 2.4e-06 76 4 1/5

C60 3.5e-08 4 4 1/6 2.7e-06 4 3 1/4 2.1e-08 4 3 1/6 3.0e-07 5 5 2/4

cfd1 5.1e-07 234 2 1/15 1.7e-06 188 2 1/15 1.0e-05 249 5 2/15 4.5e-06 353 6 3/15

financ. 3.1e-06 106 2 1/15 6.9e-06 92 2 1/11 6.0e-06 114 3 1/15 9.6e-06 110 3 1/11

Ga10As. 3.0e-06 370 2 1/8 7.3e-07 417 3 1/5 1.1e-07 403 3 1/8 2.9e-06 637 4 1/5

Ga3As3. 1.4e-07 175 2 1/8 3.7e-07 155 2 1/5 4.7e-08 145 3 1/8 4.6e-06 194 5 2/5

computing k smallest eigpairs, tol=1e-12

Andrew. 6.9e-12 84 4 1/8 5.6e-12 94 9 3/5 1.0e-12 81 4 1/8 4.5e-12 138 11 3/5

C60 3.5e-12 6 8 1/6 1.2e-12 8 10 3/4 5.0e-12 6 6 1/6 1.6e-12 9 12 3/4

cfd1 4.0e-12 391 6 2/15 6.3e-12 440 15 3/15 7.6e-12 565 16 3/15 9.3e-12 697 26 3/15

financ. 8.9e-12 191 6 1/15 5.8e-12 207 9 3/11 1.5e-12 238 7 1/15 3.5e-12 286 13 3/11

Ga10As. 9.3e-12 713 5 1/8 7.7e-12 850 9 3/2 1.8e-12 628 6 1/8 3.4e-06 714 7 1/2

Ga3As3. 1.4e-12 259 4 1/8 1.6e-12 320 9 3/5 1.1e-12 214 6 1/8 7.0e-10 397 30 3/2

right. For example, mpm and gn deliver a speedup of about 4 times on each of the seven

most time-consuming problems in Fig. 6.5(a), and a speedup of about 10 times on the most

time-consuming problem Ga41As41H72 in Fig. 6.6(a). On the other hand, slepc also provides

good acceleration over arpack. Its number of SpMV is at the same level as arpack. For small

matrices such as C60 and Si5H12, slepc is as fast as mpm and gn. On the other hand, for

larger matrices, it takes slepc about twice the time of mpm and gn to solve the problems.

The benchmark solver arpack usually, though not always, returns solutions more accurate

than what is requested by the tolerance value. In particular, for tol = 10−6 the accuracy of

arpack solutions often reach the order of O(10−12). This is due to the fact that arpack needs

to maintain a high working accuracy to ensure proper convergence.

As is observed previously, it is often more time-consuming for arpack, mpm and gn to

compute k smallest eigenpairs than k largest ones on many test matrices. By examining the
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Fig. 6.5. Speedup to arpack: log2(timearpack/time) on computing k largest eigenpairs.
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Fig. 6.6. Speedup to arpack: log2(timearpack/time) on computing k smallest eigenpairs.

spectra of the matrices such as cfd1 and finance, we believe that this phenomenon is attributable

to the property that these matrices tend to have a flatter end on the left end of their spectra.

With regard to the performance of mpm and gn, we make the following observations.

• mpm and gn both attain the required accuracy on all test problems, and they often return

smaller residual errors than what is required by tol. Generally speaking, the two variants

perform quite similarly in terms of both accuracy and timing.

• mpm and gn maintain an overall speed advantage over arpack, especially on those prob-

lems more time-consuming for arpack (towards the right end of Figures 6.5 and 6.6).

They are faster in spite of taking considerably more matrix-vector multiplications than

arpack, as can be seen from Tables 6.5 and 6.6, thanks to the benefits of relying on

high-concurrency operations on many-core computers.

• mpm and gn generally require a small number ARR calls, often only two or three when

computing k largest eigenpairs. In quite a number of cases (for example, on finance and

wathen100 for mpm and so on), only a single ARR projection is taken which is absolutely

optimal in order to extract approximate eigenpairs.

• The number of augmentation blocks used by mpm and gn is usually 1, and the final
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Table 6.5: Comparison results on computing k largest eigenpairs.

arpack slepc mpm gn

name maxres time SpMV maxres time SpMV maxres time SpMV RR/p/d maxres time SpMV RR/p/d

tol=1e-6

Andrew. 3.9e-08 217 3e+03 8.5e-06 118 5e+03 8.8e-08 38 8e+04 2/1/5 4.3e-08 44 7e+04 2/1/5

C60 3.6e-08 12 2e+03 6.9e-06 6 3e+03 1.6e-08 6 7e+04 2/1/8 1.3e-06 3 3e+04 2/1/7

cfd1 3.0e-14 291 3e+03 9.7e-06 125 5e+03 6.2e-06 36 3e+04 1/1/3 4.9e-08 73 6e+04 2/1/3

financ. 1.3e-14 269 3e+03 9.5e-06 163 5e+03 3.7e-11 21 3e+04 1/1/3 7.5e-09 31 3e+04 1/1/3

Ga10As. 5.7e-14 1554 8e+03 9.7e-06 779 1e+04 6.6e-08 152 1e+05 2/1/5 3.3e-06 228 1e+05 2/1/5

Ga3As3. 8.0e-07 310 5e+03 8.6e-06 167 6e+03 5.8e-08 62 7e+04 2/1/5 1.4e-06 77 6e+04 2/1/5

shallo. 7.7e-07 844 8e+03 9.9e-06 383 9e+03 7.8e-09 74 2e+05 2/1/7 4.8e-08 80 1e+05 2/1/7

Si10H1. 2.0e-09 8 2e+03 3.9e-06 5 2e+03 4.0e-10 6 4e+04 2/1/6 3.8e-08 4 3e+04 2/1/6

Si5H12 3.5e-11 10 2e+03 3.1e-06 6 2e+03 4.6e-10 6 4e+04 2/1/6 8.1e-09 5 3e+04 2/1/6

SiO 1.1e-10 69 3e+03 1.6e-06 53 4e+03 6.3e-09 14 6e+04 2/1/5 5.3e-08 19 6e+04 2/1/5

wathen. 2.1e-06 30 2e+03 7.6e-06 24 3e+03 9.5e-06 4 2e+04 1/1/3 1.7e-08 11 4e+04 2/1/5

Ge87H7. 3.7e-14 1544 8e+03 9.9e-06 758 1e+04 9.6e-10 275 2e+05 2/1/6 3.6e-08 236 1e+05 2/1/6

Ge99H1. 3.3e-14 1548 8e+03 9.8e-06 747 1e+04 6.2e-10 279 2e+05 2/1/6 2.5e-08 240 1e+05 2/1/6

Si41Ge. 1.7e-08 2612 9e+03 9.9e-06 1170 1e+04 1.2e-09 568 3e+05 2/1/7 2.1e-08 507 2e+05 2/1/7

Si87H7. 2.6e-11 3921 1e+04 9.4e-06 1987 1e+04 1.0e-09 631 3e+05 2/1/7 5.8e-08 517 2e+05 2/1/7

Ga41As. 1.1e-13 4106 1e+04 9.1e-06 1838 1e+04 1.1e-09 639 2e+05 3/1/5 2.0e-06 600 1e+05 2/1/6

name maxres time SpMV maxres time SpMV maxres time SpMV RR/p/d maxres time SpMV RR/p/d

tol=1e-12

Andrew. 2.8e-14 233 4e+03 8.4e-12 116 5e+03 7.2e-12 49 1e+05 4/1/5 5.9e-12 55 8e+04 3/1/5

C60 2.1e-14 12 3e+03 9.2e-12 6 3e+03 8.2e-12 6 7e+04 3/1/8 9.7e-13 6 5e+04 4/1/8

cfd1 2.4e-14 290 3e+03 9.9e-12 146 5e+03 6.9e-12 79 9e+04 5/2/3 9.6e-12 86 8e+04 4/1/3

financ. 2.0e-14 269 3e+03 9.0e-12 139 5e+03 1.0e-12 34 5e+04 3/2/3 2.3e-12 57 6e+04 2/1/3

Ga10As. 5.4e-14 1538 8e+03 8.9e-12 652 1e+04 5.0e-12 269 2e+05 5/1/5 1.0e-12 353 2e+05 4/1/5

Ga3As3. 8.0e-14 312 5e+03 9.6e-12 177 6e+03 1.1e-12 135 1e+05 5/1/5 1.3e-12 118 9e+04 4/1/4

shallo. 3.8e-14 883 8e+03 9.6e-12 404 1e+04 9.9e-13 129 3e+05 4/1/7 1.3e-12 112 1e+05 3/1/7

Si10H1. 2.3e-14 9 2e+03 8.2e-12 5 2e+03 1.5e-12 6 4e+04 3/1/6 9.9e-13 5 3e+04 3/1/6

Si5H12 1.1e-14 10 2e+03 8.5e-12 6 2e+03 9.6e-13 6 4e+04 3/1/6 1.7e-12 6 3e+04 3/1/6

SiO 1.8e-14 71 3e+03 6.5e-12 56 4e+03 9.2e-13 24 7e+04 4/1/5 9.9e-13 29 7e+04 4/1/5

wathen. 1.7e-14 33 2e+03 5.7e-12 25 3e+03 9.3e-13 10 4e+04 3/1/5 1.0e-12 13 4e+04 3/1/5

Ge87H7. 2.6e-13 1467 8e+03 9.4e-12 762 1e+04 2.3e-12 305 2e+05 3/1/6 9.5e-13 327 2e+05 3/1/6

Ge99H1. 4.0e-13 1476 8e+03 9.4e-12 733 1e+04 1.3e-12 322 2e+05 3/1/6 9.9e-13 340 2e+05 3/1/6

Si41Ge. 3.2e-14 2647 9e+03 9.5e-12 1380 1e+04 4.6e-12 644 2e+05 3/1/7 9.8e-13 629 2e+05 3/1/7

Si87H7. 4.1e-14 3649 1e+04 9.6e-12 1841 1e+04 8.2e-12 658 3e+05 3/1/7 1.0e-12 730 2e+05 3/1/7

Ga41As. 9.2e-13 3915 9e+03 7.1e-12 1812 1e+04 9.5e-13 712 2e+05 3/1/7 9.0e-13 984 2e+05 4/1/7

polynomial degree never reaches the maximum degree 15 except on cfd1, finance and

wathen100 when computing k smallest eigenpairs.

In Fig. 6.7, we plot runtimes of three categories: SpMV (i.e., AX), SU (lines 10 to 22 of

Algorithm 5.1) and ARR (lines 23 to 27 of Algorithm 5.1). In particular, SpMVs are called

in both SU and ARR, but overwhelmingly in the former. These are the major computational

components of mpm and gn. The runtime of each category is measured in the percentage of

wall-clock time spent in that category over the total wall-clock time. We can see, especially

from the time-consuming problems on the right, that (i) the time of SU dominates that of RR,

and (ii) the time of SpMVs, mostly done in batch of k+ q, dominates the entire computation in
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Table 6.6: Comparison results on computing k smallest eigenpairs.

arpack slepc mpm gn

name maxres time SpMV maxres time SpMV maxres time SpMV RR/p/d maxres time SpMV RR/p/d

tol=1e-6

Andrew. 5.1e-07 439 7e+03 9.2e-06 225 8e+03 5.2e-07 54 1e+05 2/1/8 2.0e-06 55 1e+05 2/1/8

C60 7.9e-08 9 2e+03 7.2e-07 5 2e+03 3.5e-08 4 4e+04 4/1/6 2.1e-08 4 3e+04 3/1/6

cfd1 1.9e-08 4267 6e+04 6.5e-08 1042 3e+04 5.1e-07 234 8e+05 2/1/15 1.0e-05 249 6e+05 5/2/15

financ. 2.4e-09 1719 2e+04 9.8e-06 812 2e+04 3.1e-06 106 4e+05 2/1/15 6.0e-06 114 3e+05 3/1/15

Ga10As. 2.3e-12 3101 2e+04 9.7e-06 1464 2e+04 3.0e-06 370 4e+05 2/1/8 1.1e-07 403 2e+05 3/1/8

Ga3As3. 5.4e-07 517 8e+03 9.6e-06 288 1e+04 1.4e-07 175 2e+05 2/1/8 4.7e-08 145 1e+05 3/1/8

shallo. 1.7e-13 1864 2e+04 9.8e-06 936 2e+04 6.8e-08 120 4e+05 2/1/13 2.0e-06 126 2e+05 3/2/8

Si10H1. 5.0e-10 14 3e+03 8.6e-06 8 3e+03 4.8e-07 6 6e+04 2/1/7 9.0e-06 5 3e+04 2/1/7

Si5H12 2.1e-06 16 3e+03 8.4e-06 11 3e+03 7.2e-08 8 7e+04 2/1/7 1.6e-06 5 3e+04 2/1/8

SiO 2.8e-09 117 5e+03 5.2e-06 85 6e+03 3.6e-07 27 1e+05 2/1/7 5.7e-07 22 7e+04 2/1/8

wathen. 2.4e-06 118 8e+03 9.9e-06 100 8e+03 7.6e-08 28 2e+05 3/1/15 6.4e-06 26 1e+05 3/1/15

Ge87H7. 2.7e-06 2324 1e+04 6.3e-06 1200 2e+04 1.0e-06 326 3e+05 2/1/9 3.8e-10 419 3e+05 3/1/9

Ge99H1. 3.8e-10 2299 1e+04 9.9e-06 1190 2e+04 8.0e-07 341 3e+05 2/1/9 2.8e-10 428 3e+05 3/1/9

Si41Ge. 8.6e-10 4303 1e+04 9.9e-06 1886 2e+04 3.2e-06 755 4e+05 2/1/11 8.5e-10 833 3e+05 3/1/11

Si87H7. 3.2e-06 5800 2e+04 7.8e-06 3012 2e+04 5.3e-09 821 4e+05 3/1/11 1.6e-08 849 3e+05 3/1/11

Ga41As. 3.4e-06 34060 8e+04 7.4e-06 4800 3e+04 2.3e-06 2154 7e+05 3/1/11 1.3e-08 1939 5e+05 4/1/11

name maxres time SpMV maxres time SpMV maxres time SpMV RR/p/d maxres time SpMV RR/p/d

tol=1e-12

Andrew. 1.2e-13 453 7e+03 7.0e-12 323 1e+04 6.9e-12 84 2e+05 4/1/8 1.0e-12 81 2e+05 4/1/8

C60 7.6e-14 9 2e+03 1.5e-12 5 2e+03 3.5e-12 6 7e+04 8/1/6 5.0e-12 6 4e+04 6/1/6

cfd1 3.0e-14 4483 6e+04 6.6e-14 994 3e+04 4.0e-12 391 1e+06 6/2/15 7.6e-12 565 1e+06 16/3/15

financ. 3.7e-13 1705 2e+04 9.9e-12 793 2e+04 8.9e-12 191 7e+05 6/1/15 1.5e-12 238 6e+05 7/1/15

Ga10As. 2.4e-12 3086 2e+04 8.0e-12 1327 2e+04 9.3e-12 713 7e+05 5/1/8 1.8e-12 628 4e+05 6/1/8

Ga3As3. 1.1e-12 526 8e+03 7.7e-12 299 1e+04 1.4e-12 259 3e+05 4/1/8 1.1e-12 214 2e+05 6/1/8

shallo. 1.9e-13 1821 2e+04 9.4e-12 1076 2e+04 1.8e-12 245 7e+05 6/2/14 9.8e-13 208 4e+05 5/1/14

Si10H1. 7.8e-14 14 3e+03 7.0e-12 8 3e+03 8.6e-13 11 7e+04 5/1/7 1.9e-12 9 5e+04 5/1/7

Si5H12 1.3e-13 16 3e+03 7.7e-12 11 3e+03 2.8e-12 12 8e+04 5/1/7 1.1e-12 9 5e+04 4/1/7

SiO 2.2e-13 118 5e+03 8.9e-12 87 6e+03 2.7e-12 42 2e+05 5/1/7 4.5e-13 42 1e+05 5/1/7

wathen. 8.2e-13 119 8e+03 8.7e-12 99 9e+03 8.0e-12 36 3e+05 6/2/15 7.2e-12 41 2e+05 7/2/15

Ge87H7. 1.8e-13 2420 1e+04 6.4e-12 1273 2e+04 4.3e-12 671 5e+05 4/1/9 9.9e-13 547 3e+05 5/1/9

Ge99H1. 1.7e-13 2334 1e+04 5.5e-12 1256 2e+04 2.4e-12 681 5e+05 4/1/9 9.7e-13 553 3e+05 5/1/9

Si41Ge. 2.8e-13 4288 2e+04 5.4e-12 2133 2e+04 1.4e-12 1415 6e+05 5/1/11 2.8e-12 1097 4e+05 5/1/11

Si87H7. 3.0e-13 6094 2e+04 6.1e-12 2914 2e+04 2.4e-12 1462 7e+05 6/1/11 7.4e-12 1155 4e+05 5/1/11

Ga41As. 5.0e-12 33694 8e+04 8.7e-12 4778 3e+04 3.3e-12 3845 1e+06 7/3/11 1.2e-12 2292 6e+05 6/1/11

almost all cases. These trends are much more pronounced (a) for mpm than for gn (recall that

gn requires to solve k × k linear systems); and (b) for computing k smallest eigenpairs than

for computing k largest ones (recall that the former is generally more difficult). These runtime

profiles are favorable to parallel scalability since AX operations possess high concurrency for

relatively large k.
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(a) tol = 10−6, mpm, k largest eigenpairs
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(b) tol = 10−12, mpm, k largest eigenpairs
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(c) tol = 10−6, gn, k largest eigenpairs
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(d) tol = 10−12, gn, k largest eigenpairs
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(e) tol = 10−6, mpm, k smallest eigenpairs
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(f) tol = 10−12, mpm, k smallest eigenpairs
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(g) tol = 10−6, gn, k smallest eigenpairs
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Fig. 6.7. A comparison of timing profile among SpMV, SU and ARR.
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7. Concluding Remarks

The goal of this paper is to construct a block algorithm of high scalability suitable for

computing relatively large numbers of exterior eigenpairs for really large-scale matrices on

modern computers. Our strategy is simple: to reduce as much as possible the number of RR

calls (Rayleigh-Ritz projections) or, in other words, to shift as much as possible computation

burdens to SU (subspace update) steps. This strategy is based on the following considerations.

RR steps perform small dense eigenvalue decompositions, as well as basis orthogonalizations,

thus possessing limited concurrency. On the other hand, SU steps can be accomplished by block

operations like A times X, thus more scalable.

To reach for maximal concurrency, we choose the power iteration for subspace updating

(and also include a Gauss-Newton method to test the versatility of our construction). It is

well known that the convergence of the power method can be intolerably slow, preventing it

from being used to drive general-purpose eigensolvers. Therefore, the key to success reduces to

whether we could accelerate the power method sufficiently and reliably to an extent that it can

compete in speed with Krylov subspace methods in general. In this work, such an acceleration

is accomplished mainly through the use of three techniques: (1) an augmented Rayleigh-Ritz

(ARR) procedure that can provably accelerate convergence under mild conditions; (2) a set

of easy-to-control, low-degree polynomial accelerators; and (3) a bold stopping rule for SU

steps that essentially allows an iterate matrix to become numerically rank-deficient. Of course,

the success of our construction also depends greatly on a set of carefully integrated algorithmic

details. The resulting algorithm is named arrabit, which uses A only in matrix multiplications.

Numerical experiments on sixteen test matrices from the UF Sparse Matrix Collection show,

convincingly in our view, that the accuracy and efficiency of arrabit is indeed competitive to

start-of-the-art eigensolvers. Exceeding our expectations, arrabit can already provide multi-

fold speedups over the benchmark solver arpack, without explicit code parallelization or run-

ning on massively parallel machines, on difficult problems. In particular, it often only needs

two or three, sometimes just one, ARR projections to reach a good solution accuracy.

There are a number of future directions worth pursuing from this point on. For one thing,

the robustness and efficiency of arrabit can be further enhanced by refining its construction

and tuning its parameters. Software development and an evaluation of its parallel scalability

are certainly important. The prospective of extending the algorithm to non-Hermitian matrices

and the generalized eigenvalue problem looks promising. Overall, we feel that the present work

has laid a solid foundation for these and other future activities.
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