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Abstract. Korteweg-de Vries equation is a nonlinear evolutionary partial differential
equation that is of third order in space. For the approximation to this equation with
the initial and boundary value conditions using the finite difference method, the
difficulty is how to construct matched finite difference schemes at all the inner grid
points. In this paper, two finite difference schemes are constructed for the problem.
The accuracy is second-order in time and first-order in space. The first scheme is a
two-level nonlinear implicit finite difference scheme and the second one is a three-
level linearized finite difference scheme. The Browder fixed point theorem is used
to prove the existence of the nonlinear implicit finite difference scheme. The con-
servation, boundedness, stability, convergence of these schemes are discussed and
analyzed by the energy method together with other techniques. The two-level non-
linear finite difference scheme is proved to be unconditionally convergent and the
three-level linearized one is proved to be conditionally convergent. Some numerical
examples illustrate the efficiency of the proposed finite difference schemes.
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1. Introduction

In recent years, with most complex phenomenon appearing, nonlinear evolutionary
equations [7, 23, 24] have become more and more important tool to describe them.
Especially, Korteweg-de Vries (KdV) type equation has been widely applied in physics,
mathematics, biophysics, which originated from modeling the shallow water surface
height of solitary dispersive waves. In 1877, Boussinesq firstly discovered the KdV
equation. After about twenty years, Korteweg and his PhD student Gustav de Vries
mathematically reintroduced the KdV equation [5,14].
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The simplest form of KdV equation is as follows:

ut + εuux + µuxxx = 0,

where ε, µ are given constants.
There are many works on KdV equation. Kamruzzaman used the Kudryashov

method to find the exact travelling wave solutions transmutable to the solitary wave
solutions of the ubiquitous unsteady Korteweg-de Vries equation and applied the
exp(−φ(ξ))-expansion method to construct the exact travelling wave solutions for non-
linear evolution equations [12, 13]. About the numerical approximation of the one-
dimensional simplified KdV equation, many researchers have obtained abundant results
by finite difference method, spectral method and finite volume method. For example,
Vliegenthart discussed some explicit finite difference schemes for solving the initial-
value problem of KdV equation and presented dissipative difference schemes which had
the effect of eliminating high wave number components. However, these schemes were
conditionally stable [22]. The authors of [15] proposed a Legendre pseudo-spectral
method for the KdV equation with nonperiodic boundary condition and analyzed the
convergence for linear-KdV equation. Pazoto got a one order fully-implicit numerical
scheme based on this asymptotic behavior of the solution of the generalized Korteweg-
de Vries equation (GKdV with p = 4) and got convergece in L4 norm [16]. Dougalis
constructed a fully discrete Galerkin method with high order of accuracy for the numer-
ical solution of the periodic initial-value problem for KdV equation. But they needed
certain mild restriction on the space mesh length and the time step [9]. Alisamii et
al. introduced a hybridized discontinuous Galerkin method to deal with nonlinear KdV
type equations. As for the time stepping, they used the backward difference formula.
However, there was no analysis of convergence in this research [2]. Yan proposed three
conservative finite volume element schemes based on the discrete variational deriva-
tive method [26], but there was no analysis of convergence. Winebery developed an
implicit-stepping scheme for KdV equation in temporal direction and spectral meth-
ods in space [25]. However, there was a restriction on the size of the time step when
they applied predictor-corrector method to retain the full accuracy of the scheme. In
addition, Bosco presented a finite difference method for the integration of the KdV
equation with periodic boundary conditions on irregular grid. The method is shown to
be superconvergent, which only took place on grids with an odd number of points per
period [10]. Zhu constructed a difference scheme with a higher-order discrete invari-
ant for the periodic KdV equation [27]. Djidjeli et al. proposed two numerical methods
for the solution of the third- and fifth-order KdV equations. The first method was de-
rived using central differences to replace the space derivative with predictor-corrector
time-stepping and the second method by linearizing the implicit corrector scheme in
which the solution was then found by solving a linear algebraic system at each time
step. They proved the stability of these schemes [8]. And Qu and Wang had presented
an alternating segment explicit-implicit difference scheme and proved the stability of
this scheme by the analysis of linearization procedure [17]. Nonetheless, there were
lack of the convergence analysis.
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To the best of our knowledge, the nonlinear term makes it difficult to study. Vliegen-
thart set up a difference scheme to solve the initial-value problem of KdV equation with-
out uxxx(x, t) term and analyzed the period solution [22]. Recently, Atouani and Om-
rani [4] had designed two kinds of finite difference schemes of the Rosenau-Korteweg
de Vries equation in 2D with periodic boundary problem and proved existence, con-
servative, stability and convergence of these schemes. What’s more, Holden et al. [11]
had considered finite difference scheme of KdV equation with decaying case on the full
line and the periodic case. Furthermore, if the initial data u|t=0 = u0 is high regularity,
the solution of the scheme is convergent to a classical solution and if the regularity of
the initial data is less, then the scheme is convergent in some weak sense. Amorim and
Figueira [3] had studied the convergence of a semi-discrete finite difference method
for KdV equation by introducing a small term h∆2

hu. It was known that the problem
will be simplified by introducing a small term or mixed derivative.

In this article, we construct a two-level nonlinear and a three-level linearized finite
difference scheme for the initial-boundary value problem of KdV equation:

ut + γuux + uxxx = 0, 0 < x < L, 0 < t ≤ T, (1.1a)

u(x, 0) = ϕ(x), 0 ≤ x ≤ L, (1.1b)

u(0, t) = 0, u(L, t) = 0, ux(L, t) = 0, 0 ≤ t ≤ T, (1.1c)

where ϕ(0) = ϕ(L) = ϕ′(L) = 0, γ is a constant.
Our main novelty of this work lies in finding numerically and theoretically con-

vergent difference schemes for the non-periodic boundary value problem of the KdV
equation.

The rest of this paper is organized as follows. Some notations are introduced and
three auxiliary lemmas are presented in Section 2. The conservation of the solution of
the problem (1.1a)-(1.1c) is presented. A two-level nonlinear implicit finite difference
scheme is constructed and the existence, boundedness and unconditional convergence
are discussed in Section 3. A three-level linearized difference scheme is established and
the same properties as in section 3 are presented by energy method in Section 4. In the
section 5, we will give some numerical simulation using the finite difference schemes
above. The paper ends with a brief conclusion in Section 6.

2. Preliminaries

In this section, we mainly introduce some notations and preparatory lemmas. Take
two positive integers m and n. Let h = L/m, xi = ih (0 ≤ i ≤ m), τ = T/n,
tk = kτ (0 ≤ k ≤ n); Ωh = {xi | 0 ≤ i ≤ m}, Ωτ = {tk | 0 ≤ k ≤ n}. Let
Uh = {u |u = (u0, · · · , um)} , Ůh = {u |u ∈ Uh, u0 = um = 0} be two grid function
spaces defined on Ωh. For any grid function u ∈ Uh, we introduce the following nota-
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tions:

δxui− 1
2

=
1

h
(ui − ui−1), 1 ≤ i ≤ m;

δ2
xui =

1

h2
(ui−1 − 2ui + ui+1), 1 ≤ i ≤ m− 1;

δ3
xui+ 1

2
= δ2

x(δxui+ 1
2
), 1 ≤ i ≤ m− 2;

∆xui =
1

2h
(ui+1 − ui−1), 1 ≤ i ≤ m− 1;

ψ(v, u)i =
1

3

[
vi∆xui + ∆x(vu)i

]
, 1 ≤ i ≤ m− 1.

For w = {wk | 0 ≤ k ≤ n} defined on Ωτ , we introduce the following notations:

wk−
1
2 =

1

2
(wk + wk−1), δtw

k− 1
2 =

1

τ
(wk − wk−1), 1 ≤ k ≤ n,

wk̄ =
1

2
(wk+1 + wk−1), ∆tw

k =
1

2τ
(wk+1 − wk−1), 1 ≤ k ≤ n− 1.

For any u, v ∈ Uh, the inner products and norms are defined by

(u, v) = h
(1

2
u0v0 +

m−1∑
i=1

uivi +
1

2
umvm

)
, (2.1a)

(δxu, δxv) = h
m−1∑
i=0

(δxui+ 1
2
)(δxvi+ 1

2
), (2.1b)

‖u‖ =
√

(u, u), |u|1 =
√

(δxu, δxu). (2.1c)

Lemma 2.1 ([19]). Suppose v ∈ Uh, w ∈ Ůh. we have

(ψ(v, w), w) = 0. (2.2)

Lemma 2.2 ([20]). For any u ∈ Ůh, there is

‖u‖∞ ≤
√
L

2
|u|1, |u|1 ≤

2

h
‖u‖.

Lemma 2.3. Suppose w ∈ Ůh. Then it holds that

h

m−2∑
i=1

(δ2
xδxwi+ 1

2
)wi +

1

h
(δxwm− 3

2
− 3δxwm− 1

2
)wm−1

=
1

2
h2

m−1∑
i=1

(δ2
xwi)

2 +
1

2
(δxw 1

2
)2 +

3

2
(δxwm− 1

2
)2. (2.3)
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Proof. Set
vm = 0, vi = δxwi+ 1

2
, i = m− 1,m− 2, · · · , 0.

Then

h

m−2∑
i=1

(δ2
xδxwi+ 1

2
)wi +

1

h
(δxwm− 3

2
− 3δxwm− 1

2
)wm−1

=h
m−2∑
i=1

(δ2
xvi)wi +

1

h
(vm−2 − 3vm−1)wm−1

=
m−2∑
i=0

(δxvi+ 1
2
)(wi − wi+1) + (δxvm− 3

2
)wm−1 +

1

h
(vm−2 − 3vm−1)wm−1

=− h
m−2∑
i=0

(δxvi+ 1
2
)vi +

1

h
(vm−1 − vm−2 + vm−2 − 3vm−1)wm−1

=
1

2

m−2∑
i=0

(vi+1 − vi)2 +
1

2
v2

0 −
1

2
v2
m−1 − 2vm−1

wm−1 − wm
h

=
1

2

m−1∑
i=1

(vi − vi−1)2 +
1

2
v2

0 −
1

2
v2
m−1 + 2v2

m−1

=
1

2

m−1∑
i=1

(vi − vi−1)2 +
1

2
v2

0 +
3

2
v2
m−1

=
1

2
h2

m−1∑
i=1

(δ2
xwi)

2 +
1

2
(δxw 1

2
)2 +

3

2
(δxwm− 1

2
)2.

This completes the proof. �

Lemma 2.4. Suppose g(x) ∈ C4(c− h, c+ 2h). Then we have

g′′′(c)− 1

h3
[g(c+ 2h)− 3g(c+ h) + 3g(c)− g(c− h)] = O(h).

Lemma 2.5. Suppose g(x) ∈ C2(c−h, c). Then there exists at least a ξ ∈ (c− 2h, c) such
that

g′(c)− 1

h
[g(c)− g(c− h)] =

h

2
g′′(ξ).

Lemma 2.6. Suppose g(x) ∈ C3(c − 2h, c). Then there exists at least an η ∈ (c − 2h, c)
such that

g′(c)−
{

2
1

h
[g(c)− g(c− h)]− 1

2h
[g(c)− g(c− 2h)]

}
=
h2

3
g′′′(η),
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or

g′(c)−
{3

2
· 1

h
[g(c)− g(c− h)]− 1

2
· 1

h
[g(c− h)− g(c− 2h)]

}
=
h2

3
g′′′(η).

If g(x) ∈ C4(c− 2h, c). Then we have

g′(c)−
{3

2
· 1

h
[g(c)− g(c− h)]− 1

2
· 1

h
[g(c− h)− g(c− 2h)]

}
=
h2

3
g′′′(c) +O(h3).

To end this section, we recall that the solution of problem (1.1a)-(1.1c) has the
following conservation law.

Lemma 2.7. Let u(x, t) be the solution of problem (1.1a)-(1.1c). Denote

E(t) =

∫ L

0
u2(x, t)dx+

∫ t

0
u2
x(0, s)ds,

then we have
E(t) = E(0), 0 < t ≤ T. (2.4)

We call (2.4) the conservation of energy. By identity (2.4), we obviously know∫ L

0
u2(x, t)dx ≤

∫ L

0
u2(x, 0)dx, 0 ≤ t ≤ T.

3. A two-level nonlinear finite difference scheme

In this section, we construct a two-level finite difference scheme and discuss its
existence, conservation, boundedness and convergence. We suppose that the problem
(1.1a)-(1.1c) has a solution u(x, t) ∈ C3(0, T ;C4(0, L)).

3.1. The derivation of the finite difference scheme

Define the grid function

Uki = u(xi, tk), 0 ≤ i ≤ m, 0 ≤ k ≤ n. (3.1)

Considering Eq. (1.1a) at the points (xi, tk+ 1
2
), we have

ut(xi, tk+ 1
2
) + γu(xi, tk+ 1

2
)ux(xi, tk+ 1

2
) + uxxx(xi, tk+ 1

2
)

=0, 1 ≤ i ≤ m− 2, 0 ≤ k ≤ n− 1. (3.2)
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Using Lemma 2.4, we have

δtU
k+ 1

2
i + γψ(Uk+ 1

2 , Uk+ 1
2 )i + δ2

x(δxU
k+ 1

2

i+ 1
2

) = P
k+ 1

2
i ,

1 ≤ i ≤ m− 2, 0 ≤ k ≤ n− 1, (3.3)

and there is a constant c0 > 0 such that

|P k+ 1
2

i | ≤ c0(h+ τ2), 1 ≤ i ≤ m− 2, 0 ≤ k ≤ n− 1. (3.4)

Now we consider the approximation of the boundary condition

ux(L, t) = 0, 0 ≤ t ≤ T. (3.5)

Using Lemma 2.5, we have

ux(xm, tk) =
1

h
(Ukm − UkM−1) +

h

2
uxx(ξkm, tk), ξkm ∈ (xm−1, xm), 1 ≤ k ≤ n.

Omitting the small term, we easily obtain a one order approximation

1

h
(Ukm − Ukm−1) ≈ 0, 1 ≤ k ≤ n.

Our aim is to get a third order approximation for (3.5). From (1.1a) and (1.1c), we
know

uxxx(xm, t) = 0, 0 ≤ t ≤ T. (3.6)

Using Lemma 2.6, (1.1a) and (3.6), we get

ux(xm, t) =
{3

2
· 1

h
[u(xm, t)− u(xm − h, t)]−

1

2
· 1

h
[u(xm − h, t)− u(xm − 2h, t)]

}
+
h2

3
uxxx(xm, t) +O(h3)

=
{3

2
· 1

h
[u(xm, t)− u(xm − h, t)]−

1

2
· 1

h
[u(xm − h, t)− u(xm − 2h, t)]

}
+
h2

2
uxxx(xm, t) +O(h3)

=
{3

2
· 1

h
[u(xm, t)− u(xm − h, t)]−

1

2
· 1

h
[u(xm − h, t)− u(xm − 2h, t)]

}
+
h2

2
uxxx(xm − h, t) +O(h3)

=
{3

2
· 1

h
[u(xm, t)− u(xm − h, t)]−

1

2
· 1

h

[
u(xm − h, t)− u(xm − 2h, t)

]}
− h2

2

[
ut(xm − h, t) + γ

(
uux

)
(xm − h, t)

]
+O(h3).
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Letting t = tk and t = tk+1 in the above equality and averaging the results, we obtain

1

2

(
ux(xm, tk) + ux(xm, tk+1)

)
=
[3

2
· δxU

k+ 1
2

m− 1
2

− 1

2
· δxU

k+ 1
2

m− 3
2

]
− h2

2

[
δtU

k+ 1
2

m−1 + γψ(Uk+ 1
2 , Uk+ 1

2 )m−1

]
+O(h3) +O

(
h2(h2 + τ2)

)
= 0, 0 ≤ k ≤ n− 1. (3.7)

That means that[3

2
· δxU

k+ 1
2

m− 1
2

− 1

2
· δxU

k+ 1
2

m− 3
2

]
− h2

2

[
δtU

k+ 1
2

m−1 + γψ(Uk+ 1
2 , Uk+ 1

2 )m−1

]
≈ 0

is a third order approximation of

1

2

(
ux(xm, tk) + ux(xm, tk+1)

)
= 0.

Multiplying (3.7) by (− 2
h2

), we have

δtU
k+ 1

2
m−1 + γψ(Uk+ 1

2 , Uk+ 1
2 )m−1 +

1

h2
(δxU

k+ 1
2

m− 3
2

− 3δxU
k+ 1

2

m− 1
2

)

=P
k+ 1

2
m−1 , 0 ≤ k ≤ n− 1, (3.8)

and there is a constant c1 > 0 such that

|P k+ 1
2

m−1 | ≤ c1(h+ τ2), 0 ≤ k ≤ n− 1. (3.9)

Noticing the initial-boundary value conditions (1.1b)-(1.1c), we have

U0
i = ϕ(xi), 1 ≤ i ≤ m− 1, (3.10a)

Uk0 = 0, Ukm = 0, 0 ≤ k ≤ n. (3.10b)

Omitting the small terms in (3.3) and (3.8), denoting by uki the numerical approxima-
tion of Uki , we obtain a two-level nonlinear difference scheme

δtu
k+ 1

2
i + γψ(uk+ 1

2 , uk+ 1
2 )i + δ2

x(δxu
k+ 1

2

i+ 1
2

) = 0,

1 ≤ i ≤ m− 2, 0 ≤ k ≤ n− 1, (3.11a)

δtu
k+ 1

2
m−1 + γψ(uk+ 1

2 , uk+ 1
2 )m−1 +

1

h2
(δxu

k+ 1
2

m− 3
2

− 3δxu
k+ 1

2

m− 1
2

) = 0,

0 ≤ k ≤ n− 1, (3.11b)

u0
i = ϕ(xi), 1 ≤ i ≤ m− 1, (3.11c)

uk0 = 0, ukm = 0, 0 ≤ k ≤ n. (3.11d)
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Denote

v
k+ 1

2
m = 0, v

k+ 1
2

i = δxu
k+ 1

2

i+ 1
2

, i = m− 1,m− 2, · · · , 0, 0 ≤ k ≤ n− 1. (3.12)

Rewriting (3.11a)-(3.11d), we obtain

δtu
k+ 1

2
i + γψ(uk+ 1

2 , uk+ 1
2 )i + δ2

xv
k+ 1

2
i = 0, 1 ≤ i ≤ m− 2, 0 ≤ k ≤ n− 1, (3.13a)

δtu
k+ 1

2
m−1 + γψ(uk+ 1

2 , uk+ 1
2 )m−1 +

1

h2
(v
k+ 1

2
m−2 − 3v

k+ 1
2

m−1) = 0, 0 ≤ k ≤ n− 1, (3.13b)

u0
i = ϕ(xi), 1 ≤ i ≤ m− 1, (3.13c)

uk0 = 0, ukm = 0, 0 ≤ k ≤ n, (3.13d)

v
k+ 1

2
m = 0, v

k+ 1
2

i = δxu
k+ 1

2

i+ 1
2

, i = m− 1,m− 2, · · · , 0, 0 ≤ k ≤ n− 1. (3.13e)

Remark 3.1. Noticing that

2

3
uxxx(xm−1, t) =

1

h2

[1

h

(
u(xm − h, t)− u(xm − 2h, t)

)
− 3 · 1

h

(
u(xm, t)− u(xm − h, t)

)
+ 2ux(xm, t)

]
+O(h),

we can regard (3.8) as a disretization of the equality

ut(xm−1, tk+ 1
2
) + γu(xm−1, tk+ 1

2
)ux(xm−1, tk+ 1

2
) +

2

3
uxxx(xm−1, tk+ 1

2
)

=O(h), 0 ≤ k ≤ n− 1,

with the truncation of an order of O(h+ τ2).

Remark 3.2. Suppose that g(x) ∈ C(5)[xm−1,xm+1], where xm−1 = xm − h, xm+1 =
xm + h. Applying the Taylor expansion, we have

1

2h
[g(xm+1)− g(xm−1)] = g′(xm) +

h2

6
g′′′(xm) +

h4

120
g(5)(ξ), ξ ∈ (xm−1, xm+1).

If the problem (1.1a)-(1.1c) can be extended to be defined in the domain [0, L + h] ×
[0, T ] and also has a smooth solution, then

1

2h
(Ukm+1 − Ukm−1) =ux(xm, tk) +

h2

6
uxxx(xm, tk) +

h4

120
uxxxxx(ξk, tk)

=
h4

120
uxxxxx(ξk, tk) = O(h4), ξk ∈ (xm−1, xm+1),

which follows that

1

2h
(U

k+ 1
2

m+1 − U
k+ 1

2
m−1) = O(h4), 0 ≤ k ≤ n− 1.

In addition, (3.3) is also valid for i = m − 1. Using these two equalities to remove the
fictitious values {Ukm+1}, we can obtain (3.8) and (3.9) straightforwardly.
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3.2. Existence, boundedness and uniqueness of the numerical solution

First, we recall the Browder fixed-point theorem.

Theorem 3.1 ([1, 6]). Suppose (H, (·, ·)) is a finite dimensional inner space, ‖ · ‖ is the
induced norm, Π : H → H is a continuous operator on (H, (·, ·)). If there exists a constant
α > 0, ∀z ∈ H, ‖z‖ = α, (Π(z), z) ≥ 0, then there exists a z∗ ∈ H, ‖z∗‖ ≤ α such that
Π(z∗) = 0.

Theorem 3.2. There is a solution of the finite difference scheme (3.11a)-(3.11d).

Proof. According to (3.11c)-(3.11d), we get u0. Suppose that the solution uk at the
k-th time level is known. Let

wi = (uk+1
i + uki )/2, 0 ≤ i ≤ m.

It can be seen from finite difference scheme (3.11a)-(3.11b) and (3.11d) that

2

τ

(
wi − uki

)
+ γψ(w,w)i + δ2

x(δxwi+ 1
2
) = 0, 1 ≤ i ≤ m− 2, (3.14a)

2

τ
(wm−1 − ukm−1) + γψ(w,w)m−1 +

1

h2
(δxwm− 3

2
− 3δxwm− 1

2
) = 0, (3.14b)

w0 = 0, wm = 0. (3.14c)

If we have determined w, then

uk+1
i = 2wi − uki , 0 ≤ i ≤ m.

For w ∈ Ůh, define the operator

Π(w)i =



2

τ
(wi − uki ) + γψ(w,w)i + δ2

x(δxwi+ 1
2
), 1 ≤ i ≤ m− 2,

2

τ
(wm−1 − ukm−1) + γψ(w,w)m−1

+
1

h2
(δxwm− 3

2
− 3δxwm− 1

2
), i = m− 1.

(3.15)

It is easy to get

(Π(w), w) =
2

τ

[
‖w‖2 − (uk, w)

]
+ γ(ψ(w,w), w) + h

m−2∑
i=1

(δ2
x(δxwi+ 1

2
))wi

+
1

h
(δxwm− 3

2
− 3δxwm− 1

2
)wm−1. (3.16)

By Lemma 2.3 and Lemma 2.1, we have

(Π(w), w) ≥ 2

τ

[
‖w‖2 − (uk, w)

]
≥ 2

τ
‖w‖(‖w‖ − ‖uk‖). (3.17)
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When ‖w‖ = ‖uk‖, (Π(w), w) ≥ 0. By Browder Theorem 3.1, there is a w∗ ∈ Ůh and
‖w∗‖ ≤ ‖uk‖ satisfying

Π(w∗) = 0.

The proof of this theorem is finished. �

Theorem 3.3. Suppose {uki | 0 ≤ i ≤ m, 0 ≤ k ≤ n} is the solution of finite difference
scheme (3.11a)-(3.11d). Denote

Ek = ‖uk‖2 + τ
k−1∑
l=0

[
(δxu

l+ 1
2

1
2

)2 + 3(δxu
l+ 1

2

m− 1
2

)2 + h2
m−1∑
i=1

(δ2
xu

l+ 1
2

i )2

]
,

we have

Ek = E0, 1 ≤ k ≤ n. (3.18)

Proof. Multiplying (3.11a) and (3.11b) by hu
k+ 1

2
i and hu

k+ 1
2

m−1 respectively, then
summing up the results, we obtain

(δtu
k+ 1

2 , uk+ 1
2 ) + γ(ψ(uk+ 1

2 , uk+ 1
2 ), uk+ 1

2 )

+ h
m−2∑
i=1

(δ2
xδxu

k+ 1
2

i+ 1
2

)u
k+ 1

2
i +

1

h
(δxu

k+ 1
2

m− 3
2

− 3δxu
k+ 1

2

m− 1
2

)u
k+ 1

2
m−1 = 0. (3.19)

Using Lemma 2.1 and Lemma 2.3, we get

1

2τ
(‖uk+1‖2 − ‖uk‖2) +

1

2
h2

m−1∑
i=1

(δ2
xu

k+ 1
2

i )2 +
1

2
(δxu

k+ 1
2

1
2

)2 +
3

2
(δxu

k+ 1
2

m− 1
2

)2

=0, 0 ≤ k ≤ n− 1. (3.20)

Replacing k by l and summing l from 0 to k, we get

‖uk+1‖2 + τ

k∑
l=0

[
(δxu

l+ 1
2

1
2

)2 + 3(δxu
l+ 1

2

m− 1
2

)2 + h2
m−1∑
i=1

(δ2
xu

l+ 1
2

i )2

]
=‖u0‖2, 0 ≤ k ≤ n− 1, (3.21)

that is
Ek+1 = E0, 0 ≤ k ≤ n− 1.

This completes the proof of the theorem. �

Noticing
ux(L, t) = 0, 0 ≤ t ≤ T,
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the E(t) in Lemma 2.7 can be written as

E(t) =

∫ L

0
u2(x, t)dx+

∫ t

0

[
u2
x(0, s) + 3u2

x(L, t)
]
ds.

The Ek in Theorem 3.3 can be written as

Ek = ‖uk‖2 + τ
k−1∑
l=0

[
(δxu

l+ 1
2

1
2

)2 + 3(δxu
l+ 1

2

m− 1
2

)2
]

+ h · τ
k−1∑
l=0

[
h
m−1∑
i=1

(δ2
xu

l+ 1
2

i )2
]
.

In addition, the last term in the above expression is a small quantity with order of
O(h). It is obvious that Ek is a discrete version of E(tk). It follows from Theorem 3.3
that ‖w‖ ≤ c.

Theorem 3.4. Denote c = ‖u0‖. If c|γ|
√
L τ
h2

< 1, then the solution of finite difference
scheme (3.14a)-(3.14c) is unique.

Proof. Observing the proof of Theorem 3.2, it can be seen that we only need to
prove the solution of difference scheme (3.14a)-(3.14c) is unique. Suppose that the
difference scheme (3.14a)-(3.14c) has an another solution {vi | 0 ≤ i ≤ m}, namely,
{vi | 0 ≤ i ≤ m} satisfies

2

τ

(
vi − uki

)
+ γψ(v, v)i + δ2

x(δxvi+ 1
2
) = 0, 1 ≤ i ≤ m− 2, (3.22a)

2

τ
(vm−1 − ukm−1) + γψ(v, v)m−1 +

1

h2
(δxvm− 3

2
− 3δxvm− 1

2
) = 0, (3.22b)

v0 = 0, vm = 0. (3.22c)

Denote
zi = wi − vi, 0 ≤ i ≤ m.

Subtracting (3.22a)-(3.22c) from (3.14a)-(3.14c), it follows

2

τ
zi + γ [ψ(w,w)i − ψ(v, v)i] + δ2

x(δxzi+ 1
2
) = 0, 1 ≤ i ≤ m− 2, (3.23a)

2

τ
zm−1 + γ [ψ(w,w)m−1 − ψ(v, v)m−1] +

1

h2
(δxzm− 3

2
− 3δxzm− 1

2
) = 0, (3.23b)

z0 = 0, zm = 0. (3.23c)

Multiplying (3.23a) by hzi and (3.23b) and hzm−1, respectively, then summing up the
results, we get

2

τ
‖z‖2 + γ (ψ(w,w)− ψ(v, v), z) + h

m−2∑
i=1

(δ2
xδxzi+ 1

2
)zi

+
1

h
(−3δxzm− 1

2
+ δxzm− 3

2
)zm−1 = 0. (3.24)
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Notice

ψ(w,w)i − ψ(v, v)i

=ψ(w,w)i − ψ(w − z, w − z)i
=ψ(z, w)i + ψ(w, z)i − ψ(z, z)i. (3.25)

Using Lemma 2.1, we have

(ψ(w,w)− ψ(v, v), z) = (ψ(z, w) + ψ(w, z)− ψ(z, z), z) = (ψ(z, w), z) . (3.26)

Using Lemma 2.3, we have

h
m−2∑
i=1

(δ2
xδxzi+ 1

2
)zi +

1

h
(−3δxzm− 1

2
+ δxzm− 3

2
)zm−1 ≥ 0. (3.27)

Substituting (3.26) and (3.27) into (3.24) and noticing Lemma 2.2, we obtain

2

τ
‖z‖2 ≤− γ(ψ(z, w), z) = −γh

3

m−1∑
i=1

[zi∆xwi + ∆x(zw)i]zi

=
γh

3

m−1∑
i=1

[wi∆x(z2
i ) + (zw)i∆zi] ≤

|γ|
3

(2‖z‖∞‖w‖ · |z|1 + ‖z‖∞‖w‖ · |z|1)

=|γ|‖w‖ · ‖z‖∞ · |z|1 ≤ c|γ|
√
L

2
|z|21 ≤ c|γ|

2
√
L

h2
‖z‖2.

When c|γ|
√
L τ
h2
< 1, we have ‖z‖ = 0. The proof of this theorem is completed. �

3.3. Convergence

Next, we strictly prove the convergence of the finite difference scheme.

Theorem 3.5. Suppose u(x, t) ∈ C3(0, T ;C4(0, L)) be the solution of (1.1a)-(1.1c) and
{uki | 0 ≤ i ≤ m, 0 ≤ k ≤ n} be the solution of (3.11a)-(3.11d). Denote

eki = Uki − uki , 0 ≤ i ≤ m, 0 ≤ k ≤ n,

F k =

√√√√‖ek‖2 + τ

k−1∑
l=0

[(
δxe

l+ 1
2

1
2

)2
+ 3
(
δxe

l+ 1
2

m− 1
2

)2
+ h2

m−1∑
i=1

(δ2
xe
k+ 1

2
i )2

]
, 0 ≤ k ≤ n.

Then there exists a constant c2 > 0 such that

F k ≤ c2(h+ τ2), 0 ≤ k ≤ n. (3.28)
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Proof. Subtracting (3.11a)-(3.11d) from (3.3), (3.8), (3.10a)-(3.10b), we obtain
the error equations

δte
k+ 1

2
i + γ[ψ(Uk+ 1

2 , Uk+ 1
2 )i − ψ(uk+ 1

2 , uk+ 1
2 )i] + δ2

xδxe
k+ 1

2

i+ 1
2

= P
k+ 1

2
i , 1 ≤ i ≤ m− 2, 0 ≤ k ≤ n− 1, (3.29a)

δte
k+ 1

2
m−1 + γ

[
ψ(Uk+ 1

2 , Uk+ 1
2 )m−1 − ψ(uk+ 1

2 , uk+ 1
2 )m−1

]
+

1

h2
(δxe

k+ 1
2

m− 3
2

− 3δxe
k+ 1

2

m− 1
2

)

= P
k+ 1

2
m−1 , 0 ≤ k ≤ n− 1, (3.29b)

e0
i = 0, 1 ≤ i ≤ m− 1, (3.29c)

ek = 0, ekm = 0, 0 ≤ k ≤ n. (3.29d)

Multiplying (3.29a) and (3.29b) by he
k+ 1

2
i and he

k+ 1
2

m−1, respectively and summing up
the results, we get

(δte
k+ 1

2 , ek+ 1
2 ) + γ(ψ(Uk+ 1

2 , Uk+ 1
2 )− ψ(uk+ 1

2 , uk+ 1
2 ), ek+ 1

2 ) + h
m−2∑
i=1

(δ2
xδxe

k+ 1
2

i+ 1
2

)e
k+ 1

2
i

+
1

h
(−3δxe

k+ 1
2

m− 1
2

+ δxe
k+ 1

2

m− 3
2

)e
k+ 1

2
m−1 = (P k+ 1

2 , ek+ 1
2 ), 0 ≤ k ≤ n− 1. (3.30)

For the second term on the left hand of (3.30), using Lemma 2.1, we have(
ψ(Uk+ 1

2 , Uk+ 1
2 )− ψ(uk+ 1

2 , uk+ 1
2 ), ek+ 1

2

)
=
(
ψ(Uk+ 1

2 , Uk+ 1
2 )− ψ(Uk+ 1

2 − ek+ 1
2 , Uk+ 1

2 − ek+ 1
2 ), ek+ 1

2

)
=
(
ψ(ek+ 1

2 , Uk+ 1
2 ) + ψ(Uk+ 1

2 , ek+ 1
2 )− ψ(ek+ 1

2 , ek+ 1
2 ), ek+ 1

2

)
=
(
ψ(ek+ 1

2 , Uk+ 1
2 ), ek+ 1

2

)
=

1

3
h
m−1∑
i=1

[e
k+ 1

2
i ∆xU

k+ 1
2

i + ∆x(eU)
k+ 1

2
i ]e

k+ 1
2

i

=
1

3
h

m−1∑
i=1

(∆xU
k+ 1

2
i )(e

k+ 1
2

i )2 +
1

6

m−1∑
i=1

(
e
k+ 1

2
i+1 U

k+ 1
2

i+1 − e
k+ 1

2
i−1 U

k+ 1
2

i−1

)
e
k+ 1

2
i

=
1

3
h

m−1∑
i=1

(∆xU
k+ 1

2
i )(e

k+ 1
2

i )2 +
1

6
h

m−1∑
i=1

e
k+ 1

2
i+1 e

k+ 1
2

i δxU
k+ 1

2

i+ 1
2

. (3.31)

Denote

c3 = max
0≤x≤L, 0≤t≤T

|ux(x, t)|.
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Then we have

− (ψ(Uk+ 1
2 , Uk+ 1

2 )− ψ(uk+ 1
2 , uk+ 1

2 ), ek+ 1
2 )

≤1

3
c3

[
h
m−1∑
i=1

(e
k+ 1

2
i )2 +

1

2
h
m−1∑
i=1

|ek+ 1
2

i+1 e
k+ 1

2
i |

]
≤ 1

2
c3‖ek+ 1

2 ‖2. (3.32)

Using Lemma 2.3, we have

h

m−2∑
i=1

(δ2
xδxe

k+ 1
2

i+ 1
2

)e
k+ 1

2
i +

1

h
(δxe

k+ 1
2

m− 3
2

− 3δxe
k+ 1

2

m− 1
2

)e
k+ 1

2
m−1

=
1

2
h2

m−1∑
i=1

(δ2
xe
k+ 1

2
i )2 +

1

2
(δxe

k+ 1
2

1
2

)2 +
3

2
(δxe

k+ 1
2

m− 1
2

)2. (3.33)

Substituting (3.33) and (3.32) in (3.30), we get

1

2τ

(
‖ek+1‖2 − ‖ek‖2

)
+

1

2
h2

m−1∑
i=1

(δ2
xe
k+ 1

2
i )2 +

1

2
(δxe

k+ 1
2

1
2

)2 +
3

2
(δxe

k+ 1
2

m− 1
2

)2

≤|γ|
2
c3‖ek+ 1

2 ‖2 + ‖P k+ 1
2 ‖ · ‖ek+ 1

2 ‖

≤
( |γ|

2
c3
‖ek+1‖+ ‖ek‖

2
+ ‖P k+ 1

2 ‖
)‖ek+1‖+ ‖ek‖

2
, 0 ≤ k ≤ n− 1. (3.34)

Consequently, we have

1

2τ

((
F k+1

)2 − (F k)2)
≤
( |γ|

2
c3
F k+1 + F k

2
+ ‖P k+ 1

2 ‖
)F k+1 + F k

2
, 0 ≤ k ≤ n− 1. (3.35)

Crossing out 1
2(F k+1 + F k) from both sides, we have

1

τ

(
F k+1 − F k

)
≤ 1

2
|γ|c3

F k+1 + F k

2
+ ‖P k+ 1

2 ‖, 0 ≤ k ≤ n− 1. (3.36)

Noticing (3.4) and (3.9), we have(
1− |γ|c3

4
τ
)
F k+1

≤
(

1 +
|γ|c3

4
τ
)
F k +

√
L(c2

0 + c2
1)τ(h+ τ2), 0 ≤ k ≤ n− 1. (3.37)

If γ = 0, it is easy to obtain

F k+1 ≤
√
L(c2

0 + c2
1)T (h+ τ2), 0 ≤ k ≤ n− 1.
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When γ 6= 0 and |γ|c34 τ ≤ 1
3 , it follows

F k+1 ≤
(

1 +
3|γ|c3

4
τ
)
F k +

3

2

√
L(c2

0 + c2
1)τ(h+ τ2), 0 ≤ k ≤ n− 1. (3.38)

By Gronwall inequality, we obtain

F k+1 ≤ e
3|γ|c3

4
T 2
√
L(c2

0 + c2
1)

|γ|c3
(h+ τ2), 0 ≤ k ≤ n− 1. (3.39)

This completes the proof. �

Remark 3.3. From the convergence result in Theorem 3.5, we know that the Ek de-
fined in Theorem 3.3 is a simulation of the energy E(tk) defined in Lemma 2.7.

4. A three-level linearized finite difference scheme

In this section, we first present a three-level linearized finite difference scheme
for (1.1a)-(1.1c) and then prove its existence, boundeness and convergence of the
proposed scheme.

4.1. The derivation of the finite difference scheme

Considering (1.1a) at point (xi, t0) and noticing initial value conditions, we have

ut(xi, t0) =− γu(xi, t0)ux(xi, t0)− uxxx(xi, t0)

=− γϕ(xi)ϕ
′(xi)− ϕ′′′(xi), 0 ≤ i ≤ m. (4.1)

Set
û = ϕ(xi) +

τ

2
[−γϕ(xi)ϕ

′(xi)− ϕ′′′(xi)], 0 ≤ i ≤ m.

Considering Eq. (1.1a) at the points (xi, t 1
2
), and using the Lemma 2.3, Lemma 2.4,

Lemma 2.1 and (3.6), we have

δtU
1
2
i + γψ(û, U

1
2 )i + δ2

xδxU
1
2

i+ 1
2

= Q0
i , 1 ≤ i ≤ m− 2, (4.2a)

δtU
1
2
m−1 + γψ(û, U

1
2 )m−1 +

1

h2
(δxU

1
2

m− 3
2

− 3δxU
1
2

m− 1
2

) = Q0
m−1. (4.2b)

Considering Eq. (1.1a) at the points (xi, tk) and using the Taylor expansion, we get

∆tU
k
i + γψ(Uk, U k̄)i + δ2

xδxU
k̄
i+ 1

2

= Qki , 1 ≤ i ≤ m− 2, 1 ≤ k ≤ n− 1, (4.3a)

∆tU
k
m−1 + γψ(Uk, U k̄)m−1 +

1

h2
(δxU

k̄
m− 3

2

− 3δxU
k̄
m− 1

2

)

= Qkm−1, 1 ≤ k ≤ n− 1. (4.3b)
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There exists a constant c4 > 0 such that

|Qki | ≤ c4(h+ τ2), 1 ≤ i ≤ m− 1, 0 ≤ k ≤ n− 1. (4.4)

Noticing the initial and boundary value conditions (1.1b)-(1.1c)

U0
i = ϕ(xi), 1 ≤ i ≤ m− 1, (4.5a)

Uk0 = 0, Ukm = 0, 0 ≤ k ≤ n, (4.5b)

and omitting the small terms in (4.2a)-(4.2b) and (4.3a)-(4.3b), we construct a lin-
earized finite difference scheme for the problem (1.1a)-(1.1c) as follows:

δtu
1
2
i + γψ(û, u

1
2 )i + δ2

x(δxu
1
2

i+ 1
2

) = 0, 1 ≤ i ≤ m− 2, (4.6a)

δtu
1
2
m−1 + γψ(û, u

1
2 )m−1 +

1

h2

(
δxu

1
2

m− 3
2

− 3δxu
1
2

m− 1
2

)
= 0, (4.6b)

∆tu
k
i + γψ(uk, uk̄)i + δ2

x(δxu
k̄
i+ 1

2

) = 0, 1 ≤ i ≤ m− 2, 1 ≤ k ≤ n− 1, (4.6c)

∆tu
k
m−1 + γψ(uk, uk̄)m−1 +

1

h2
(δxu

k̄
m− 3

2

− 3δxu
k̄
m− 1

2

) = 0, 1 ≤ k ≤ n− 1, (4.6d)

u0
i = ϕ(xi), 1 ≤ i ≤ m− 1, (4.6e)

uk0 = 0, ukm = 0, 0 ≤ k ≤ n. (4.6f)

4.2. Existence and boundedness of the difference solution

Theorem 4.1. The finite difference scheme (4.6a)-(4.6f) has a unique solution.

Proof. By (4.6e) and (4.6f), u0 is given. Using (4.6a)-(4.6b), we solve a linear
system of algebraic equations about u1. Consider its homogenous equations

1

τ
u1
i +

1

2
γψ(û, u1)i +

1

2
δ2
xδxu

1
i+ 1

2

= 0, 1 ≤ i ≤ m− 2, (4.7a)

1

τ
u1
m−1 +

1

2
γψ(û, u1)m−1 +

1

2
· 1

h2
(δxu

1
m− 3

2

− 3δxu
1
m− 1

2

) = 0, (4.7b)

u1
0 = 0, u1

m = 0. (4.7c)

Multiplying (4.7a) and (4.7b) by hu1
i and hu1

m−1, and summing up the results, we have

1

τ
‖u1‖2 +

1

2
γ(ψ(û, u1), u1)

+
1

2

[
h
m−2∑
i=1

(δ2
xδxu

1
i+ 1

2

)u1
i +

1

h
(δxu

1
m− 3

2

− 3δxu
1
m− 1

2

)u1
m−1

]
= 0.

Owing to Lemma 2.3 and Lemma 2.1, we have

‖u1‖2 ≤ 0.
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Therefore u1 is uniquely determined. Suppose uk−1 and uk have been determined.
Then we can obtain the linear system of algebraic equations about uk+1 from (4.6c),
(4.6d) and (4.6f). Consider its homogeneous equations

1

2τ
uk+1
i +

1

2
γψ(uk, uk+1)i +

1

2
δ2
x

(
δxu

k+1
i+ 1

2

)
= 0, 1 ≤ i ≤ m− 2, (4.8a)

1

2τ
uk+1
m−1 +

1

2
γψ(uk, uk+1)m−1 +

1

2
· 1

h2
(δxu

k+1
m− 3

2

− 3δxu
k+1
m− 1

2

) = 0, (4.8b)

uk+1
0 = 0, uk+1

m = 0. (4.8c)

Multiplying (4.8a) and (4.8b) by 2huk+1
i and 2huk+1

m−1, and summing up the results, we
get

1

τ
‖uk+1‖2 + γ(ψ(uk, uk+1), uk+1) + h

m−1∑
i=2

(δ2
xδxu

k+1
i+ 1

2

)uk+1
i

+
1

h
(δxu

k+1
m− 3

2

− 3δxu
k+1
m− 1

2

)uk+1
m−1 = 0. (4.9)

Using Lemma 2.3 and Lemma 2.1, we have

‖uk+1‖2 ≤ 0.

This means that (4.6c), (4.6d) and (4.6f) determine uk+1 uniquely. This completes the
proof. �

Theorem 4.2. Suppose {uki | 0 ≤ i ≤ m, 0 ≤ k ≤ n} be the solution of the three-level
linearized finite difference scheme (4.6a)-(4.6f). Denote

Êk =
1

2

(
‖uk+1‖2 + ‖uk‖2

)
+ τ

k∑
l=1

[
(δxu

l̄
1
2

)2 + 3(δxu
l̄
m− 1

2

)2 + h2
m−1∑
i=1

(δ2
xu

l̄
i)

2

]

+
τ

2

[
(δxu

1
2
1
2

)2 + 3

(
δxu

1
2

m− 1
2

)2

+ h2
m−1∑
i=1

(
δ2
xu

1
2
i

)2 ]
. (4.10)

Then

Êk = ‖u0‖2, 0 ≤ k ≤ n− 1. (4.11)

Proof. Multiplying (4.6a)-(4.6b) by hu
1
2
i and hu

1
2
m−1, and summing up the results,

we get

1

2τ
(‖u1‖2 − ‖u0‖2) + γ(ψ(û, u

1
2 ), u

1
2 ) + h

m−2∑
i=1

(δ2
xδxu

1
2

i+ 1
2

)u
1
2
i

+
1

h
(δxu

1
2

m− 3
2

− 3δxu
1
2

m− 1
2

)u
1
2
m−1 = 0. (4.12)
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Since (ψ(û, u
1
2 ), u

1
2 ) = 0 and using Lemma 2.3, we have

1

2τ
(‖u1‖2 − ‖u0‖2) +

1

2
h2

m−1∑
i=1

(δ2
xu

1
2
i )2 +

1

2
(δxu

1
2
1
2

)2 +
3

2
(δxu

1
2

m− 1
2

)2 = 0, (4.13)

or

1

2

(
‖u1‖2 + ‖u0‖2

)
+
τ

2

[
h2

m−1∑
i=1

(δ2
xu

1
2
i )2 + (δxu

1
2
1
2

)2 + 3(δxu
1
2

m− 1
2

)2

]
= ‖u0‖2. (4.14)

Multiplying (4.6c) and (4.6d) by huk̄i and huk̄m−1 and summing up the results, we get

1

4τ
(‖uk+1‖2 − ‖uk−1‖2) + γ(ψ(uk, uk̄), uk̄) + h

m−2∑
i=1

(δ2
xδxu

k̄
i+ 1

2

)uk̄i

+
1

2
(δxu

k̄
m− 3

2

− 3δxu
k̄
m− 1

2

)uk̄m−1 = 0, 1 ≤ k ≤ n− 1. (4.15)

Applying Lemma 2.3 and noticing (ψ(uk, uk̄), uk̄) = 0, we get

1

4τ
(‖uk+1‖2 − ‖uk−1‖2) +

1

2
h2

m−1∑
i=1

(δ2
xu

k̄
i )

2

+
1

2
(δxu

k̄
1
2

)2 +
3

2
(δxu

k̄
m− 1

2

)2 = 0, 1 ≤ k ≤ n− 1, (4.16)

and replacing k by l and summing up for l from 1 to k, then multiplying 2τ on both
sides in (4.16) and adding with (4.14), we obtain

1

2

(
‖uk+1‖2 + ‖uk‖2

)
+ τ

k∑
l=1

[
(δxu

l̄
1
2

)2 + 3(δxu
l̄
m− 1

2

)2 + h2
m−1∑
i=1

(δ2
xu

l̄
i)

2

]

+
τ

2

[
(δxu

1
2
1
2

)2 + 3(δxu
1
2

m− 1
2

)2 + h2
m−1∑
i=1

(
δ2
xu

1
2
i

)2 ]
= ‖u0‖2. (4.17)

This completes this proof. �

4.3. The convergence of the finite difference scheme

Theorem 4.3. Assume that u(x, t) ∈ C3(0, T ;C4(0, L)) is the solution of the problem
(1.1a)-(1.1c) and {uki | 0 ≤ i ≤ m, 0 ≤ k ≤ n} is the solution of finite difference scheme
(4.6a)-(4.6f), respectively. Denote

ĉ = max
0≤x≤L, 0≤t≤L

|u(x, t)|, λ =
|γ|ĉ
3

τ

h
,

eki = Uki − uki , 0 ≤ i ≤ m, 0 ≤ k ≤ n,
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and

F̂ k =
1

2

(
‖ek+1‖2 + ‖ek‖2

)
+ τ

k∑
l=1

[
(δxe

l̄
1
2

)2 + 3(δxe
l̄
m− 1

2

)2 + h2
m−1∑
i=1

(δ2
xe
l̄
i)

2

]

+
τ

2

[
(δxe

1
2
1
2

)2 + 3

(
δxe

1
2

m− 1
2

)2

+ h2
m−1∑
i=1

(
δ2
xe

1
2
i

)2 ]
, 0 ≤ k ≤ n− 1. (4.18)

Then, if λ < 1, there exists a positive constant c5 such that

F̂ k ≤ c5(h+ τ2)2, 0 ≤ k ≤ n− 1. (4.19)

Proof. Let
c6 = max

0≤x≤L, 0≤t≤T
|ut(x, t)|.

Subtracting (4.6a)-(4.6f) from (4.2a)-(4.3b) and (4.5a)-(4.5b), we obtain error equa-
tions

δte
1
2
i + γψ(û, e

1
2 )i + δ2

x

(
δxe

1
2

i+ 1
2

)
= Q0

i , 1 ≤ i ≤ m− 2, (4.20a)

δte
1
2
m−1 + γψ(û, e

1
2 )m−1 +

1

h2
(δxe

1
2

m− 3
2

− 3δxe
1
2

m− 1
2

) = Q0
m−1, (4.20b)

∆te
k
i + γ

[
ψ(Uk, U k̄)i − ψ(uk, uk̄)i

]
+ δ2

x

(
δxe

k̄
i+ 1

2

)
= Qki , 1 ≤ i ≤ m− 2, 1 ≤ k ≤ n− 1, (4.20c)

∆te
k
m−1 + γ

[
ψ(Uk, U k̄)m−1 − ψ(uk, uk̄)m−1

]
+

1

h2

(
δxe

k̄
m− 3

2

− 3δxe
k̄
m− 1

2

)
= Qkm−1, 1 ≤ k ≤ n− 1, (4.20d)

e0
i = 0, 1 ≤ i ≤ m− 1, (4.20e)

ek0 = 0, ekm = 0, 0 ≤ k ≤ n. (4.20f)

Multiplying (4.20a) by he
1
2
i , multiplying (4.20b) by he

1
2
m−1 and adding the results, we

get

(δte
1
2 , e

1
2 ) + γ(ψ(û, e

1
2 ), e

1
2 ) +

[
h
m−2∑
i=1

(δ2
xδxe

1
2

i+ 1
2

)e
1
2
i

+
1

h
(δxe

1
2

m− 3
2

− 3δxe
1
2

m− 1
2

)e
1
2
m−1

]
= (Q0, e

1
2 ). (4.21)

By Lemma 2.1 and Lemma 2.3, we obtain

(δte
1
2 , e

1
2 ) +

1

2

[
h2

m−1∑
i=1

(δ2
xe

1
2
i )2 + (δxe

1
2
1
2

)2 + 3(δxe
1
2

m− 1
2

)2

]
= (Q0, e

1
2 ).
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Noticing (4.20e) and (4.20f), we get

1

2τ
‖e1‖2 +

1

2

[
h2

m−1∑
i=1

(δ2
xe

1
2
i )2 + (δxe

1
2
1
2

)2 + 3(δxe
1
2

m− 1
2

)2

]
=

1

2
(Q0, e1) ≤ 1

4τ
‖e1‖2 +

τ

4
‖Q0‖2,

which follows that

F̂ 0 ≤ τ

2
‖Q0‖2 ≤ τ

2
Lc2

4(h+ τ2)2 ≤ T

2
Lc2

4(h+ τ2)2. (4.22)

Multiplying (4.20c) by hek̄i , multiplying (4.20d) by hek̄m−1, summing up the results, we
have

(∆te
k, ek̄) + γ(ψ(Uk, U k̄)− ψ(uk, uk̄), ek̄)

+
[
h
m−2∑
i=1

(δ2
xδxe

k̄
i+ 1

2

)ek̄i +
1

h
(δxe

k̄
m− 3

2

− 3δxe
k̄
m− 1

2

)ek̄m−1

]
=(Qk, ek̄), 1 ≤ k ≤ n− 1. (4.23)

It is easy to know that

(∆te
k, ek̄) =

1

4τ

(
‖ek+1‖2 − ‖ek−1‖2

)
=

1

2τ

(
‖ek+1‖2 + ‖ek‖2

2
− ‖e

k‖2 + ‖ek−1‖2

2

)
. (4.24)

Using Lemma 2.3, we have

h
m−2∑
i=1

(δ2
xδxe

k̄
i+ 1

2

)ek̄i +
1

h
(δxe

k̄
m− 3

2

− 3δxe
k̄
m− 1

2

)ek̄m−1

=
1

2
h2

m−1∑
i=1

(δ2
xe
k̄
i )

2 +
1

2
(δxe

k̄
1
2

)2 +
3

2
(δxe

k̄
m− 1

2

)2. (4.25)

By Lemma 2.3, we have

(ψ(Uk, U k̄)− ψ(uk, uk̄), ek̄) = (ψ(Uk, ek̄) + ψ(ek, U k̄)− ψ(ek, ek̄), ek̄)

=(ψ(ek, U k̄), ek̄) =
1

3
h
m−1∑
i=1

[
eki ∆xU

k̄
i + ∆x(ekU k̄)i

]
ek̄i

=
1

3
h
m−1∑
i=1

(∆xU
k̄
i )eki e

k̄
i −

1

3
h
m−1∑
i=1

U k̄i e
k
i ∆xe

k̄
i

=
1

3
h

m−1∑
i=1

(∆xU
k̄
i )eki e

k̄
i +

1

6

m−2∑
i=1

(U k̄i+1e
k
i+1e

k̄
i − U k̄i eki ek̄i+1)
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=
1

3
h
m−1∑
i=1

(∆xU
k̄
i )eki e

k̄
i +

1

6

m−2∑
i=1

(U k̄i+1 − U k̄i )eki+1e
k̄
i +

1

6

m−2∑
i=1

U k̄i (ek̄i e
k
i+1 − eki ek̄i+1)

=
1

3
h

m−1∑
i=1

(∆xU
k̄
i )eki e

k̄
i +

1

6
h

m−2∑
i=1

(δxU
k̄
i+ 1

2

)eki+1e
k̄
i

+
1

12

m−2∑
i=1

U k̄i
[
(ek+1
i eki+1 − eki ek+1

i+1 )− (eki e
k−1
i+1 − e

k−1
i eki+1)

]
=

1

12

[m−2∑
i=1

U
k+ 1

2
i (ek+1

i eki+1 − eki ek+1
i+1 )−

m−2∑
i=1

U
k− 1

2
i (eki e

k−1
i+1 − e

k−1
i eki+1)

]
+

1

3
h
m−1∑
i=1

(∆xU
k̄
i )eki e

k̄
i +

1

6
h
m−2∑
i=1

(δxU
k̄
i+ 1

2

)eki+1e
k̄
i

+
1

12

m−2∑
i=1

(U k̄i − U
k+ 1

2
i )(ek+1

i eki+1 − eki ek+1
i+1 )

+
1

12

m−1∑
i=1

(U
k− 1

2
i − U k̄i )(eki e

k−1
i+1 − e

k−1
i eki+1). (4.26)

Denote

Gk =
γ

6
τ

m−2∑
i=1

U
k+ 1

2
i (ek+1

i eki+1 − eki ek−1
i+1 ).

By Lemma 2.1, substituting (4.24)-(4.26) into (4.23), we have

1

2τ

[(
F̂ k +Gk

)
−
(
F̂ k−1 +Gk−1

)]
≤− γ

{
1

3
h
m−1∑
i=1

(∆xU
k̄
i )eki e

k̄
i +

1

6
h
m−2∑
i=1

(δxU
k̄
i+ 1

2

)eki+1e
k̄
i

+
1

12

m−2∑
i=1

(Uk−1
i − Uki )(ek+1

i eki+1 − eki ek+1
i+1 )

+
1

12

m−2∑
i=1

(Uki − Uk+1
i )(eki e

k−1
i+1 − e

k−1
i eki+1)

}
+ (Qk, ek̄)

≤|γ|
(

1

2
c3‖ek‖ · ‖ek̄‖+

1

6
c6
τ

h
‖ek‖ · ‖ek+1‖+

1

6
c6
τ

h
‖ek‖ · ‖ek−1‖

)
+ ‖Qk‖ · ‖ek̄‖

≤1

2
|γ|c3‖ek‖‖ek̄‖+

1

6
|γ|c6

τ

h

(
‖ek‖2 + ‖ek+1‖2

2
+
‖ek‖2 + ‖ek−1‖2

2

)
+

1

2

(
‖Qk‖2 + ‖ek̄‖2

)
, 1 ≤ k ≤ n− 1. (4.27)
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It is easy to know

|Gk| ≤|γ|
6

c0τ

h
h
m−2∑
i=1

(
|ek+1
i eki+1|+ |eki ek+1

i+1 |
)

≤c0|γ|
3

τ

h

‖ek+1‖2 + ‖ek‖2

2
= λ
‖ek+1‖2 + ‖ek‖2

2
.

On the other hand, denote
Hk = F̂ k +Gk,

we have

Hk ≥ F̂ k − λ‖e
k+1‖2 + ‖ek‖2

2
≥ (1− λ)F̂ k (4.28)

and

Hk ≥ (1− λ)
‖ek+1‖2 + ‖ek‖2

2
. (4.29)

By (4.27) and (4.29), there exists a constant c7

1

2τ
(Hk −Hk−1) ≤ 1

2
c7(Hk +Hk−1) +

1

2
‖Qk‖2, 1 ≤ k ≤ n− 1.

Hence, we can obtain

(1− c7τ)Hk ≤ (1 + c7τ)Hk−1 + τ‖Qk‖2, 1 ≤ k ≤ n− 1.

When c7τ ≤ 1
3 ,

Hk ≤(1 + 3c7τ)Hk−1 +
3

2
τ‖Qk‖2

≤(1 + 3c7τ)Hk−1 +
3

2
τc2

4L(h+ τ2)2, 1 ≤ k ≤ n− 1. (4.30)

By Gronwall inequality, we have

Hk ≤ e3c7kτ
[
H0 +

c2
4L

2c7
(h+ τ2)2

]
, 0 ≤ k ≤ n− 1.

Noticing (4.22) and G0 = 0, we have

H0 = F̂ 0 ≤ T

2
Lc2

4(h+ τ2)2.

Consequently,

Hk ≤e3c7kτ
[T

2
Lc2

4(h+ τ2)2 +
c2

4L

2c7
(h+ τ2)2

]
=e3c7kτ

(T
2
Lc2

4 +
c2

4L

2c7

)
(h+ τ2)2, 0 ≤ k ≤ n− 1,
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and thus, according to (4.28), we have

F̂ k ≤ 1

1− λ
Hk ≤ 1

1− λ
e3c7kτ

(T
2
Lc2

4 +
c2

4L

2c7

)
(h+ τ2)2, 0 ≤ k ≤ n− 1.

This completes the proof of the theorem. �

Remark 4.1. From the convergence result in Theorem 4.3, we know that the Êk de-
fined in Theorem 4.2 is a simulation of the energy 1

2

(
E(tk)+E(tk+1)

)
defined in Lemma

2.7.

5. Numerical examples

Both difference schemes (3.11a)-(3.11d) and (4.6a)-(4.6f) have the second order
accuracy in time. At each time level, a system of nonlinear equations must be solved
for the first two-level one scheme, however, only a system of linear equations is needed
to be solved for the second three-level one.

In this section, we present two numerical examples. The first scheme is solved by
Gauss-Seidel-like method with 10−8 as tolerance error and the second scheme is solved
by double sweep method. The numerical results illustrate the efficiency of the two
finite difference schemes. Suppose {uki (h, τ) | 0 ≤ i ≤ m, 0 ≤ k ≤ n} is the solution of
the difference scheme (3.11a)-(3.11d) or the solution of the finite difference scheme
(4.6a)-(4.6f). Denote the posterior error by

E(h, τ) = max
1≤k≤n

{√√√√h

m−1∑
i=1

(
uki (h, τ)− uk2i

(h
2
, τ
))2

}
,

F (h, τ) =
∥∥∥un(h, τ)− u2n

(
h,
τ

2

)∥∥∥.
When τ is sufficiently small, the spatial convergence order is defined by

rh = log2

(E(h, τ)

E(h2 , τ)

)
.

When h is sufficiently small, the temporal convergence order is defined by

rτ = log2

(F (h, τ)

F (h, τ2 )

)
.

Example 5.1. In (1.1a)-(1.1c), take T = 1, L = 1, γ = 1, ϕ(x) = x(x− 1)3.

The finite difference schemes (3.11a)-(3.11d) and (4.6a)-(4.6f) will be employed
to numerically solve this example. The numerical accuracy of these two difference
schemes in space and in time will be verified respectively.
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Figure 1: The energy conservation of Example 5.1.

Taking varying step size h with the sufficiently small step size τ, the numerical
errors and convergence orders in space for schemes (3.11a)-(3.11d) and (4.6a)-(4.6f)
are listed in Table 1. Then taking varying step size τ with the sufficiently small step size
h, the numerical errors and convergence orders in time for schemes (3.11a)-(3.11d)
and (4.6a)-(4.6f) are listed in Table 2.

From these tables, we know that the numerical convergence orders of (3.11a)-
(3.11d) and (4.6a)-(4.6f) can achieve O(h+ τ2), which are in a good agreement with
Theorem 3.5 and Theorem 4.3. Fig. 1 indicates that the energy of the schemes (3.11a)-
(3.11d) and (4.6a)-(4.6f) is conserved for Example 5.1.

Table 1: Errors and convergence orders in space of Example 5.1.

Difference scheme (3.11a)-(3.11d) (4.6a)-(4.6f)
τ h E(h, τ) rh E(h, τ) rh

2−14 2−5 3.213e-04 0.97 3.213e-04 0.97
2−14 2−6 1.640e-04 0.98 1.640e-04 0.98
2−14 2−7 8.298e-05 0.99 8.299e-05 0.99
2−14 2−8 4.175e-05 4.176e-05
2−14 2−9

Table 2: Errors and convergence orders in time of Example 5.1.

Difference scheme (3.11a)-(3.11d) (4.6a)-(4.6f)
h τ F (h, τ) rτ F (h, τ) rτ

2−18 2−5 4.720e-04 2.50 1.343e-03 1.51
2−18 2−6 8.337e-05 2.51 4.716e-04 2.49
2−18 2−7 1.467e-05 2.02 8.390e-05 2.54
2−18 2−8 3.605e-06 1.443e-05
2−18 2−9
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Example 5.2. In (1.1a)-(1.1c), take T = 1, L = 1, γ = 1, ϕ(x) = (x− 1) sin(πx).

The numerical accuracy of the finite difference schemes (3.11a)-(3.11d) and (4.6a)-
(4.6f) will be examined. Numerical results of these schemes under different step sizes
in space and time will be calculated. And the numerical errors, as well as the conver-
gence orders will be recorded in Tables 3-4. From these tables, we can find that the
numerical results are in accord with the expected ones. Fig. 2 shows that the energy is
also conserved for Example 5.2.

From the tables, we know that the numerical convergence order of (3.11a)-(3.11d)
and (4.6a)-(4.6f) can achieve O(h+ τ2), which are in a good agreement with Theorem
3.5 and Theorem 4.3. From the last columns at Tables 1-4, we see that the finite differ-
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Figure 2: The energy conservation of Example 5.2.

Table 3: Error and convergence order in space of Example 5.2.

Difference scheme (3.11a)-(3.11d) (4.6a)-(4.6f)
τ h E(h, τ) rh E(h, τ) rh

2−14 2−5 7.476e-03 0.98 7.476e-03 0.98
2−14 2−6 3.791e-03 0.99 3.791e-03 0.99
2−14 2−7 1.911e-03 0.99 1.911e-03 0.99
2−14 2−8 9.597e-04 9.597e-04
2−14 2−9

Table 4: Error and convergence order in time of Example 5.2.

Difference scheme (3.11a)-(3.11d) (4.6a)-(4.6f)
h τ F (h, τ) rτ F (h, τ) rτ

2−18 2−5 1.341e-02 2.59 6.842e-02 2.35
2−18 2−6 2.226e-03 1.98 1.339e-02 2.61
2−18 2−7 5.645e-04 2.13 2.198e-03 1.96
2−18 2−8 1.285e-04 5.661e-04
2−18 2−9



Convergence of Finite Difference Schemes for KdV Equations 279

ence scheme (4.6a)-(4.6f) is also convergent not only when τ
h = 2−5, 2−6, 2−7, 2−8, 2−9

but also only when τ
h = 25, 26, 27, 28, 29. This tells us that the condition λ < 1 in The-

orem 4.3 may be unnecessary. We conjecture that this condition may be removed for
the convergence of the three-level difference scheme (4.6a)-(4.6f). At present, our
analytical technique is limited.

6. Conclusions

Korteweg-de Vries equation is a spatial third order nonlinear equations. The solu-
tion of initial and boundary problem (1.1a)-(1.1c) satisfies energy conservation (2.4).
In this paper, we construct two effective finite difference schemes for nonlinear KdV
equations. The existence of the both schemes are proved with the different methods.
The conservation and convergence of the finite difference schemes are shown by the
energy method. The convergence orders are O(h + τ2) in discrete L2 norm. In the
future, we will try to establish spatial second order finite difference schemes for the
problem (1.1a)-(1.1c). We have found this kind difference scheme. The difficulty is
how to prove the global convergence of the difference scheme.
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[10] B. GARCÍA-ARCHILLA, A supraconvergent scheme for the Korteweg-de Vries equation, Nu-
merische Mathematik, 61 (1992), pp. 291–310.

[11] H. HOLDEN, U. KOLEY AND N. RISEBRO, Convergence of a fully discrete finite difference
scheme for the Korteweg-de Vries equation, J. Numer. Anal., 35 (2015), pp. 1047–1077.

[12] S. M. ISLAM, K. KHAN AND M. A. AKBAR, Exact solutions of unsteady Korteweg-de Vries
and time regularized long wave equations, Springerplus, 4 (2015), pp. 1–11.

[13] K. KAMRUZZAMAN AND A. M. ALI, Solving unsteady Korteweg-de Vries equation and its
two alternatives, Math. Methods Appl. Sci., 39 (2016), pp. 2752–2760.

[14] D. J KORTEWEG AND G. DE VRIES, On the change of form of long waves advacing in a
rectangular canal and on a new type of long stationary waves, Philosophical Magazine
Series, 539 (1895), pp. 422–443.

[15] J. LI, H. MA AND Q. SUN, Error analysis for solving the Korteweg-de Vries equation by
a Legendre pseudo-spectral method, Numer. Methods Partial Differential Equations, 16
(2000), pp. 513–534.
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