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Abstract. A fully implicit numerical method, based upon a combination of adap-
tively refined hierarchical meshes and geometric multigrid, is presented for the
simulation of binary alloy solidification in three space dimensions. The compu-
tational techniques are presented for a particular mathematical model, based upon
the phase-field approach, however their applicability is of greater generality than
for the specific phase-field model used here. In particular, an implicit second or-
der time discretization is combined with the use of second order spatial differences
to yield a large nonlinear system of algebraic equations as each time step. It is
demonstrated that these equations may be solved reliably and efficiently through
the use of a nonlinear multigrid scheme for locally refined grids. In effect this pa-
per presents an extension of earlier research in two space dimensions (J. Comput.
Phys., 225 (2007), pp. 1271–1287) to fully three-dimensional problems. This exten-
sion is validated against earlier two-dimensional results and against some of the
limited results available in three dimensions, obtained using an explicit scheme.
The efficiency of the implicit approach and the multigrid solver are then demon-
strated and some sample computational results for the simulation of the growth of
dendrite structures are presented.
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1 Introduction

The modelling of solidification structures, in particular the growth of dendritic crys-
tals, is a subject of intense and enduring interest within the scientific community, both
because dendrites are a prime example of spontaneous pattern formation and due to
their pervasive influence on the engineering properties of metals. In all but the most
restrictive of cases, analytical solutions to the equations of motion for the solid-liquid
interface, using techniques such as boundary integral methods (microscopic solvabil-
ity theory [1, 4, 26, 40]), cannot be found and recourse must be made to numerical
techniques. These include cellular automaton [13, 33], front-tracking [7], one-domain
multiphase models [10,32,55] and level set techniques [9,18,27,35]. However, the tech-
nique which over the last few years has received the most attention is that of phase-
field simulation [8, 28, 29, 39], in which a non-conserved order parameter φ is defined
over the whole domain, which encodes the phase state of the material. By assuming
the interface between the solid and liquid (or different solid phases in multi-phase
modelling) to be diffuse, φ is rendered continuous, wherein standard techniques for
partial differential equations (PDEs) may be used. This allows a regular Eulerian mesh
to be used and avoids many of the topological complexities involved with front track-
ing methods.

However, the application of phase-field modelling leads to a number of issues. The
resulting set of coupled PDEs is unsteady, highly non-linear and may moreover suffer
from significant multi-scale problems. The latter arises because although the phase-
field equations are formulated such that in the asymptotic limit of the diffuse interface
width, δ, tending to zero, the corresponding sharp interface equations are recovered
exactly, this is not sufficient to ensure that the solutions do not have a dependence
upon δ. Such limitations may be overcome by formulating the model in the so-called
”thin interface limit” [22–25], whereby asymptotic expansions of the solution on the
inner and outer regions of the solid-liquid interface are matched to obtain an equa-
tion set in which the solution is independent of the width of the diffuse interface.
However, in order to perform the asymptotic matching highly restrictive assump-
tions need to be made about the thermodynamics governing the phase transforma-
tion, which can restrict the applicability of such models. Consequently, in many cases
phase-field models are constructed such that δ is much smaller than the other length
scales characteristic of the problem. In particular, there is a growing body of opinion
that ”the sharp interface limit of a phase-field model is not the only meaningful phys-
ical limit” [12]. This view draws on the Gibbs [15] interpretation of understanding all
interfacial boundaries as being of finite width. In the context of the crystallisation of
metals this finite width interface can be understood physically as the number of atom
widths over which the long range order characteristic of the crystalline solid is lost,
and represents a tendency towards using interface widths in phase-field modelling
which may be of the order of the capillary length, typically 2 − 5 × 10−10m. This com-
pares with typical microstructural length scales which are of the order 10−6 − 10−5m.

Due to this multi-scale nature phase-field simulations tend to be highly compu-
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tationally intensive, requiring very significant spatial resolution in the vicinity of the
(moving) phase interface. Consequently, much of the literature on phase-field simu-
lation has tended historically to focus on two-dimensional problems, partly because
such problems are generally tractable using simple numerical techniques such as ex-
plicit time stepping and uniform spatial meshing. Even in two dimensions however
the limitations of such naive numerical approaches are well known and the advan-
tages of using more sophisticated techniques, such as mesh adaptivity [41, 56] and
implicit time stepping [47], have been clearly demonstrated.

Recently there have also been an increasing number of three-dimensional phase-
field simulations reported. These typically have to employ either extensive parallel
implementation, e.g., [14, 43], or dynamically adaptive meshing in order to achieve
sufficient resolution in the diffuse interface region without introducing excessive num-
bers of degrees of freedom into the model, e.g., [2, 30, 34, 53, 56]. However, there are
still significant challenges in utilising such models. It is difficult to combine adaptive
remeshing with parallel implementation, due to the consequent need to undertake
dynamic load balancing between processors as the mesh adapts [51].

Any use of adaptive mesh refinement will have its efficiency and accuracy gov-
erned by the methods used to drive it. For regular grid techniques, such as are em-
ployed in this work, the monitor functions that select areas for refinement are im-
portant, and the choice of these will necessarily need to balance faster computation
against accuracy of the solution achieved. More sophisticated methods, such as mesh
movement [3,50], can be used with fully unstructured meshes, as described in [56] for
example, where a significant reduction in the number of mesh points needed for both
2-d and 3-d thermal-only problems was achieved.

If explicit temporal schemes are used the time step is restricted by the size of the
smallest elements in the mesh. While adaptive remeshing is thus an attractive tool for
reducing the total number of elements within a mesh, this does not necessarily mean
that it can always be used effectively to give better spatial resolution, since finer mesh
elements may give rise to unfeasibly small time steps. This limitation can be overcome
by using implicit temporal discretization [47, 54], although at the expense of greater
computation time per time step. However, there are currently only a limited number
of examples [11, 17] of implicit time-stepping being applied to 3-dimensional phase-
field problems. In [11] a preconditioned Newton-Krylov approach is used to solve the
nonlinear systems that arise at each time step (using multigrid as the preconditioner)
whereas in [17] a nonlinear multigrid scheme [5, 6, 52] is applied directly at each time
step.

Another important feature of the efficient solution of these problems is the use of
adaptive timestepping. This enables smaller timesteps to be used during periods of
great change in the solution, such as the initial transients, but allows this to grow as
the simulation progresses. As with the spatial adaptivity there are many options for
controlling this. A heuristic monitor function, that looks at the rate of convergence of
the solution over each timestep, is applied here although more complicated measures
can be calculated, e.g., [16, 44, 47], and employed to control the local error per step as
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well as providing input into the choice of the appropriate next timestep.
In this paper we extend the scheme described in [17] so that it may be applied to

the simulation of an isothermal binary alloy using a phase-field model that features
a nonlinear evolution equation for the concentration of the solutal component of the
alloy in addition to the nonlinear phase-field equation. Such isothermal alloy solidifi-
cation models have potentially wide applicability in the simulation of microstructure
formation during conventional casting processes as the thermal diffusivity is typically
104 times larger then the solutal diffusivity, meaning the system is, to a good approxi-
mation, isothermal. This model, based upon [22,24], is described fully in the following
section. Unlike the phase-field model for a pure melt, used in [17] for example, there
have been only a very small number of three-dimensional codes developed for this al-
loy solidification model. Hence for validation of our results we have contrasted with
corresponding two-dimensional results from [47] and with three-dimensional results
obtained using the explicit code described in [21, 42]. Before this however, in sec-
tion 3, we provide a complete description of the computational techniques and tools
that have been used and developed in this work. The remainder of Section 4 then
presents some further numerical results which demonstrate the efficiency of our ap-
proach and shows some selected outputs from a number of sample simulations. The
paper concludes with a discussion of further developments that are required.

2 Mathematical model

The phase-field model used in this paper is a non-dimensional isothermal system fea-
turing two dependent variables: a phase field, φ, and a dimensionless solute concen-
tration, U [22, 24]. The phase variable takes values of +1 and −1 in the solid and
liquid phases respectively, and in the narrow interface region it varies smoothly be-
tween these bulk values. The driving force for the solidification comes from applying
a fixed undercooling throughout the melt (i.e., the bulk liquid is below its melting
temperature). Initially, a small spherical seed of solid phase is created around the
origin in order to initiate the solidification process, which is given preferred growth
directions via the definition of an anisotropy function A(ϑ, ψ) within the phase-field
model (where ϑ and ψ are the spherical angles of each point on the interface: see (2.8)
below). This anisotropy function appears in the phase evolution equation which, for
this model, takes the form:
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Throughout all of the simulations in this paper we assume that the function A(ϑ, ψ),
is expressed as

A(ϑ, ψ) = A0

{

1 + ε[cos4 ψ + sin4 ψ(1 − 2 sin2 ϑ cos2 ϑ)]
}

, (2.2)

which corresponds to a preference for growth along the Cartesian coordinate axis (i.e.,
a four-fold anisotropy). The small parameter ε governs the strength of the anisotropy,
whilst the parameters Mc∞ (where M is the scaled magnitude of the liquidus slope
and c∞ is the solute concentration far from the interface) and λ (a coupling parameter)
are assumed to be known (see (2.6) below). The additional parameter Ω is a scaled
supersaturation given by

Ω =
c0
ℓ
− c∞

(1 − k)c0
ℓ

, (2.3)

where c0
ℓ

is the solute concentration in the liquid at the solid-liquid interface and k is
the equilibrium partition coefficient.

The evolution equation for the dimensionless concentration field is given by

(1 + k

2
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, (2.4)

where D is the dimensionless diffusivity. The non-dimensional concentration field U
is related to the concentration c via

U =

(

2c/c∞

1+k−(1−k)φ

)

1 − k
, (2.5)

where k and c∞ are defined above.
In order to fully specify each computational run it is necessary to prescribe numer-

ical values to all of the parameters that appear in the governing equations and to select
an appropriate domain and boundary conditions. Not all of the numerical parameters
are free however since we have the following two constraints:

λ = D/a2 (see [22]) and Mc∞ = 1 − (1 − k)Ω (see [46]) (2.6)

where a2 = 0.6267 is a constant arising from the thin-interface analysis [22]. Unless
stated to the contrary, for the results shown in this paper we have selected default
values of Ω = 0.55, D = 1.5, ε = 0.02 and k = 0.15 for the remaining parameters
(though results are observed to be independent of k for any choice within the open
interval (0, 1)). Furthermore, for our domain we may select boundaries which are
sufficiently far from the origin so that they have no influence on the evolution of the
solid-liquid interface. At these far-field boundaries we apply the conditions:

∂φ

∂n̂
= 0 and

∂U

∂n̂
= 0 (2.7)
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for normal directions n̂ to the boundaries. Unless otherwise stated we find that a
default domain size of (−400, 400) × (−400, 400) × (−400, 400) is sufficient for the
runs undertaken here – though clearly this domain size is insufficient if either of the
solution fields become non-flat at the far-field boundary (in which case a larger do-
main must be selected). Note however that, due to our choice of anisotropy function
(2.2), the particular solutions that we are simulating here have a four-fold symmetry,
with preferred growth along each Cartesian axis. Hence it is possible to exploit this
symmetry in our solver by only using one eighth of the spatial domain (for example
(0, 400) × (0, 400) × (0, 400)) and use symmetry boundary conditions (still (2.7)) on
the x-y, x-z and y-z planes. Indeed, all of the results presented in this paper have been
obtained using this symmetry – however we have undertaken many simulations, not
reproduced here, to ensure that results obtained through this simplification are iden-
tical to those obtained when running on a full domain.

Finally, note that (2.4) is easily expressed in terms of Cartesian coordinates by eval-
uating the divergence and the gradient operators in this system. For our finite differ-
ence discretization it is also convenient to express (2.1) in Cartesian coordinates as
well. This may be achieved by noting that

tan ϑ =
φy
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, cos ψ =
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√

φ2
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y

φz
, (2.8)

so that the anisotropy function A may be rewritten as
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. (2.9)

Following [20], for example, the phase evolution equation may then be written as:
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Not only does this formulation permit the (relatively) straightforward use of Cartesian
finite differences but it is also found to be less susceptible to numerical anisotropy than
direct discretizations of (2.1).

3 Numerical methods

Having defined the mathematical model that we consider in this paper we now de-
scribe the discretization and solution methods that have been employed. It is im-
portant to emphasise that none of the scientific computing techniques that we have
developed here are specific to this particular mathematical model, so the proposed
approach is equally applicable to other phase-field models. There are a number of
components to this approach, however the overall solution technique may be sum-
marised as follows. Select an appropriate spatial discretization (in this case we use
second order finite differences) in order to semi-discretize the governing PDEs into a
large system of initial value ordinary differential equations (ODEs); select an uncon-
ditionally stable implicit time-stepping scheme of equal order to the spatial discretiza-
tion (here we choose BDF2, which can be shown to be A-stable [19]) which reduces the
problem at each time step to that of solving a large nonlinear algebraic system; employ
a nonlinear multigrid solver (we use Brandt’s full approximation scheme (FAS), [5,52])
in order to obtain the fast solution of each of these algebraic systems of equations with
an initial guess based upon the solution from the previous time level. In order to apply
the FAS solver it is necessary to have a hierarchy of finite difference meshes so as to
be able to resolve the solution at different length scales: we achieve this using nested
hexahedral meshes which allow local mesh refinement and de-refinement, [31,37,38].
This local adaptivity provides the necessary spatial resolution throughout the compu-
tational domain without requiring unnecessary degrees of freedom.

A number of different second order finite difference discretizations of Eqs. (2.10)
and (2.4) are possible and clearly any consistent schemes should converge to the same
solution as the mesh size is reduced. This is indeed what we find when comparing
the use of the minimal 7-point stencil with a compact 27-point stencil for example.
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An important constraint that we have put on our choice of finite difference stencil is
to avoid the use of any points around cell (i, j, k) that are not of the form (i ± 1, j ±
1, k ± 1). This ensures that our parallel implementation only needs a single layer of
guard cells between blocks of the mesh that are stored on different processors, which
reduces the memory and communication overhead significantly. In this work we have
also chosen to implement the finite difference discretization in a cell-centred manner-
with unknown values for both φ and U stored at the centre of each hexahedral cell
(furthermore, we use isotropic meshes so each cell is in fact a cube, rather than a more
general hexahedron). The reason for this choice stems from our adoption of an open
source library, PARAMESH [31,37,38], in order to control the three-dimensional mesh
refinement and de-refinement. This library provides functions to generate meshes in
an oct-tree structure of mesh blocks. Starting with a base block (of 8 × 8 × 8 cubic
cells for example) it is possible to refine this into up to 8 child blocks (with each block
always being of the same dimension as the base block) and then to refine any of these
child blocks successively. Functions are also provided to undo regions of this local
refinement (i.e., de-refinement) and to interpolate or restrict solution fields between
meshes. A further capability of PARAMESH is that it is able to undertake this meshing
in parallel in a manner that is hidden from the user – each block is simply treated
as independent of its neighbours and PARAMESH takes care of which process owns
each block, using its own rudimentary dynamic load balancing scheme. A price that
has to be paid for this simplicity is that every block is required to store guard cells in
each dimension regardless of whether its neighbouring blocks are actually owned by a
different process: PARAMESH’s guard cell update routines then take care of all of the
transfer of data between neighbouring blocks, regardless of their location in memory.

The local refinement and de-refinement capability provided by PARAMESH is es-
sential for this work since our phase-field models require very fine meshes around
the solid-liquid interface in order to ensure that the interface is resolved with suffi-
cient accuracy. The non-dimensionalization used to derive the systems introduced in
Section 2 is such that the interface width is O(1) and so our mesh spacing cannot be
greater than ∆x = 1 around the interface. Hence the finest grid resolution needs to
be at least this size (for a domain of dimension (0, 400) × (0, 400) × (0, 400) at least
nine levels of refinement are required – to give ∆x = 0.78125, though a tenth level
is necessary if we wish to ensure that the interface is even moderately well resolved
in its normal direction). Without the use of local mesh refinement and de-refinement
their would need to be an excessive number of cells, creating a computational load
that would be unmanageable without the very largest supercomputing resources.

Unfortunately the PARAMESH library does not provide all of the functionality
necessary to perform multigrid solution, even though the mesh hierarchy that is held
is ideal for multigrid. As outlined above, the need for multigrid arises from our use
of an unconditionally stable time-stepping scheme which results in a large system of
nonlinear algebraic equations at each time step. It has already been demonstrated
in [47] that the use of implicit timestepping for this particular phase-field model is es-
sential for fine spatial resolution to be achieved, even in two space dimensions. This
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is because the stability constraints imposed on the time-step size by the small spa-
tial mesh size at the phase boundary mean that explicit time-stepping is prohibitively
slow. This is equally true in three space dimensions. Hence we have employed the
same second order backward difference formula, BDF2, for time integration as in [47].
Adaptive time stepping is also used, based upon the rate of convergence of the multi-
grid cycle at the previous step: in particular if the multigrid defect calculated after
20V-cycles exceeds 10−7 the step size is reduced to 75% and the step is retaken; if it
converges taking more than 10V-cycles then the stepsize for the next step is reduced
to 90% of the current size; and, if the timestep converges within 5V-cycles the next
timestep is set to be 10/9 of the previous one. We have also a maximum time step,
∆t, beyond which we do not permit the size to grow (with ten levels of refinement
the default setting for this is ∆t = 0.4). To assess convergence at each time step the
Shampine convergence test [49] has been used.

The extension of the PARAMESH capability to include nonlinear multigrid is ex-
plained in [17]. That work describes the implementation of the multigrid itself and
gives some preliminary results on the parallel scalability for a simpler phase field
model, based upon the thermally-driven solidification of an undercooled pure melt.
The essential ingredients are the extension of the restriction and prolongation opera-
tors for the FAS scheme and for the use of the multi-step BDF formula (requiring data
from previous time steps to be used at each multigrid level). In this paper our focus
is on the extension of this solution approach to a three-dimensional alloy model for
the first time and so we have not considered issues of parallel scalability at all. In-
stead we use the application on parallel architectures as a capability mechanism: to
allow sufficiently large runs to be undertaken, for which there would not be sufficient
memory on a desktop workstation. Future research will focus on undertaking the
research necessary to improve the scalability to large numbers of cores, and as part
of this we have already implemented an improved load balancing approach for each
multigrid mesh than is available within the default PARAMESH framework. Conse-
quently the 3-d results given in the next section have been produced with typically
64 cores and 64 Gbytes of RAM. Even with this combination of mesh adaptivity, im-
plicit time-stepping, multigrid and moderate parallelism the computational work is
still considerable and so each of the reported three-dimensional runs still takes of the
order of 24 hours to complete (until the dendrite tip is observed to have an almost
constant velocity and tip radius). This is not unreasonable however since single core
results for similar problems in two space dimensions are reported as being of the or-
der of 11 hours in [47], for example. For more challenging two dimensional models of
alloy solidification, in which a thermal field is present in addition to the solute field,
reported run times are even greater [36, 48].

4 Results

In this section we consider both the validation and verification of the solver devel-
oped. We have firstly validated the our new solver when run in 2-d mode against a
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test case from Rosam et al. [47]. Since we know of no other implicit 3-d results in the
literature we have then run a set of test cases and compared them against equivalent
results obtained using an explicit time-stepping code, which is described in [21, 42].
These initial quantitative comparisons, which demonstrate the correctness of our code,
are then followed by a more detailed investigation of the numerical properties of our
new solver to assess its robustness and efficiency.

In order to compare our results against those of other codes two quantities as-
sociated with the numerical solutions are considered, namely the tip radius and tip
velocity of the computed dendrites. These are chosen since, once the solution pro-
gresses long past the initial transient, they should reach a steady state representing
the steady growth of the dendrite. For our cell-centred solver we store the computed
solution values for φ and U at the centre of each hexahedral element. This means that
we have no solution values for φ on the x-, y- or z-axis. Hence the position of the
dendrite tip, xtip, which is the intersection of the centre of the phase boundary (φ = 0)
with any axis (for the symmetry used here), needs to be reconstructed through inter-
polation. We have achieved this, using the x-axis for example, by interpolating values
in the z = 0 plane perpendicular to the x-axis in the vicinity of the tip. This provides
interpolated values of φ on the axis. These can then be interpolated in the x direction
to find where φ = 0: the tip location. All interpolants used are cubic splines. In order
to estimate the tip radius further interpolation is required to estimate where φ = 0 on
the z = 0 plane to either side of the x-axis (i.e., where y = ∆x and y = −∆x). These
points are then used to form a final cubic spline, denoted here as χ, passing through
(xtip, 0, 0). This can then be used to calculate the tip radius, R, since the radius of
curvature of any function can be given by

R =
(1 + (χ′)2)1.5

|χ′′| , (4.1)

noting that at the tip χ′ = 0. Such a calculation is inherently noisy since we are es-
sentially recovering second derivatives from cell-centred data. This noise shows itself
in the form of temporal oscillations in the calculated value, although their magnitude
is diminished as the mesh gets finer. The tip radius computed here is thus averaged
over 200 timesteps, reported at the middle of this interval. In order to calculate the tip
velocity, Vtip, we have simply used the distance that the tip has moved in this same
time interval.

In [47], a 2-d test case is considered that is defined by the parameters D = 2,
k = 0.15, ε = 0.02 and Ω = 0.55 with an initial circular seed taken as R0 = 14. Our
software, developed using PARAMESH, allows us to solve a genuinely 2-d problem
(rather than just considering a very thin test geometry) with minimal code modifi-
cations: the only differences inside the code are that the discretizations have all z
derivatives or components removed. In [47] it was shown how a finest mesh spac-
ing of ∆x = 0.39 is appropriate for obtaining converged results when using BDF2
timestepping. We have therefore used that in this paper, unless otherwise stated.
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Figure 1: 2-d simulation results
showing the evolution of tip loca-
tion, velocity and radius against
non-dimensional time.

The results achieved from our solver are summarised in Fig. 1, which is presented
so as to permit a direct comparison against Fig. 11 and 9c of [47]. It should be noted
that in Fig. 1 we have plotted the non-dimensional values of the R and Vtip since these
are the quantities plotted in [47]. The agreement between these results and [47] is
excellent with a steady tip velocity of 0.11 and a steady tip radius approaching 6.0 in
each case. Similarly the solution shown here in Fig. 2, which has grey-scale values for
phase, φ, [white:black] over [−1 : 1], and for solute, U, [white:black] over [0:1], may be
compared to Fig. 6 of [47]. For a final comparison it can be noted that at time t = 1800
our new software calculates the value of Vtipd0/D to be 0.0166 which is in excellent
agreement with Fig. 12 of [47].

Having verified that the 2-d restriction of our code matches published 2-d results
we now seek to verify that we are able to match 3-d results produced by an explicit
code [21,42]. This explicit code was kindly provided by its authors and so we are able
to verify that the results of these two codes do match. The explicit solver [21, 42] is
rather expensive in 3-d due to the small time steps necessitated by the finest mesh
elements. Hence the finest mesh resolution possible in a reasonable execution time
(days rather than weeks or months) is ∆x = 0.8 using a maximum stable time step of
∆t = 0.08. In addition the mesh domain size is optimized by using a contracted do-
main to only grow a single dendrite, ignoring any effects from the other tips interact-
ing with the sides of the domain. As such, the domain chosen for this comparison was
(0, 204.8)× (0, 102.4)× (0, 102.4). A fully developed dendrite for this case is shown in
Fig. 3 with the comparison of phase and solute profiles given in Fig. 4.
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Figure 2: The 2-d interface shape at time t = 1800, showing the phase solution on the left, and the solute
profile on the right.

Figure 3: The 3-d interface shape (the isosurface of φ = 0) at scaled time t = 5000, showing the phase
boundary that has a single dendrite grown along the x-axis, in a contracted domain.

Figure 4: The interface shape at z = 0 for a 3-d simulation at scaled time t = 5000, showing the phase
solution on the left, and the solute profile on the right.

In Table 1 we compare the results from the two codes for four test cases of varying
diffusivity D. The scaled versions of tip velocity (Vd0/D) and radius (R/D) are given
at a scaled time (tD/a1

3) of 2000. In order to test our own 3-d software we have
additionally solved this case on a domain of (0, 400) × (0, 400) × (0, 400) and using
a grid level finer than for the comparison with the explicit code. It can be seen that
the calculated tip velocities using the two approaches match very well and that the
tip radii have only very small variations from each other. Furthermore, these radius
variations reduce as D increases and, as discussed below, it is only for these larger
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Table 1: Comparison of the tip radius and velocity at scaled time t = 2000 using our 3-d implicit software
compared against an explicit 3-d code.

Method ∆x Domain Velocity
D = 0.8 D = 1.0 D = 1.5 D = 2.0

Explicit 0.8 204.8×102.4×102.4 0.057 0.055 0.051 0.047
Implicit 0.8 204.8×102.4×102.4 0.057 0.056 0.051 0.046
Implicit 0.39 400×400×400 0.059 0.058 0.053 0.048

Radius
D = 0.8 D = 1.0 D = 1.5 D = 2.0

Explicit 0.8 204.8×102.4×102.4 16.61 16.95 18.77 21.73
Implicit 0.8 204.8×102.4×102.4 17.70 17.79 19.52 21.63
Implicit 0.39 400×400×400 17.30 17.64 19.76 23.05

values of D that the solutions have reached their steady state values by the scaled
time of 2000. We also note that the use of the finer mesh and the larger computational
domain provides some additional accuracy beyond that obtained using the explicit
code or our implicit code with ∆x = 0.8.

The transient behaviour of these quantities, computed using our implicit solver
on the more accurate finer mesh, is shown in Fig. 5 which shows the tip velocity and
radius evolution for these four different D values. This study has been performed
on our larger domain, growing all of the dendrites in the eighth domain without any
edge effects. As remarked above, it should be noted that at scaled time 2000, where
the comparison is made in Table 1, the cases with D = 0.8 and D = 1.0 are not yet at
their steady-state values. It is useful to note that taking smaller timesteps (∆t < ∆x)
through the initial transients, for example up to scaled time 500 in this picture, can
provide extra accuracy in this period, but the steady-state tip velocities are unaffected.
Consequently we have allowed our solver to take larger (less accurate) timesteps in
the early stages of the simulations that follow. This leads to no loss of accuracy in the
reported steady state values.

The mesh convergence studies shown for 2-d cases in [47] have been reproduced
here for our new 3-d solver. In Fig. 6 the convergence of the results for ∆x taking the
values 0.78, 0.39 and 0.19 is shown. Whilst it is clear that in the early stages the larger
timesteps make a noticeable difference, the steady-state tip velocity and radius are
both converged sufficiently well by ∆x=0.39. This result, and the many similar cases
not reproduced here, give us confidence in the results obtained with this mesh spacing
in the interface region.

Convergence of the multigrid solver is shown in Fig. 7 at scaled time 1200 where
the root mean square residual for the phase equation is plotted against multigrid V-
cycle number. Note that since this is a transient simulation and different time step
sizes and initial guesses are being used it is difficult to make precise comparisons
however the rate of convergence appears to be almost independent of the finest mesh
level. This suggests that optimal multigrid convergence is being achieved.

Having satisfied ourselves that our choice of ∆x at the finest refinement level is
sufficiently small to yield accurate steady-state results for the parameter ranges of
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interest, it is now possible to apply our code to investigate the effects of varying some
of these parameters. For example, in Fig. 8 we present the effect of changing the initial
data by altering the radius, R0, of the solid seed. It is clear from these runs that, for
all three sizes considered here, the dendrite geometry and speed converge to the same
steady-state values respectively after (the expected) different initial transients.

In a similar manner, the final set of test cases that we present here illustrates how
the variation of the undercooling affects the dendrites that develop. This is achieved
through varying the parameter Ω, defined in (2.3). In Fig. 9 three different parameters
are tested, namely Ω = 0.45, 0.55 and 0.65, and snapshots of the resulting 3-d profiles
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are shown in Fig. 10. Here we have also plotted the evolution of tip location against
time, which clearly shows a slower speed of evolution with smaller undercooling. By
plotting the interface for each undercooling at time 2000 (images A, B and C) it can be
seen that the dendritic shape formation is correspondingly much slower with smaller
Ω. Also by comparing images C and D it can be seen that with the higher Ω, even
when the dendrites are nominally the same size (or at least at the same location), there
are many differences in the phase interfaces that have been simulated.

5 Conclusions

In this paper we have presented the first use of an implicit solver for phase-field mod-
elling of binary alloy solidification in three dimensions. In order to validate the devel-
opment of our software we have successfully compared the results to those achieved
by a 2-d implicit code given in [47] and the 3-d results obtained using an explicit
solver [21, 42].

We have demonstrated that using a BDF2 scheme enables us to take large timesteps
with small mesh spacing around the phase interface, and still obtain accurate results
for the key quantities being measured as the dendrites formed reach steady-state
growth. Combining the implicit timestepping with the adaptive mesh refinement
strategy used within the nonlinear multigrid framework has enabled us to solve at
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a finer mesh on a much larger domain than was possible with the explicit software.

The benefits of using the implicit solver will be even more evident when we ex-
tend this work to consider non-isothermal alloy solidification in 3-d. In such cases
there is an additional governing equation for the evolution of the thermal field and
an additional parameter, known as the Lewis number, which describes the ratio of the
thermal to the chemical diffusivity. In order to compute cases that simulate typical
metallic alloys this number needs to reach values in the range 1000 to 10000. Unfor-
tunately, for values of the Lewis number in this range, the governing equations are
extremely stiff and so even greater restrictions are placed on the maximum time step
size for conditionally stable schemes than for the isothermal case that has been con-
sidered in this paper. Our on-going research is therefore focused on the extension of
our fully implicit approach, which is ideally suited to very stiff problems, to tackle
these non-isothermal cases. The goal will be to demonstrate the same computational
capabilities in 3-d as we have previously been able to deliver in 2-d [48].
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This paper does not consider the issues of the parallel scalability or efficiency of
our software. Our current implementation using PARAMESH has enabled us to ob-
tain all of the results shown using, typically, 64 computational cores. This is sufficient
to provide the necessary memory to undertake the required runs (up to 32GB) how-
ever for faster simulations, or to solve even more challenging problems, such as non-
isothermal models, the parallel performance of the solver will need to be improved.
This is the second main strand of our current research and will be reported elsewhere.
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