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Abstract. In this paper, we investigate the error estimates and superconvergence
property of mixed finite element methods for elliptic optimal control problems. The
state and co-state are approximated by the lowest order Raviart-Thomas mixed fi-
nite element spaces and the control variable is approximated by piecewise constant
functions. We derive L2 and L∞-error estimates for the control variable. Moreover,
using a recovery operator, we also derive some superconvergence results for the
control variable. Finally, a numerical example is given to demonstrate the theoreti-
cal results.
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1 Introduction

The finite element approximation of optimal control problems has been extensively
studied in the literature. It is impossible to even give a very brief review here. For the
studies about convergence and superconvergence of finite element approximations
for optimal control problems, see, e.g., [5, 11, 13, 15, 17, 21–25, 28, 30–32]. A systematic
introduction of finite element methods for PDEs and optimal control problems can be
found in, e.g., [9, 19, 20, 29].
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Compared with standard finite element methods, the mixed finite methods have
many numerical advantages. When the objective functional contains gradient of the
state variable, we will firstly choose the mixed finite element methods. We have done
some works on a priori error estimates and superconvergence properties of mixed fi-
nite elements for optimal control problems, see, e.g., [3, 4, 6, 8, 26]. In [4], we used the
postprocessing projection operator, which was defined by Meyer and Rösch (see [21])
to prove a quadratic superconvergence of the control by mixed finite element meth-
ods. Recently, we derived error estimates and superconvergence of mixed methods
for convex optimal control problems in [8]. However, in [8], the regularity assumption
for the state and the co-state variables is a little strong.

The goal of this paper is to derive the error estimates and superconvergence of
mixed finite element approximation for an elliptic control problem. Firstly, by use of
the duality argument, we derive the superconvergence property between average L2

projection and the approximation of the control variable, the convergence order is h3/2

as that obtained in [8]. Then the error estimates of order h in the L2-norm and in the
L∞-norm for the control variable are derived. Moreover, two global superconvergence
results with the order h3/2 for the control variable can be obtained by using a recovery
operator. We can see that the regularity assumption for the state and the co-state vari-
ables is only y, z ∈ H2(Ω) ∩ W1,∞(Ω). Finally, we present a numerical experiment to
demonstrate the practical side of the theoretical results.

We consider the following linear optimal control problems for the state variables
p, y, and the control u with pointwise constraint:

min
u∈Uad

{1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2

}

(1.1)

subject to the state equation

−div(A(x)∇y) + a0y = u, x ∈ Ω, (1.2)

which can be written in the form of the first order system

divp + a0y = u, p = −A(x)∇y, x ∈ Ω (1.3)

and the boundary condition

y = 0, x ∈ ∂Ω, (1.4)

where Ω is a bounded domain in R
2. Uad denotes the admissible set of the control

variable, defined by

Uad =
{

u ∈ L∞(Ω) : u ≥ 0, a.e. in Ω
}

. (1.5)

Moreover, we assume that 0 ≤ a0 ∈ W1,∞(Ω), yd ∈ H1(Ω) and pd ∈ (H1(Ω))2. ν is a
fixed positive number. The coefficient A(x) = (aij(x)) is a symmetric matrix function
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with aij(x) ∈ W1,∞(Ω), which satisfies the ellipticity condition

c∗|ξ|
2 ≤

2

∑
i,j=1

aij(x)ξiξ j, ∀(ξ, x) ∈ R
2 × Ω̄, c∗ > 0.

The plan of this paper is as follows. In Section 2, we construct the mixed finite
element approximation scheme for the optimal control problem (1.1)-(1.4) and give its
equivalent optimality conditions. The main results of this paper are stated in Section
3. In Section 3, we derive the superconvergence properties between the average L2

projection and the approximation of the control variable, as well as between the post-
processing solution and the exact control solution. We also derive the L2 and L∞-error
estimates for optimal control problem. In Section 4, we present a numerical example
to demonstrate our theoretical results. In the last section, we briefly summarize the
results obtained and some possible future extensions.

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω

with a norm ‖ · ‖m,p given by

‖v‖
p
m,p = ∑

|α|≤m

‖Dαv‖
p

Lp(Ω)
,

a semi-norm | · |m,p given by

|v|
p
m,p = ∑

|α|=m

‖Dαv‖
p

Lp(Ω)
.

We set
W

m,p
0 (Ω) =

{

v ∈ Wm,p(Ω) : v|∂Ω = 0
}

.

For p = 2, we denote Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω) and ‖ · ‖m = ‖ · ‖m,2,
‖ · ‖ = ‖ · ‖0,2. In addition C denotes a general positive constant independent of h,
where h is the spatial mesh-size for the control and state discretization.

2 Mixed methods for optimal control problems

In this section we shall construct mixed finite element approximation scheme of the
control problem (1.1)-(1.4). For sake of simplicity, we assume that the domain Ω is a
convex polygon. Now, we introduce the co-state elliptic equation

−div(A(x)(∇z + p − pd)) + a0z = y − yd, x ∈ Ω, (2.1)

which can be written in the form of the first order system

divq + a0z = y − yd, q = −A(x)(∇z + p − pd), x ∈ Ω, (2.2)

and the boundary condition

z = 0, x ∈ ∂Ω. (2.3)

Next, we recall a result from Grisvard [12].
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Lemma 2.1. (see [12]) For every p (2 ≤ p < pΩ) and every function ψ ∈ Lp(Ω), the
solution φ of

−div(A∇φ) + a0φ = ψ in Ω, φ|∂Ω = 0 (2.4)

belongs to H1
0(Ω) ∩ W2,p(Ω), where the constant pΩ > 2 depending on the biggest interior

angle of Ω and A. Moreover, there exists a positive constant C, independent of a0 such that

‖φ‖W2,p(Ω) ≤ C‖ψ‖Lp(Ω). (2.5)

Let

V = H(div; Ω) =
{

v ∈ (L2(Ω))2, divv ∈ L2(Ω)
}

, W = L2(Ω). (2.6)

We recast (1.1)-(1.4) as the following weak form: find (p, y, u) ∈ V × W × Uad such
that

min
u∈Uad

{

1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2

}

, (2.7a)

(A−1p, v)− (y, divv) = 0, ∀v ∈ V , (2.7b)

(divp, w) + (a0y, w) = (u, w), ∀w ∈ W. (2.7c)

It follows from [19] that the optimal control problem (2.7a)-(2.7c) has a unique solution
(p, y, u), and that a triplet (p, y, u) is the solution of (2.7a)-(2.7c) if and only if there
is a co-state (q, z) ∈ V × W such that (p, y, q, z, u) satisfies the following optimality
conditions:

(A−1p, v)− (y, divv) = 0, ∀v ∈ V , (2.8a)

(divp, w) + (a0y, w) = (u, w), ∀w ∈ W, (2.8b)

(A−1q, v)− (z, divv) = −(p − pd, v), ∀v ∈ V , (2.8c)

(divq, w) + (a0z, w) = (y − yd, w), ∀w ∈ W, (2.8d)

(νu + z, ũ − u) ≥ 0, ∀ũ ∈ Uad, (2.8e)

where (·, ·) is the inner product of L2(Ω).
The inequality (2.8e) can be expressed as

u = max{0,−z}/ν. (2.9)

Let Th denotes a regular triangulation of the polygonal domain Ω, hT denotes the
diameter of T and h = max hT . Let V h × Wh ⊂ V × W denotes the lowest order
Raviart-Thomas mixed finite element space [10, 27], namely,

∀T ∈ Th, V(T) = P0(T)⊕ span(xP0(T)), W(T) = P0(T),
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where Pm(T) denotes polynomials of total degree at most m, P0(T) = (P0(T))2, x =
(x1, x2) which is treated as a vector, and

V h :=
{

vh ∈ V : ∀T ∈ Th, vh|T ∈ V(T)
}

, (2.10a)

Wh :=
{

wh ∈ W : ∀T ∈ Th, wh|T ∈ W(T)
}

. (2.10b)

And the approximated space of control is given by

Uh :=
{

ũh ∈ Uad : ∀T ∈ Th, ũh|T = constant
}

. (2.11)

Before the mixed finite element scheme is given, we introduce two operators.
Firstly, we define the standard L2(Ω)-projection [10] Ph : W → Wh, which satisfies:
for any φ ∈ W

(Phφ − φ, wh) = 0, ∀ wh ∈ Wh, (2.12a)

‖φ − Phφ‖−s,ρ ≤ Ch1+s‖φ‖1,ρ, s = 0, 1, 2 ≤ ρ ≤ ∞, ∀φ ∈ W1,ρ(Ω). (2.12b)

Next, recall the Fortin projection (see [2] and [10]) Πh : V → V h, which satisfies:
for any q ∈ V

(div(Πhq − q), wh) = 0, ∀wh ∈ Wh, (2.13a)

‖q − Πhq‖0,ρ ≤ Ch‖q‖1,ρ, 2 ≤ ρ ≤ ∞, ∀q ∈ (W1,ρ(Ω))2, (2.13b)

‖div(q − Πhq)‖ ≤ Ch‖divq‖1, ∀divq ∈ H1(Ω). (2.13c)

We have the commuting diagram property

div ◦ Πh = Ph ◦ div : V → Wh and div(I − Πh)V ⊥ Wh, (2.14)

where and after, I denote identity operator.
Then the mixed finite element discretization of (2.7a)-(2.7c) is as follows: find

(ph, yh, uh) ∈ V h × Wh × Uh such that

min
uh∈Uh

{

1

2
‖ph − pd‖

2 +
1

2
‖yh − yd‖

2 +
ν

2
‖uh‖

2

}

, (2.15a)

(A−1ph, vh)− (yh, divvh) = 0, ∀vh ∈ V h, (2.15b)

(divph, wh) + (a0yh, wh) = (uh, wh), ∀wh ∈ Wh. (2.15c)

The optimal control problem (2.15a)-(2.15c) again has a unique solution (ph, yh, uh),
and that a triplet (ph, yh, uh) is the solution of (2.15a)-(2.15c) if and only if there is a co-
state (qh, zh) ∈ V h × Wh such that (ph, yh, qh, zh, uh) satisfies the following optimality
conditions:

(A−1ph, vh)− (yh, divvh) = 0, ∀vh ∈ V h, (2.16a)

(divph, wh) + (a0yh, wh) = (uh, wh), ∀wh ∈ Wh, (2.16b)

(A−1qh, vh)− (zh, divvh) = −(ph − pd, vh), ∀vh ∈ V h, (2.16c)

(divqh, wh) + (a0zh, wh) = (yh − yd, wh), ∀wh ∈ Wh, (2.16d)

(νuh + zh, ũh − uh) ≥ 0, ∀ũh ∈ Uh. (2.16e)
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Similar to (2.9), the control inequality (2.16e) can be expressed as

uh = max{0,−zh}/ν. (2.17)

In the rest of the paper, we shall use some intermediate variables. For any control
function ũ ∈ Uad, we first define the state solution (p(ũ), y(ũ), q(ũ), z(ũ))∈ (V × W)2

associated with ũ that satisfies

(A−1p(ũ), v)− (y(ũ), divv) = 0, ∀v ∈ V , (2.18a)

(divp(ũ), w) + (a0y(ũ), w) = (ũ, w), ∀w ∈ W, (2.18b)

(A−1q(ũ), v)− (z(ũ), divv) = −(p(ũ)− pd, v), ∀v ∈ V , (2.18c)

(divq(ũ), w) + (a0z(ũ), w) = (y(ũ)− yd, w), ∀w ∈ W. (2.18d)

Then, we define the discrete state solution (ph(ũ), yh(ũ), qh(ũ), zh(ũ))∈ (V h × Wh)
2

associated with ũ that satisfies

(A−1ph(ũ), vh)− (yh(ũ), divvh) = 0, ∀vh ∈ V h, (2.19a)

(divph(ũ), wh) + (a0yh(ũ), wh) = (ũ, wh), ∀wh ∈ Wh, (2.19b)

(A−1qh(ũ), vh)− (zh(ũ), divvh) = −(ph(ũ)− pd, vh), ∀vh ∈ V h, (2.19c)

(divqh(ũ), wh) + (a0zh(ũ), wh) = (yh(ũ)− yd, wh), ∀wh ∈ Wh. (2.19d)

Thus, as we defined, the exact solution and its approximation can be written in the
following way:

(p, y, q, z) = (p(u), y(u), q(u), z(u)),

(ph, yh, qh, zh) = (ph(uh), yh(uh), qh(uh), zh(uh)).

3 Error estimates and superconvergence analysis

Superconvergence has been one of the important features for the finite element meth-
ods, see, e.g., [7, 8, 14, 31]. In this section, we will derive the error estimates and some
superconvergent results for the control variable.

Now, we are in the position of deriving the estimate for ‖Phz(uh)− zh‖.

Lemma 3.1. Let (p(uh), y(uh), q(uh), z(uh)) ∈ (V × W)2 and (ph, yh, qh, zh) ∈ (V h ×
Wh)

2 be the solutions of (2.18a)-(2.18d) and (2.19a)-(2.19d) with ũ = uh respectively. If the
solution satisfies

p(uh), q(uh) ∈ (H1(Ω))2 and y(uh), z(uh) ∈ W1,∞(Ω),

then we have

‖Phy(uh)− yh‖ ≤ Ch2, (3.1a)

‖Phz(uh)− zh‖ ≤ Ch2. (3.1b)
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Proof. From Eqs. (2.18a)-(2.18d) and (2.19a)-(2.19d), we can easily obtain the fol-
lowing error equations

(A−1(p(uh)− ph), vh)− (y(uh)− yh, divvh) = 0, (3.2a)

(div(p(uh)− ph), wh) + (a0(y(uh)− yh), wh) = 0, (3.2b)

(A−1(q(uh)− qh), vh)− (z(uh)− zh, divvh) = −(p(uh)− ph, vh), (3.2c)

(div(q(uh)− qh), wh) + (a0(z(uh)− zh), wh) = (y(uh)− yh, wh), (3.2d)

for any vh ∈ V h and wh ∈ Wh.
As a result of (2.12a), we can rewrite (3.2a)-(3.2d) as

(A−1(p(uh)− ph), vh)− (Phy(uh)− yh, divvh) = 0, (3.3a)

(div(p(uh)− ph), wh) + (a0(y(uh)− yh), wh) = 0, (3.3b)

(A−1(q(uh)− qh), vh)− (Phz(uh)− zh, divvh) = −(p(uh)− ph, vh), (3.3c)

(div(q(uh)− qh), wh) + (a0(z(uh)− zh), wh) = (Phy(uh)− yh, wh), (3.3d)

for any vh ∈ V h and wh ∈ Wh.
For sake of simplicity, we now denote

τ = Phy(uh)− yh, e = Phz(uh)− zh. (3.4)

Then, we estimate (3.1a) and (3.1b) in Part I and Part II, respectively.
Part I. As we can see,

‖τ‖ = sup
ψ∈L2(Ω), ψ 6=0

(τ, ψ)

‖ψ‖
, (3.5)

we then need to bound (τ, ψ) for ψ ∈ L2(Ω). Let φ ∈ H2(Ω) ∩ H1
0(Ω) be the solution

of (2.4). We can see from (2.13a) and (3.3a)

(τ, ψ) =(τ,−div(A∇φ)) + (τ, a0φ)

=− (τ, div(Πh(A∇φ))) + (τ, a0φ)

=− (A−1(p(uh)− ph), Πh(A∇φ)) + (τ, a0φ). (3.6)

Note that

(div(p(uh)− ph), φ) + (A−1(p(uh)− ph), A∇φ) = 0. (3.7)

Thus, from (3.3b), (3.6) and (3.7), we derive

(τ, ψ) =(A−1(p(uh)− ph), A∇φ − Πh(A∇φ))

+ (div(p(uh)− ph), φ − Phφ) + (a0τ, φ − Phφ)

+ (a0(y(uh)− Ph(y(uh))), φ − Phφ)− (a0(y(uh)− Ph(y(uh))), φ). (3.8)
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From (2.13b), we have

(A−1(p(uh)− ph), A∇φ − Πh(A∇φ)) ≤ Ch‖p(uh)− ph‖ · ‖φ‖2. (3.9)

Let ũ = uh and w = divp(uh) + a0y(uh)− uh in (2.18b), we can find that

divp(uh) + a0y(uh)− uh = 0. (3.10)

Similarly, by (2.12a) and (2.16b), it is easy to see that

divph = uh − Pha0yh. (3.11)

By (3.10), (3.11), (2.12a) and (2.12b), we have

(div(p(uh)− ph), φ − Phφ) =(Pha0yh − a0y(uh), φ − Phφ)

=(Ph(a0y(uh))− a0y(uh), φ − Phφ)

≤C‖Ph(a0y(uh))− a0y(uh)‖ · ‖φ − Phφ‖

≤Ch2‖a0‖1,∞‖y(uh)‖1‖φ‖1. (3.12)

For the third and the fourth terms on the right side of (3.8), using (2.12b), we get

(a0τ, φ − Phφ) ≤ Ch‖τ‖ · ‖φ‖1, (3.13a)

(a0(y(uh)− Ph(y(uh))), φ − Phφ) ≤ Ch2‖y(uh)‖1‖φ‖1. (3.13b)

Moreover, by (2.12b), we find that

(a0(y(uh)− Ph(y(uh))), φ) =(y(uh)− Ph(y(uh)), a0φ)

≤C‖y(uh)− Ph(y(uh))‖−1‖a0φ‖1

≤Ch2‖a0‖1,∞‖y(uh)‖1‖φ‖1. (3.14)

For sufficiently small h, by (3.5), (3.8)-(3.9) and (3.12)-(3.14), we derive

‖Phy(uh)− yh‖ ≤ Ch‖p(uh)− ph‖+ Ch2. (3.15)

Choosing vh = Πh p(uh)− ph in (3.3a) and wh = Phy(uh)− yh in (3.3b), respectively.
Then adding the two equations to get

(A−1(Πh p(uh)− ph), Πh p(uh)− ph) + (a0(Phy(uh)− yh), Phy(uh)− yh)

=− (A−1(p(uh)− Πh p(uh)), Πh p(uh)− ph)

− (a0(y(uh)− Phy(uh)), Phy(uh)− yh). (3.16)

Using (3.16), (2.12b), (2.13b) and the assumptions on A and a0, we find that

‖Πh p(uh)− ph‖ ≤ Ch + ‖Phy(uh)− yh‖. (3.17)
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Substituting (3.17) into (3.15), using (2.13b), for sufficiently small h, we have

‖Phy(uh)− yh‖ ≤ Ch2, (3.18)

which yields (3.1a).
Part II. Since

‖e‖ = sup
ψ∈L2(Ω),ψ 6=0

(e, ψ)

‖ψ‖
, (3.19)

we then need to bound (e, ψ) for ψ ∈ L2(Ω). From (2.13a) and (3.3c), we can see that

(e, ψ) =(e,−div(A∇φ)) + (e, a0φ)

=− (e, div(Πh(A∇φ))) + (e, a0φ)

=− (A−1(q(uh)− qh), Πh(A∇φ)) + (e, a0φ)

− (p(uh)− ph, Πh(A∇φ)). (3.20)

Note that

(div(q(uh)− qh), φ) + (A−1(q(uh)− qh), A∇φ) = 0. (3.21)

Thus, from (3.3d), (3.20) and (3.21), we derive

(e, ψ) =(A−1(q(uh)− qh), A∇φ − Πh(A∇φ))

+ (div(q(uh)− qh), φ − Phφ) + (a0e, φ − Phφ)

+ (a0(z(uh)− Ph(z(uh))), φ − Phφ)− (a0(z(uh)− Ph(z(uh))), φ)

− (τ, Phφ)− (p(uh)− ph, Πh(A∇φ))

= :
7

∑
i=1

Ii. (3.22)

Let ũ = uh and w = divq(uh) + a0z(uh)− y(uh) + yd in (2.18d), we can find that

divq(uh) + a0z(uh) = y(uh)− yd. (3.23)

Similarly, by (2.12a) and (2.16d), it is easy to see that

divqh = yh − Phyd − Pha0zh. (3.24)

By (2.12a)-(2.12b) and (3.23)-(3.24), we have

I2 =(Pha0zh − a0z(uh), φ − Phφ) + (Phyd − yd, φ − Phφ)

+ (y(uh)− Phy(uh), φ − Phφ) + (Phy(uh)− yh, φ − Phφ)

=(Ph(a0z(uh))− a0z(uh), φ − Phφ) + (Phyd − yd, φ − Phφ)

+ (y(uh)− Phy(uh), φ − Phφ)

≤Ch2(‖a0‖1,∞‖z(uh)‖1 + ‖yd‖1 + ‖y(uh)‖1)‖φ‖1. (3.25)
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Similar to the estimates (3.9) and (3.13a)-(3.14), we estimate I1, I3, I4 and I5 as follows

I1 ≤ Ch‖q(uh)− qh‖ · ‖φ‖2, I3 ≤ Ch‖e‖ · ‖φ‖1, (3.26a)

I4 ≤ Ch2‖z(uh)‖1‖φ‖1, I5 ≤ Ch2‖a0‖1,∞‖z(uh)‖1‖φ‖1. (3.26b)

For I6, by use of (3.1a), we get

I6 ≤ C‖τ‖ · ‖φ‖ ≤ Ch2‖φ‖. (3.27)

Finally, for I7, from (2.13b), (2.13c), (3.1a), (3.3a) and (3.17), we have

I7 =(p(uh)− ph, A∇φ − Πh(A∇φ))− (A−1(p(uh)− ph), A2∇φ)

=(p(uh)− ph, A∇φ − Πh(A∇φ))− (A−1(p(uh)− ph), A2∇φ − Πh(A2∇φ))

− (Phy(uh)− yh, div(Πh(A2∇φ)))

≤Ch2‖φ‖2. (3.28)

Substituting the estimates I1-I7 in (3.22), for sufficiently small h, by (3.19), we derive

‖Phz(uh)− zh‖ ≤ Ch‖q(uh)− qh‖+ Ch2. (3.29)

Next, using (2.13a), we rewrite (3.3c)-(3.3d) as

(A−1(Πhq(uh)− qh), vh)− (Phz(uh)− zh, divvh)

=(A−1(q(uh)− Πhq(uh)), vh)− (p(uh)− Πh p(uh), vh)

− (Πh p(uh)− ph, vh), ∀vh ∈ V h, (3.30a)

(div(Πhq(uh)− qh), wh) + (a0(Phz(uh)− zh), wh)

=− (a0(z(uh)− Phz(uh)), wh) + (Phy(uh)− yh, wh), ∀ wh ∈ Wh. (3.30b)

Similar to (3.17), we can get

‖Πhq(uh)− qh‖ ≤ Ch + ‖Phz(uh)− zh‖. (3.31)

Substituting (3.31) into (3.29), using (2.13b), for sufficiently small h, we have

‖Phz(uh)− zh‖ ≤ Ch2. (3.32)

Thus, we complete the proof. �

In order to derive the main results, we need the following error estimates.

Lemma 3.2. Let (p(Phu), y(Phu), q(Phu), z(Phu)) and (p(u), y(u), q(u), z(u)) be the so-
lutions of (2.18a)-(2.18d) with ũ = Phu and ũ = u, respectively. Assume that u ∈ H1(Ω).
Then we have

‖y(u)− y(Phu)‖+ ‖p(u)− p(Phu)‖ ≤ Ch2, (3.33a)

‖z(u)− z(Phu)‖+ ‖q(u)− q(Phu)‖ ≤ Ch2. (3.33b)
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Proof. First, we choose ũ = Phu and ũ = u in (2.18a)-(2.18d) respectively, then we
obtain the following error equations

(A−1(p(Phu)− p(u)), v)− (y(Phu)− y(u), divv) = 0, (3.34a)

(div(p(Phu)− p(u)), w) + (a0(y(Phu)− y(u)), w) = (Phu − u, w), (3.34b)

(A−1(q(Phu)− q(u)), v)− (z(Phu)− z(u), divv) = −(p(Phu)− p(u), v), (3.34c)

(div(q(Phu)− q(u)), w) + (a0(z(Phu)− z(u)), w) = (y(Phu)− y(u), w), (3.34d)

for any v ∈ V and w ∈ W.
Setting v = p(Phu) − p(u) and w = y(Phu) − y(u) in (3.34a) and (3.34b) respec-

tively and adding the two equations to get

(A−1(p(Phu)− p(u)), p(Phu)− p(u)) + (a0(y(Phu)− y(u)), y(Phu)− y(u))

=(Phu − u, y(Phu)− y(u)). (3.35)

Then, we estimate the right side of (3.35). Note that p(Phu)− p(u) = −∇(y(Phu)−
y(u)), by (2.12b) and Poincare’ inequality, we have

(Phu − u, y(Phu)− y(u)) ≤C‖Phu − u‖−1‖y(Phu)− y(u))‖1

≤Ch2‖u‖1‖p(Phu)− p(u)‖. (3.36)

It follows from the assumptions on A and a0, (3.35) and (3.36) that

‖p(Phu)− p(u)‖ ≤ Ch2. (3.37)

By the Poincare’s inequality again, we have

‖y(Phu)− y(u)‖ ≤ C‖p(Phu)− p(u)‖ ≤ Ch2. (3.38)

Similarly, selecting v = q(Phu)− q(u) and w = z(Phu)− z(u) in (3.34c) and (3.34d),
respectively. It follows from the standard stability argument that

‖z(Phu)− z(u)‖+ ‖q(Phu)− q(u)‖ ≤ C(‖y(Phu)− y(u)‖+ ‖p(Phu)− p(u)‖). (3.39)

Therefore Lemma 3.2 is proved from (3.37)-(3.39). �

Now, we will discuss the superconvergence for the control variable. Let

Ω+ =
{

⋃

T : T ⊂ Ω, u(x)|T > 0
}

,

Ω0 =
{

⋃

T : T ⊂ Ω, u(x)|T ≡ 0
}

,

Ω− = Ω \(Ω+ ∪ Ω0).

It is easy to check that the three parts do not intersect on each other, and Ω = Ω+ ∪
Ω0 ∪Ω−. In this paper we assume that u and Th are regular such that meas(Ω−) ≤ Ch
(see [21]).
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Theorem 3.1. Let u be the solution of (2.8a)-(2.8e) and uh be the solution of (2.16a)-(2.16e),
respectively. Assume that all the assumptions in Lemma 3.1 are valid and u, z ∈ W1,∞(Ω).
Then, we have

‖Phu − uh‖ ≤ Ch
3
2 . (3.40)

Proof. We choose ũ = uh in (2.8e) and ũh = Phu in (2.16e) to get the following two
inequalities:

(νu + z, uh − u) ≥ 0 (3.41)

and

(νuh + zh, Phu − uh) ≥ 0. (3.42)

Note that uh − u = uh − Phu + Phu − u. Adding the two inequalities (3.41) and
(3.42), we have

(νuh + zh − νu − z, Phu − uh) + (νu + z, Phu − u) ≥ 0. (3.43)

Thus, by (3.43) and (2.12a), we find that

ν‖Phu − uh‖
2 =ν(Phu − uh, Phu − uh)

=ν(Phu − u, Phu − uh) + ν(u − uh, Phu − uh)

≤(zh − z, Phu − uh) + (νu + z, Phu − u)

=(zh − Phz(uh), Phu − uh) + (νu + z, Phu − u)

+ (z(Phu)− z(u), Phu − uh) + (z(uh)− z(Phu), Phu − uh). (3.44)

By Lemma 3.1 and Lemma 3.2, we find that

(zh − Phz(uh), Phu − uh) ≤ Ch4 +
ν

4
‖Phu − uh‖

2 (3.45)

and

(z(Phu)− z(u), Phu − uh) ≤ Ch4 +
ν

4
‖Phu − uh‖

2. (3.46)

For the second term at the right side of (3.44), by Theorem 5.1 in [8], we have

(νu + z, Phu − u) ≤ Ch3(‖u‖2
1,∞ + ‖z‖2

1,∞). (3.47)

For the last term at the right side of (3.44), it is easy to see that

(z(uh)− z(Phu), Phu − uh) = −‖y(uh)− y(Phu)‖2 − ‖p(uh)− p(Phu)‖2 ≤ 0. (3.48)

Combining (3.44)-(3.48), we derive (3.40). �

Now, we can derive the L2 and L∞-error estimates for the control variable.
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Theorem 3.2. Let (y, z, u) and (yh, zh, uh) be the solutions of (2.8a)-(2.8e) and (2.16a)-
(2.16e) respectively. Assume that all the assumptions in Theorem 3.1 are valid. Then we
have

‖u − uh‖ ≤ Ch, (3.49a)

‖u − uh‖0,∞ ≤ Ch. (3.49b)

Proof. Using (2.12b) and Theorem 3.1, it is easy to see that

‖u − uh‖ ≤‖u − Phu‖+ ‖Phu − uh‖

≤Ch‖u‖1 + ‖Phu − uh‖

≤Ch. (3.50)

From (1.2), we have the following error equation

−div(A∇(y − y(uh))) + a0(y − y(uh)) = u − uh. (3.51)

Using Lemma 2.1, (3.50) and the classical imbedding theorem, we can see that

‖y − y(uh)‖0,∞ ≤ C‖y − y(uh)‖2 ≤ C‖u − uh‖ ≤ Ch. (3.52)

Thus, by use of Lemma 3.1, (2.12b), (3.52) and the inverse estimate, we find that

‖y − yh‖0,∞ ≤‖y − y(uh)‖0,∞ + ‖y(uh)− Phy(uh)‖0,∞ + ‖Phy(uh)− yh‖0,∞

≤Ch‖y(uh)‖1,∞ + Ch−1‖Phy(uh)− yh‖

≤Ch. (3.53)

Similarly, from (2.1), we have the following error equation

−div(A∇(z − z(uh))) + a0(z − z(uh)) = −div(A2∇(y − y(uh))) + y − y(uh). (3.54)

Using Lemma 2.1 and the classical imbedding theorem, we can see that

‖z − z(uh)‖0,∞ ≤C‖z − z(uh)‖2

≤C‖div(A2∇(y − y(uh)))− y + y(uh)‖

≤C‖div(A2∇(y − y(uh)))‖+ C‖y − y(uh)‖

≤C‖A2∇(y − y(uh))‖1 + C‖y − y(uh)‖

≤C‖A‖2
1,∞‖y − y(uh)‖2 + C‖y − y(uh)‖

≤C‖y − y(uh)‖2. (3.55)

Thus, by use of (2.12b), (3.52), (3.55), Lemma 3.1 and the inverse estimate, we find that

‖z − zh‖0,∞ ≤‖z − z(uh)‖0,∞ + ‖z(uh)− Phz(uh)‖0,∞ + ‖Phz(uh)− zh‖0,∞

≤Ch. (3.56)
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Finally, from (2.9), (2.17) and (3.56), we get

‖u − uh‖0,∞ ≤ C‖z − zh‖0,∞ ≤ Ch. (3.57)

We complete the proof. �

Now, let us construct the recovery operator Gh. Let Ghv be a continuous piecewise
linear function (without zero boundary constraint). The value of Ghv on the nodes are
defined by least-squares argument on an element patches surrounding the nodes, the
details can be refer to the definition of Rh in [18].

Theorem 3.3. Let u and uh be the solutions of (2.8a)-(2.8e) and (2.16a)-(2.16e), respectively.
Assume that all the conditions in Theorem 3.1 are valid and u ∈ W1,∞(Ω). Then we have

‖u − Ghuh‖ ≤ Ch
3
2 . (3.58)

Proof. Let Phu be defined in (2.12a). Then

‖u − Ghuh‖ ≤ ‖u − Ghu‖+ ‖Ghu − GhPhu‖+ ‖GhPhu − Ghuh‖. (3.59)

According to Lemma 4.2 in [18], we have

‖u − Ghu‖ ≤ Ch
3
2 . (3.60)

Using the definition of Gh, we find that

Ghu = GhPhu (3.61)

and

‖GhPhu − Ghuh‖ ≤ C‖Phu − uh‖. (3.62)

Combining (3.59)-(3.62) with Theorem 3.1, we complete the proof. �

Moreover, as in [21] we construct a postprocessing projection operator of the dis-
crete co-state to the admissible set

û = max{0,−Ghzh}/ν. (3.63)

Now, we can prove the second global superconvergence result for the control variable.

Theorem 3.4. Assume that all the conditions in Theorem 3.1 and Lemma 3.1 are valid. More-
over, we assume that p, q ∈ H1(Ω) and y, z ∈ H2(Ω) ∩ W1,∞(Ω). Let u be the solution of
(2.8a)-(2.8e) and û be the function constructed in (3.63). Then we have

‖u − û‖ ≤ Ch
3
2 . (3.64)
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Proof. Similar to Lemma 3.1, we can derive

‖Phz − zh‖ ≤ Ch
3
2 . (3.65)

Using the same method as in Theorem 3.3, we find that

‖z − Ghzh‖ ≤ Ch
3
2 . (3.66)

Then, by use of (2.9) and (3.63), we arrive at

|u − û| ≤ C|z − Ghzh|. (3.67)

Thus, (3.64) can be proved by (3.66) and (3.67). �

4 Numerical experiments

In this section, we present below an example to illustrate the theoretical results. The
optimization problems were solved numerically by projected gradient methods, with
codes developed based on AFEPack [16]. The discretization was already described
in previous sections: the control function u was discretized by piecewise constant
functions, whereas the state (y, p) and the co-state (z, q) were approximated by the
lowest order Raviart-Thomas mixed finite element functions. In our examples, we
choose the domain Ω = [0, 1]× [0, 1], ν = 1, a0 = 0 and A = I.

Example 4.1. We consider the following two-dimensional elliptic optimal control prob-
lem

min
u∈Uad

{

1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
1

2
‖u − u0‖

2

}

(4.1)

subject to the state equation

divp = f + u, p = −grady, (4.2)

where

y = sin(πx1) sin(πx2), z = sin(πx1) sin(πx2), (4.3a)

u0 = 1.0 − 0.8 sin
(πx1

2

)

− 0.8 sin(2πx2), u = max(u0 − z, 0), (4.3b)

f = 2π2y − u, yd = y − 2π2y, (4.3c)

pd = −

(

π cos(πx1) sin(πx2)
π sin(πx1) cos(πx2)

)

. (4.3d)

In Table 1, the errors ‖u − uh‖, ‖u − uh‖0,∞, ‖Phu − uh‖, ‖u − Ghuh‖ and ‖u − û‖
obtained on a sequence of uniformly refined meshes are shown. Table 2 shows the
convergence orders of these errors. In Fig. 1, the profile of the numerical solution of u
on the 64 × 64 mesh grid is plotted. Theoretical results are clearly recognized from the
data.
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Figure 1: The profile of the numerical solution of u on 64 × 64 triangle mesh.

Table 1: The errors of ‖u − uh‖, ‖u − uh‖0,∞, ‖Phu − uh‖, ‖u − Ghuh‖ and ‖u − û‖.

Resolution ‖u − uh‖ ‖u − uh‖0,∞ ‖Phu − uh‖ ‖u − Ghuh‖ ‖u − û‖
16 × 16 4.60625e-02 2.46735e-01 5.47148e-03 3.90463e-02 2.01596e-02
32 × 32 2.31954e-02 1.24657e-01 1.95519e-03 1.55743e-02 6.79340e-03
64 × 64 1.16692e-02 6.24724e-02 7.28564e-04 5.61971e-03 2.32197e-03

128× 128 5.84874e-03 3.12553e-02 2.45686e-04 1.98680e-03 8.04781e-04

Table 2: Convergence orders of ‖u − uh‖, ‖u − uh‖0,∞, ‖Phu − uh‖, ‖u − Ghuh‖ and ‖u − û‖.

h ‖u − uh‖ ‖u − uh‖0,∞ ‖Phu − uh‖ ‖u − Ghuh‖ ‖u − û‖
1/16 - - - - -
1/32 0.9898 0.9850 1.4846 1.3260 1.5693
1/64 0.9911 0.9967 1.4242 1.4706 1.5488
1/128 0.9965 0.9991 1.5682 1.5000 1.5287

5 Conclusions

In this paper, we discussed the lowest order Raviart-Thomas mixed finite element
methods for an linear elliptic optimal control problem (1.1)-(1.4). Our superconver-
gence analysis and L∞-error estimates for the linear elliptic optimal control problems
by mixed finite element methods seems to be new, and these results can be extended
to RT1 mixed finite element methods. In our future work, we will investigate the su-
perconvergence of the lowest order mixed finite element methods for optimal control
problems governed by nonlinear elliptic equations.
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