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Abstract. The article is resulted from a round table discussion. The first part
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1 An overview
During the period of January 5–15, 2020, there was a special program on the anal-
ysis and partial differential equations at the Southern University of Science and
Technology of China organized by Professor Tao Tang, Xiao-Ming Wang, Linlin
Su and myself. In the first seven days, there were special lecture series on the
theory of quantitative periodic and stochastic homogenizations and its applica-
tions. The two principle lecturers are Professor T. Kuusi and Professor Zhongwei
Shen. It is followed by a conference “On the recent trend in the analysis of partial
differential equations”. The program also included a special Round Table discus-
sion on some important current developments in the field of analysis and partial
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differential equations; and to have a discussion on the research and education
programs for this field in Chinese universities.

I am very happy that we had such a round table discussions. Many friends
and colleagues working in the field got together having wonderful conversations
and sharing stories about old and new events. Naturally, many recent research
works in field were also brought into our attention. At such a round table, each of
us can open his/her mind to express freely their individual and particular views
on the past and current developments and to provide thoughts for the future if
that would be possible. Thinking back, it’s truly worth to have such an occasion,
once a while. Last year was also special in some sense at my personal level. I
arrived at 60, and it’s a natural time to have a reflection. I left China in 1981 for
a graduate study in the USA and I have since stayed and worked here. My first
returning to China after my Ph.D was in 1989, so it is also the 30th anniversary
for me to be participated in and sometime to co-organize some of academic activ-
ities in China during my academic breaks or sabbatical leaves. There are a lot of
great memories and a lot of wonderful old and young friends over all these years.
Many have also become scientific collaborators. It has become an important part
of life and it may be why I (and may be almost all of us) love mathematics.

At the round table discussions, many of us have noticed that our generations
have probably not done that well as one would have hoped; and as we shall
believe, history may not necessary be so friendly. For our teacher’s generation
40 years ago, China is at a completely different state. Excellent education and
research programs are always difficult to build, and particularly so during the
school years of our generation. For now, we no longer have such excuses for
not catching up forefronts of research and not to do high quality and more fun-
damental researches. We have also no excuses not to do high quality teachings
for next generations. One can take a look at a simple statistics in China: there are
thousands of researchers in the field of Analysis & PDE, and in each year (over the
past decades) there have been also in thousands of research papers got published.
On the other hand, it is evident over the years that the impacts and visibilities of
these works are relatively limited. It is not about the lack of communications or
supports in academic activities. In fact, it is not something that one can say that
it is normal. One should do something about it strategically. At least, one needs
to know why? What and how one can do about it?

Looking outside the field of analysis and PDEs, the field of computational
and applied math seems doing much better in China via comparisons. It may be
also for several other subjects such as differential geometry /geometric analysis.
In fact, a very noticeable advances and sharp improvements have been made in
certain parts of pure and abstract mathematics. So we could ask: does the field
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of Analysis & PDE loss its historical importance and relevance? Of course, no
one could be certain about the future. But one may have good feelings as what it
would likely be in the next few, 5 or even 10 years by looking closely at what are
going on now. It may be one of the goals that we run this round table to discuss
the current developments in the field of Analysis & PDEs. In particular we have
discussed the following issues for the field of analysis/PDEs:

(1) List some of (you think they are) most outstanding works with high impacts
over the past 10-15 years.

(2) What you think are important directions of researches with exciting devel-
opments over the last decade or two?

(3) What you think are important and representative works done by researchers
in China over the past 10-20 years?

As a result of these discussions, all of us are deeply impressed by the Italian
School of Analysis (since the time of De Giorgi, Stampachia and others). It has
re-emmerged to be a leading force which drives the developments in the field
of Calculus of Variations, Geometric Measure Theory and Nonlinear PDEs with
such top mathematicians as: L. Ambrosio, C. De Lellis, A. Figalli, G. De Philip-
pis,... We have observed again the tradition and the strength of the French school
of analysis which has brought in remarkably high impact researches. Many insti-
tutions in Europe are (as they have been) attractive to top talents with rising pres-
tige. The mathematics at the ETH-Zurich, IHES are examples. The field of analy-
sis and PDE is strongly influenced also by the top harmonic analysts in USA and
their remarkable and fundamental contributions in dispersive equations (non-
linear wave, Schrödinger,...). It is also a striking phenomena that, once a while,
some young genius coming out from the former Soviet Union. It was pointed out
in discussions that in several major directions with exciting and important devel-
opments, there are unfortunately not many researchers in China being involved
in and, often, there are not many visible research works being done in such direc-
tions. One can be convinced that it is not because the field of analysis/PDEs has
lost its relevance. It has become more evident over last decades the fundamental
importance of the field of Analysis and PDEs in the both pure and applied math-
ematics. Indeed, the field has grown strikingly fast with many remarkably deep
and important new developments.

In the discussions, some (which are major developments from my own view
too) of these important recent works have been listed:

(1) Works around Onsager Conjecture and turbulent solutions of classical fluid
equations (the idea goes back to Nash’s isometric embedding, see Subsec-



4 F. Lin / Commun. Math. Res., 36 (2020), pp. 1-30

tion 2.4 for a detailed explanation). It started with works by C. De Lel-
lis and L. Székelyhidi on the 3D incompressible Euler equations and some
very weak solutions ( modeling turbulence) and have now been extended
to the incompressible Navier Stokes equations and other classical compress-
ible fluids by T. Buckmaster and V. Vicol, P. Isset and others. One believes
that the technique (from Nash) may be applied in many problems, much
beyond those from physics and geometry (see Subsection 2.9 for more de-
tails).

(2) Recent resolution of the Nadirashvili and Yau conjectures by A. Logunov
[91, 92] and difficult new results by A. Logunov and E. Malinnikova [93]
on the propagation of smallness and Remez estimates for solutions of the
second order elliptic equations are truly remarkable.

(3) Recent important breakthrough on the finite time blow up of C1,α solutions
of 3D incompressible Euler equations by T. Elgindi et al and its extensions,
in particular the works by J. Chen and T. Hou and others. This combines
with positive results by Seregin, Severak, H. Jia and others have opened a
new door to this outstanding problem (see Subsection 2.3).

(4) D. Christodolou have written two big papers (which resulted in two books
of total pages close to 2000). One is on 3D compressible relativistic fluids
and how smooth solutions develop shocks, the other is about compress-
ible Euler and maximal Cauchy developments (singularities). One of these
work have very recently been greatly simplified and improved by F. Merle,
I. Rodinaski et al). And the other simplification with a much direct ap-
proach is done by T. Buckmaster and V. Vicol. These two recent work used
two completely different approaches (see Subsection 2.6).

One observes that three of the above major developments are in some sense
motivated by the millennium problem on the 3-D Navire-Stokes and Euler equa-
tions (see Subsection 2.8 for more details). While the idea in (1) uses Nash’s it-
erative construction and higher and higher oscillations along with deep under-
standings of special flows and use them as building blocks. The work in (3) (it
may also be used in part too in the work of Buckmaster-Vicol) uses the so called
modulation method. The method in the work of F. Merle, I. Rodinanski and oth-
ers (related to some earlier work by German physicists) involves studies of very
classical and difficult autonomous ODE systems with rational nonlinearity. The
delicate phase-plane analysis and the bifurcation-analysis involving infinite di-
mensions (parameters) are truly remarkable.

We have to say something about the modulation method (in some sense it is
a very classical method) which has first used very successfully in the works by F.
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Merle (over last 25 years) on KDV, Nonlinear Wave, Schrödinger equations. It has
been applied for blow up analysis of solutions near critical masses. The method
has now been used in works on the so-called Soliton-Resolution Conjecture (see
Subsection 2.1). It is also used in the study of phase transitions, De Giorgi con-
jecture and related geometric problems (in particular, works by J. C. Wei and his
collaborators), the finite time blow ups in the 2D harmonic map of heat flows
(by J. C. Wei et al), and the finite time singularities in 2D-liquid crystal flows. It
would be truly remarkable if one can extend these studies for constructions of
finite time blow ups for the Navier-Stokes equations, we refer to the Subsection
2.7 for more explanations on this method.

At the round table, various discussions are made on several other directions
that obviously worth much more and further studies:

(a) Free boundary problems, linear and nonlinear, local and nonlocal (like SQG
equation in Subsection 2.12), of the elliptic, parabolic and even hyperbolic
(for example, the aforementioned work by Christodolou in some sense is
to study shocks/free boundaries) nature. Also there is a large class of prob-
lems involving phase transitions in vector setting with more complexity and
nonlinearity, and even with nonlinear constraints.

(b) Control and Inverse problems often involve illposed nature and a lot of
deep harmonic, microlocal and PDE analysis(see for instance Subsection
2.10 for the Lions’ problem on the control of Navier-Stokes equations). One
believes that such problems may be also relevant in applications in geome-
try, data analysis and nonlinear partial differential equations,..., particularly
for the case that solutions may possess singularities.

(c) Complex fluids and fluid + object (which can be a map such as for liquid
crystal flows; it can be a vector like that for MHD; and it can be a deforma-
tion like that in nonlinear elasticity or viscoelastic fluids). In general, it can
be a fluid + a geometric object of various dimensions, and its coupled flows
can be of various type with applications in immersed boundary problems,
evolution of active particles, neurons in electric-magnetic fields, phonetic
dynamics.... we refer to Subsection 2.11 for more details.

(d) Quantum physics and nonlinear Schrödinger equations and other equations
from classical and quantum field theory are fundamentally important and
mathematically fascinating. These problems also include studies of various
focusing and oscillating phenomena. For examples, knotted-solitons, wave
localizations or de-localizations, and their interactions and hydrodynamics
are fascinating issues from both analysis and applications.



6 F. Lin / Commun. Math. Res., 36 (2020), pp. 1-30

(e) Microlocal analysis and geometric nature of PDE constrained measures. Re-
cent geometric study of Tartar’s H-measure [116] (or Gerard’s microlocal
measures [52]) by G. De Philippis et al [40], and some study on shock struc-
ture in general via GMT seem to be an interesting new direction that worth
much further researches.

The above list is far from being exclusive. The only purpose to make this list
of scientific issues and to have some discussions about is to attract attentions of
our colleagues and friends in China to a larger picture of some of current devel-
opments. Based on these we also made following suggestions.

(i) Beside one’s own research interests (and dig deep in some particular prob-
lems which are very important), one must stand on a high ground with a
very far and globally view. One can’t miss the large picture and not to un-
derstand the relevance of one’s own research in this large picture.

(ii) The value of a research work at end must either solve a problem or to rise
a new interesting aspect of it including that to develop a new theory. For
example, for old problems one needs to ask new questions, and look at
truly new challenges. Works are always better to have their intrinsic val-
ues. For example, many have looked at compressible 3D flows, however,
recent major developments as described in item (3) tell us that one has to
ask important and more fundamental questions.

(iii) Training students and young researchers are most critical for changing the
current status. It needs to start at the undergraduate and graduate edu-
cations. To provide excellent trainings from the undergraduate levels and
all the way to the postdoctoral studies are most important for all of us as
teachers and mentors.

(iv) It is truly useful to organize in groups of students and post-doctors to study
most important and high impact works with strikingly new ideas/results.
Such organized working seminars have proved again and again in the past
(for examples, the Chen and Su seminars at the old Zhejiang University in
1930s and 1940s, and its tradition had been preserved by the old Hangzhou
University in 1980s and 1990s; and extended and improved by various top
institutions in China these days) to be one of the most effective and valuable
ways to guide our students. It is truly worth to invest our time and energy
into this key task as it could be the most critical in changing the current
status of our research field in China.
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2 Some challenging problems

In this section, we shall present more details on some particular problems. Some
have been mentioned in the previous section. For more concrete and precise
presentations, I have invited: Chenjie Fan from University of Chicago to write
Subsection 2.1 on the soliton resolution conjecture; Jun Geng from Lanzhou Uni-
versity to write Subsection 2.2 on homogenization; Yanlin Liu from The Chinese
Academy of Sciences to write Subsection 2.3 on the blow-up solutions of 3-D Eu-
ler equations; Xinan Ma from University of Sciences and Technology of China
to write Subsections 2.4 and 2.5; Shuang Miao from Wuhan University to write
Subsection 2.6 on general relativity; Kelei Wang from Wuhan University to write
Subsection 2.7 concerning modulation method in heat flow; Ping Zhang from
The Chinese Academy of Sciences to write Subsections 2.8, 2.9, 2.10 and 2.11;
Zhifei Zhang from Beijing University to write Subsection 2.12 concerning the
well-posedness of SQG equation. I thank all of them for their contributions.

2.1 Dispersive equation: Soliton resolution Conjecture

Soliton resolution Conjecture is one major conjecture in the field of dispersive
PDEs and predicts the generic behaviors for the so-called Type-II solutions for
focusing nonlinear dispersive equations. Here, Type-II means certain critical
Sobolev norm of the solution stays bounded within the evolution. Focusing
means the nonlinearity competes with the linear part, and blow up behaviors
are expected in such models. The conjecture suggests that all such solutions will
asymptotically decouple to several solitary waves living at different scales plus
a regular radiation term. This conjecture is widely open and particularly hard
when the model is not integrable. Typical models covered by this conjecture
include energy critical nonlinear wave equations, generalized KdV, mass criti-
cal nonlinear Schrödinger equations, and energy critical nonlinear Schrödinger
equations.

For example, let u solves (focusing) energy critical nonlinear Schrödinger equa-
tions in Rd

iut−∆u= |u|
4

d−2 u. (2.1)

Assuming u blows up at finite time T, and limsupt→T‖u(t,·)‖Ḣ1 < ∞, then as t
approaches T, Soliton resolution Conjecture predicts that

u(t,x)=
J

∑
j=1

1

λj(t)
d
2−1

Pj

(x−xj(t)
λj(t)

)
eiγj(t)+v(x)+r(t,x), (2.2)
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for some J in N, xj(t)∈Rd,γi(t)∈R, λj(t)>0, v(x)∈ Ḣ1 and limt→T‖r(t,·)‖Ḣ1=0.
And each Pi∈ Ḣ1, and solves the following stationary energy critical NLS

−∆ f = | f |
4

d−2 f , (2.3)

and
|xj−xj′ |

λj
+
∣∣∣ln λj

λj′

∣∣∣ t→T−−→∞, ∀ j 6= j′. (2.4)

This is wide open even in the radial case and dimension d=3. It should be noted
that, the radial case are more approachable since there is essentially only one Ḣ1

solution to (2.3) and is explicit. Meanwhile, (2.3) admits infinite many non-radial
solutions and they are yet to be classified. There is also a parallel conjecture for
solutions to (2.1) which are global, where the v(x) in (2.2) should be replaced by
a solution v(t,x) to linear Schrödinger equations.

The parallel conjecture for (nonradial) wave is of same spirits but slightly
more complicated to state due to Lorentz symmetry. But we will state a pre-
cise version for radial wave below. Indeed, one of the most complete results in
Soliton resolution Conjecture is on radial energy critical wave equations in odd
dimensions, where this conjecture is confirmed.

Let u solves radial (focusing) energy critical nonlinear wave equation in Rd

utt−∆u= |u|
4

d−2 u, (2.5)

and let W be the unique (up to scaling) positive radial Ḣ1 solutions to (2.3). As-
suming u blows up at finite time T, and limsupt→T

(
‖u(t,·)‖Ḣ1+‖∂tu(t,·)‖L2

x

)
<∞,

then as t approaches T, the Soliton resolution Conjecture predicts that

u(t,x)=
J

∑
j=1

1

λ
d
2−1
j (t)

`jW
( x

λj(t)

)
+v0(x)+r0(t,x),

∂tu(t,x)=v1(x)+r1(t,x).

(2.6)

For some J in N, `j=±1, λj(t)>0, v(x)∈ Ḣ1, v1(x)∈L2 and limt→T
(
‖r0(t,·)‖Ḣ1+

‖r1(t,·)‖L2
)
=0. and ∣∣∣ln λj

λj′

∣∣∣ t→T−−→∞, ∀ j 6= j′. (2.7)

This conjecture was proved first when d=3, by Duyckaerts, Kenig and Merle,
in [43]. And very recently, in the end of December 2019, Duyckaerts, Kenig and
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Merle proved this conjecture for all d≥ 3 which is odd, in [44]. A parallel result
for global solutions was also proved in [43, 44]. Note that only for d≥ 3 can one
make sense of energy critical. One may also refer to the introduction of those two
papers for a lot of related works.

2.2 Homogenization

Partial differential equations and systems with rapidly oscillating coefficients are
used to model various physical phenomena in inhomogeneous or heterogeneous
media, such as composite and perforated materials. For a family of second-order
linear operators in divergence form with rapidly oscillating periodic coefficients

L↑=−
∂

∂xi

[
aαβ

ij
(x

ε

) ∂

∂xj

]
=−div

[
A
(x

ε

)
∇
]

, ε>0, (2.8)

where the coefficient matrix A(y) = (aαβ
ij (y)) is real, elliptic and periodic (i.e.

A(y+z)= A(y), z∈Zd, y∈Rd). Under these assumptions, the operators Lε con-
verges as ε→ 0 to a “homogenized” constant coefficient elliptic operator L0 =
−div(Â∇) and the constant coefficient Â in fact can be explicitly computed [9].
During 1987-1991, in a series of papers [3–7], with extra assumption that A ver-
ifies the regularity hypothesis ‖A‖Cα(Rd) ≤ C, Avellaneda and Lin obtained the
uniform estimates such as boundary Lipschitz estimate and W1,p estimate etc.
for the Dirichlet problem

L↑(uε)=F in Ω, uε= g on ∂Ω (DP)

in C1,α domain Ω. In particular, if F=0, they also proved that the non-tangential
maximal function estimates

‖(uε)
∗‖Lp(∂Ω)≤C‖g‖Lp(∂Ω) (2.9)

holds for any 1< p<∞ with C independent of ε. In 1994, Kenig [66] conjectured
that (2.9) holds for strongly elliptic, periodic, Cα systems and p= 2 for arbitrary
bounded Lipschitz domains Ω⊂Rd. And this problem was solved by Kenig and
Shen [72] by using the layer potential method. One may notice that the Neumann
problem

L↑(uε)=F in Ω,
∂uε

∂νε
= g on ∂Ω (NP)

is more difficult than the Dirichlet problem (DP) since the boundary conditions
in (NP) are ε-dependent. Extending quantitative theory to homogenization of
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elliptic systems with Neumann boundary conditions has been a longstanding
open problem for nearly thirty years. In 2013, this was solved by Kenig, Lin
and Shen [67–70] and [72].

Once the qualitative and quantitative homogenization of (DP) and (NP) are
established, it is natural for us to be interested in the qualitative and quantitative
homogenization theory for oblique derivative problem

L↑(uε)=F in Ω, ∇uε ·νε= g on ∂Ω, (ODP)

where νε(x) is nowhere tangential to the boundary ∂Ω and L↑=−aij
( x

ε

)
∂2

∂xi∂xj
is

a second-order linear operators in non-divergence form with rapidly oscillating
periodic coefficients. However, to my best knowledge, even the energy estimates
for the oblique derivative problem is not trivial even when L↑ is the Laplacian
∆. Thus interesting challenges arise in dealing with (ODP). The natural question
is: can one have the boundary Lipschitz estimates, boundary Hölder estimates,
and W1,p estimates as well as the nontangential maximal function estimates (2.9)?
One may see [17] and [71] for the nontangential maximal function estimates for
oblique derivative problem of Laplace equation in Lipschitz domains.

2.3 C1,α blow-up solutions of 3D incompressible Euler equations

Consider the incompressible Euler equations on R3:
∂tu+u·∇u+∇p=0,
divu=0,
u |t=0=u0,

(2.10)

where u:[0,∞)×R3→R3 stands for the velocity of the fluid flow, f for the external
force, and p designates scalar pressure function, which guarantees the divergence
free condition of the velocity field. The incompressibility ensures that any smooth
solution u of (2.10) on [0,T)×R3 satisfies

1
2

d
dt

∫
R3
|u(t,x)|2 dx=

∫
R3

u(t,x)· f (t,x)dx, ∀ t∈ [0,T). (2.11)

The question of global regularity for the solutions to (2.10) has been studied
by numerous mathematicians and is considered to be one of the biggest open
problems in the field of mathematical fluid mechanics. It dates back to 1920’s that
Gunther [55] and Lichtenstein [80] showed that if u0∈C1,α(R3) for some 0<α<1
and the initial vorticity decays sufficiently rapidly at infinity, then there exists a
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time T > 0 so that (2.10) has a unique solution u∈C1,α([0,T)×R3). We will call
this solution “classical solution”. Later, similar results were established by many
authors in Sobolev spaces, Besov spaces, etc.

The well-known Beale-Kato-Majda criterion [8] tells us that a classical solution
loses its regularity at some finite time T if and only if

lim
t→T

∫ t

0
‖ω(s,·)‖L∞ ds=∞, (2.12)

where ω
def
= curlu is the vorticity of the fluid, which satisfies

∂tω+u·∇ω=ω ·∇u+curl f .

It is easy to use this criterion to show that the classical solution of 2-D Euler equa-
tion cannot develop singularity at finite time. Indeed, for 2-D case, the vortex
stretching term ω ·∇u≡0, thus we have the following a priori bound

‖ω(t,·)‖L∞≤
∫ t

0
‖curl f (s,·)‖L∞ ds.

However, this bound is not available for 3-D case, see [47]. What’s worse, re-
cently Elgindi [46] showed that the condition (2.12) can be satisfied for some
well-designed classical solutions. Precisely, Elgindi proved that:

Theorem 2.1. There exists some sufficiently small α > 0, a divergence-free and odd†

u0∈C1,α(R3) with |ω0(x)|≤ C
1+|x|α for some constant C>0, so that the unique local odd

solution to (2.10) (with f =0) belongs to C1,α([0,1)×R3) and satisfies

lim
t→1

∫ t

0
‖ω(s,·)‖L∞ ds=∞.

Elgindi’s work [46] is a very important progress in studying the global reg-
ularity for solutions to Euler equations. However, there are still several pities.
First, the solutions in Theorem 2.1 have infinite energy and do not satisfy the
energy equality (2.11). But if one allows a uniformly C1,α external force, then his
construction can exactly give some finite energy solutions which blow up at finite
time. Second, although the blow-up solutions here have C1,α regularity, but this
α has to be sufficiently small, so the following basic problem still remains open:

Open Problem: Given a solution u∈C∞([0,T)×R3) to (2.10) satisfying the energy
equality (2.11) and the external force f ∈ (C∞∩L2)([0,T]×R3), is it possible that

limsup
t→T

‖∇u(t,·)‖L∞ =∞?

†Here we say a vector field u :R3→R3 is odd if ui is odd in xi and even in the other two variables
for each 1≤ i≤3.
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2.4 Nash isometric imbedding

The problem of isometric embeddings of Riemannian manifolds consists of a
global topological condition (being an embedding) and a system of partial differ-
ential equations (being an isometry). For concreteness let us consider a smooth
n-dimensional Riemannian manifold (Σn,g). A continuous map u : Σ−→ RNis
isometric if it preserves the length of curves, namely if

lg(γ)= le(u(γ))

for any C1 curve γ⊂Σ, where g(γ) denotes the length of γ with respect to the
metric g:

g(γ)=
∫ √

g(γ(t))[γ̇(t),γ̇(t)]dt.

As customary, in local coordinates we can express the metric tensor g as g =
gijdxi

⊗
dxj. Then, if u is C1, is equivalent to a system of partial differential equa-

tions, which in local coordinates takes the following form:

diu·dju= gij. (2.13)

The existence of isometric immersions (resp. embeddings) of Riemannian
manifolds into some Euclidean space is a classical problem, see Han-Hong [57].
Clearly, if the dimension of dimΣ=n, (2.13) consists of sn := n(n+1)

2 equations in N
unknowns. A reasonable guess would therefore be that the system is solvable, at
least locally, when N= sn. In the first half of the twentieth century Janet, Cartan,
and Burstin had proved the existence of local isometric embeddings in the case of
analytic metrics (see [57]), precisely when N= sn. For the very particular case of
2-dimensional spheres endowed with metrics of positive Gauss curvature, Weyl
had raised the question of the existence of global isometric embeddings in R3.
Weyl’s problem was solved by Lewy for analytic metrics, and Louis Nirenberg
settled the case of smooth metrics in his PhD thesis in 1949. A different proof was
given independently by Pogorelov around the same time.

A short embedding is C1 embedding (immersion) u such that u](e)≤ g as
quadratic forms, or in local coordinates, ∂iu·∂ju≤gij. The celebrated Nash-Kuiper
theorem [76, 102] states that any short immersion or embedding u : Mn−→Rn+1

can be uniformly approximated by C1 isometric immersions/embeddings. As
a particular case, for the classical Weyl problem, i.e. (S2,g) −→ R3 with pos-
itive Gauss curvature Kg > 0 this result implies the existence of a vast set of
non-congruent C1 surfaces, each isometric to (S2,g). This is in stark contrast
with the situation for C2 isometric embeddings: the famous rigidity theorem of
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Cohn-Vossen and Herglotz states that the C2 isometric embedding (S2,g)−→R3

is uniquely determined up to congruencies.
Nash [103] proves the more expected version of smooth isometric embeddings

from Mn to a sufficiently high-dimensional Euclidean space. For C∞ imbeddings
the best such result was later proved by Gromov [53].

Theorem 2.2. (Nash (1956) [103] and Gromov (1970) [53]). Any short embedding
u : Mn −→ Rq can be uniformly approximated by isometric embeddings (immersions)
provided that q≥ (n+2)(n+3)

2 .

The question of what happens in between the rigid C2 case and the highly
nonrigid C1 case on the Hölder scale C1,θ has a long history. In the 1950s in a series
of papers by Borisov [10], building upon the work of Pogorelov [107], showed
that the rigidity of convex surfaces prevails for θ > 2/3. More recently there has
been intensive work on lowering the rigidity exponent [37], one conjecture (see
[54]) being that some form of rigidity should hold for all θ>1/2.

Problem. Let N=3=n+1. Is there a threshold θ0∈ (0,1) such that: C1,θ solutions
of the Weyl problem are rigid for θ> θ0 and the Nash-Kuiper Theorem holds for
C1,θ immersions when θ< θ0?

De Lellis and Székelyhidi (see Subsection 2.9) have pointed out the celebrated
conjecture of Onsager in the theory of fully developed turbulence shares many
similarities with this problem.

We should mention other questions:

1. For more readable partial differential equations proof in Pogorelov [107]
theorem on the rigidity of convex surface;

2. Local embedding for variable curvature [57] in 2 dimensional Riemannian
manifold.

2.5 Unique continuation

The classical technique to get the unique continuation for elliptic partial differen-
tial equations is Carleman estimates, one can see the reference from [49]. From
1980s, an important tool to study unique continuation, nodal sets of eigenfunc-
tions and growth properties of solutions of elliptic PDEs is the so called fre-
quency function. The idea goes back to works of Almgren and Agmon. It was
developed further by Garofalo and Lin [51], Let A(x) be a symmetric uniformly
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elliptic matrix with Lipschitz coefficients defined on some ball Br centered at the
origin and such that A(0)= I. Let further

µ(x)=
(A(x)x,x)
|x|2 , µ(0)=1, Λ−1≤µ(x)≤Λ.

Let u be a solution to the equation div(A(x)∇u(x))=0. We consider weighted
averages of |u|2 over spheres:

H(r)= r1−d
∫

∂Br
µ(x)|u(x)|2ds(x).

And we define
I(r)= r1−d

∫
Br
(A∇u,∇u)dx,

then for the frequency function

N(r)= r
I(r)
H(r)

.

There exists C that depends only on the ellipticity and Lipschitz constants of
the operator such that for any solution u to div(A(x)∇u(x)) = 0, the function
eCrN(r) is an increasing function of r.

A consequence of the monotonicity of the frequency function is the so called
three sphere theorem. Its simplest version is the classical Hadamard three circle
theorem for analytic functions. One can derive the three spheres from the prop-
erties of the frequency function following.

In recent Logunov and Malinnikova [93], they got an big improvement. Let
Ω will be a bounded domain in Rn and u will denote a solution of an elliptic
equation in the divergence form div(A∇u) = 0 in Ω with Lipschitz coefficients
Let E and K be subsets of Ω such that the distances from E and K to ∂Ω are
positive. We assume that E has positive n-dimensional Lebesgue measure. They
prove the following estimate

sup
K
|u|≤C(sup

E
|u|)γ(sup

Ω
|u|)1−γ, (2.14)

where C>0 and γ∈(0,1) are independent of u, but depend on Ω, A, the measure
of E, and the distances from K and E to the boundary of Ω. This is the quantitative
results on propagation of smallness for solutions of elliptic PDE.

On the way of proving (2.14) they obtain an interesting inequality for solutions
of elliptic equations, which reminds the classical Remez inequality for polyno-
mials, the role of the degree is now played by the doubling index. Let Q be
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a unit cube. Assume u is a solution to div(A∇u) = 0 and the doubling index

N= log
sup2Q |u|
supQ |u|

. Then

sup
Q
|u|≤Csup

E
|u|
(

C
|Q|
|E|

)CN
, (2.15)

where C depends on A only, E is any subset of Q of a positive measure.
Mainly by the important work by Logunov and Malinnikova in recent five

years, they introduce new combinatorial methods and obtain some deep theo-
rems. We mention three well known conjecture.

Conjecture 1 (Yau). Let M be a smooth compact d-dimensional Riemannian man-
ifold. There exist constants C1 and C2, which depend on M, such that

C1
√

λ≤Hd−1(Z(ϕλ))≤C2
√

λ,

for any eigenfunction ϕλ satisfying ∆M ϕλ+λϕλ=0.
One can see the recent work by Logunov [91, 92] an he prove the following

result
C1
√

λ≤Hd−1(Z(ϕλ))≤C2λα,

and α≥ 1
2 .

Conjecture 2 (Fang-Hua Lin). Let u be a non-zero harmonic function in the unit

ball B1⊂Rn, n≥3. Consider N=log
supB1

|∇u|
supB 1

2

|∇u| . Is it true that the Hausdorff measure

Hn−2({∇u=0}∩B1
2
)≤CnN2

for some Cn depending only on the dimension?

As mentioned by Logunov and Malinnikova [93], it is connect to propagation
of smallness for gradients of the harmonic function.

The last conjecture is connected to the quantitative version of the Cauchy
uniqueness problem, it dates back to at least L. Bers. The two-dimensional case
is not difficult due to connections with complex analysis. The fact that the ques-
tion is open in higher dimensions shows that we still don’t understand well the
Cauchy uniqueness problem even for ordinary harmonic functions in the dimen-
sion three or higher.

Conjecture 3. Assume that u is a harmonic function in the unit ball B1⊂R3 and
u is C+∞-smooth in the closed ball B̄1. Let S⊂∂B1 be any closed set with positive
area. Is it true that ∇u=0 on S implies ∇u≡0?
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For the class C1+ε(B1) there is a striking counterexample [12], which however
is not C+∞-smooth up to the boundary. The attempts to construct C2-smooth
counterexamples were not successful.

2.6 General relativity
A central mathematical problem in theory of General Relativity is to show the
nonlinear stability of Kerr spacetimes whose metrics are axisymmetric, station-
ary, asymptotical flat solutions to the vacuum Einstein equations. From the ex-
perience of proving nonlinear stability of Minkowski spacetime [23], to show the
nonlinear stability of Kerr spacetimes, one needs to start with a proper linearized
system of vacuum Einstein equations and prove polynomial decay for linearized
gravity.

As a special case, different approaches towards linear stability of the vacuum,
spherically symmetric Schwarzschild spacetimes has been developed in [33, 60].
Both works start from Regge-Wheeler type equations where the technique of
treating scalar wave equation can be applied. In particular, spherical symme-
try is crucial in the latter approach. A nontrivial nonlinear stability result of
Schwarzschild spacetimes under polarized axisymmetry is obtained in [74].

In the case of Kerr spacetimes, Teukolsky found in a seminal work [117] that
the extreme curvature components are governed by a separable, decoupled wave
equation – Teukolsky Master Equation (TME), and they fully determine the dy-
namics of linearized gravity up to linearized mass and angular momentum per-
turbations plus pure gauge solutions. Moreover, these extreme curvature com-
ponents are gauge invariant, hence as a beginning step, one can treat them us-
ing TME without imposing any gauge choice. Energy and decay estimates for
these extreme curvature components are shown in [34,94] for slowly rotating Kerr
backgrounds (|a|/M�1) by applying a suitable modification of Chandrasekhar’s
transformations [20]. Based on these estimates, the authors in [2] derived strong
decay estimates for TME and obtained a linear stability result of slowly rotating
Kerr metrics in an outgoing radiation gauge. See also [56] for a linear stability
proof but using a microlocal approach.

2.7 Modulation method in heat flow
In many nonlinear evolution equations, the blow up of solutions is caused by the
formation of bubbles, especially when the blow up if of Type II. For example, if
u :R2×[0,T) 7→S2⊆R3 solves the harmonic map heat flow

ut−∆u= |∇u|2u, (2.16)
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and T is the blow up time, under some technical assumptions, it is shown that
(see Qing [109], Ding-Tian [42], Lin-Wang [84] and Qing-Tian [108]), as tn→ T,
there exist finitely many points q1,··· ,qk such that

u(x,tn)→u∗(x)+
k

∑
i=1

[
Wi

(
x−qn

i
λn

i

)
−Wi(∞)

]
in H1,

where u∗ is the trace of u at t=T, qn
i →qi, 0<λn

i →0, and Wi are bubbles, i.e. finite
energy solutions of

−∆Wi = |∇Wi|2Wi in R2.

One crucial point behind this bubbling phenomena is the scaling invariance of
this problem. This induces the concentration of energy, which is an important
class of the loss of compactness phenomena, a topic studied intensively in calcu-
lus of variations during the last two decades.

The construction of blow up solutions is of great interest, especially for the
understanding of Type II blow up. For harmonic map heat flow, Chang, Ding
and Ye [21] first constructed solutions exhibiting finite time blow up, by using a
special ansatz and then reducing the equation to a simpler one. However, this
does not give too much information about the blow up behavior. In [111, 112],
Raphaël and Schweyer rigorously constructed blow up solutions by using the
modulation method. By this method they get a precise control on the blow up rate,
blow up profile as well as the stability of this blow up mechanism.

In the modulation method, by noting that bubbles are the main order term
when approaching the blow up time, one modulates the standard bubbles to get
an approximation to the original solution. For example, for (2.16) one takes the
decomposition

u(x,t)=u∗(x)+
k

∑
i=1

[
Wi

(
x−qi(t)

λi(t)

)
−Wi(∞)

]
+R.

Here qi(t) and λi(t) are modulation parameters, R is a small error term. By a
suitable choice of modulation parameters, one obtains some good estimates onR.
(This is because R satisfies a linearized equation.) Furthermore, the modulation
parameters also satisfy a modulation equation (here an ODE), which can be used
to derive the asymptotic behavior of the blow up rate (that is, λi(t) in the above
equation) as t→T.

The modulation method is applicable to many other problems, for example,

• mass critical Schrödinger equations (Merle [99]);
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• energy critical Schrödinger equations (Merle, Raphaël and Schweyer [100]);

• nonlinear wave equations and Yang-Mills equation (Raphaël and Schweyer
[110], Rodniansk and Sterbenz [113]);

• and energy supercritical Schrödinger equations (Merle, Raphaël and Rod-
nianski [101]).

Recently, in a series of work (see e.g. [32,35,36]), Del Pino, Wei and their collab-
orators, based on their earlier works in various elliptic equations (e.g. [105, 106]),
introduced the inner-outer gluing method for the construction of blow up solutions.
Here one takes a further decomposition of the error termR according to the scale,
one on the scale of bubbles, which forms the inner problem, and the other one on
the original scale, which forms the outer problem. With this decomposition they
can treat the bubbling formation at multiple points and without any symmetry.

The modulation method is also useful in the study of “Soliton resolution Con-
jecture” (see Subsection 2.1), especially when the solution is near the ground state,
see e.g. [24, 95].

2.8 The Navier-Stokes equation (uniqueness/non-uniqueness,
finite-time blowup)

d (2 or 3) dimensional incompressible Navier-Stokes equations can be written as
follows: 

∂tu+u·∇u−ν∆u=−∇p+ f , (t,x)∈R+×Rd,
divu=0,
u|t=0=u0, with divu0=0,

(2.17)

where u=(u1,··· ,ud) denotes the fluid velocity, u·∇u=∑d
j=1 uj∂ju, p represents

the scalar pressure function, ν the viscous coefficient and f the force term.
For any initial data u0 of finite kinetic energy, Leray [79] proved in 1934 that

(2.17) has at least one global in time finite energy weak solution, which satisfies
the energy inequality

1
2
‖u(t)‖2

L2+ν‖u‖2
L2

t (L2)
≤ 1

2
‖u0‖2

L2 . (2.18)

This solution is unique and regular in two space dimension as long as the time
t> 0. Hopf [59] established a similar result for (2.17) posed on smooth bounded
domain with Dirichlet boundary condition. Yet the question of uniqueness and
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regularity of Leray-Hopf weak solutions for 3D Navier-Stokes system remains to
be one of the biggest open problems (see [48]) in mathematical fluid mechanics.

Fujita-Kato [50] constructed local in time unique solution to (2.17) with initial
data in Ḣ

1
2 (R3). Furthermore, if ‖u0‖

Ḣ
1
2

is sufficiently small, then the solution

exists globally in time (see [65] for similar result with initial data in L3(R3)). This
result was extended by Cannone, Meyer and Planchon [18] for initial data belong-

ing to Ḃ
−1+ 3

p
p,∞ (R3) with p∈ (3,∞). The end-point result in this direction is given

by Koch and Tataru [75]. They proved that given initial data being sufficiently
small in BMO−1(R3), then (2.17) has a unique global solution. We remark that
for p∈ (3,∞), there holds

Ḣ
1
2 (R3) ↪→L3(R3) ↪→ Ḃ

−1+ 3
p

p,∞ (R3) ↪→BMO−1(R3) ↪→ Ḃ−1
∞,∞(R3),

and the norms to the above spaces are scaling-invariant under the following
transformation:

uλ(t,x)=λu(λ2t,λx) and u0,λ(x)=λu0(λx). (2.19)

We notice that for any solution u of (2.17) on [0,T], uλ determined by (2.19)
is also a solution of (2.17) on [0,T/λ2]. We remark that the largest space, which
belongs to S ′(R3) and the norm of which is scaling invariant under (2.19), is
Ḃ−1

∞,∞(R3) (see [98]). Moreover, Bourgain and Pavlović [11] proved that (2.17) is
actually ill-posed with initial data in Ḃ−1

∞,∞(R3). That is the reason why people
call such kind of initial data, with the Ḃ−1

∞,∞(R3) norm of which is large, as large
initial data.

On the other hand, in [62, 63], Jia and S̆verák proved the non-uniqueness of
Leray-Hopf weak solutions in the regularity class L∞

t (L3,∞) if a certain spectral
assumptions for a linearized Navier-Stokes operator holds. Very recently, Buck-
master and Vicol [14] proved the following very interesting result:

Theorem 2.3 (Theorem 1.2 of [14]). There exits β>0, such that for any non-negative
smooth function e(t):[0,T]→R+, (2.17) has a weak solution u∈C0([0,T];Hβ(T3)) such
that

∫
T3 |u(t,x)|2 dx= e(t) for all t∈ [0,T]. Moreover, the associated vorticity ∇×u lies

in C0([0,T];L1(T3)).

We remark that the weak solution of (2.17) constructed in Theorem 2.3 is still
not Leray-Hopf solutions, which do not satisfy the energy inequality (2.18). The
main idea of the proof is based on the pioneering papers [38,39] by De Lellis and
Székelyhidi.
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2.9 The Onsager conjecture

In 1949, Onsager [104] conjectured that there exists a threshold regularity for the
conservation of energy to the incompressible Euler equations (2.10). In particular,
for the weak solution u, which is Hölder continuous in space, i.e.

|u(t,x)−u(t,y)|≤C|x−y|β for all t∈ [0,T] (2.20)

for some constant C that is independent of time t. He asserted that for any Hölder
continuous weak solution u of (2.10) with exponent β> 1

3 , the energy should be
conserved; whereas for any weak solution with smaller exponent, there are solu-
tions that do not conserve energy. The first assertion was proved by Constantin, E
and Titi in [25]. Concerning the second assertion, the first proof of the existence of
a square integrable weak solution that do not preserve the energy is due to Schef-
fer in his pioneering paper [114] and a different proof was given by Shnirelman
in [115].

On the other hand, De Lellis and Székelyhidi observed in [38] that the tech-
niques from the theory of differential inclusions could applied to construct
bounded weak solutions that violate the energy conservation. After a series of
important partial results improving the threshold, Isett [61] has been able to fi-
nally reach the Onsager exponent 1

3 . One may check [13] for recent progress in
this direction.

2.10 Control of Navier-Stokes system

In the late 1980’s, Jacques-Louis Lions introduced in [86] (see also [87–89]) the
question of the controllability of fluid flows in the sense of how the Navier-
Stokes system can be driven by a control of the flow on a part of the boundary
to a wished plausible state, say a vanishing velocity. Lions’ problem has been
solved in [30] by Coron, Marbach and Sueur in the particular case of the Navier
slip-with-friction boundary condition. In its original statement with the no-slip
Dirichlet boundary condition, it is still an important open problem in fluid con-
trollability.

In the special case when the space dimension is two and the geometric domain

Ω :=(0,L)×(−1,1),

where L>0 is the length of the domain. Inside this domain, a fluid evolves under
the Navier-Stokes equation, that is, the velocity field u satisfies:{

∂tu+(u·∇)u+∇p−∆u= fg,
divu=0,

(2.21)
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in Ω, where p denotes the fluid pressure and fg a force term. One may think of
this domain as a river or a tube and assume that we can act on the fluid flow at
both end boundaries:

Γ0 :={0}×(−1,1) and ΓL :={L}×(−1,1).

On the remaining parts of the boundary,

Γ± :=(0,L)×{±1},

we assume that we cannot control the fluid flow and that it satisfies null Dirichlet
boundary conditions:

u=0 on Γ±. (2.22)

Let L2
div(Ω) be the space of divergence free vector fields in L2(Ω), which are

tangential to the boundaries Γ±. Lately, Coron, Mabach, Sueur and Zhang proved
the following result in [31]:

Theorem 2.4 ([31]). Let T>0 and u∗ be in L2
div(Ω). For any k∈N and for any η>0,

there exists a force fg∈L1((0,T); Hk(Ω)) satisfying∥∥ fg
∥∥

L1((0,T); Hk(Ω))
≤η (2.23)

and an associated weak Leray solution u ∈ C0([0,T]; L2
div(Ω))∩L2((0,T); H1(Ω))

to (2.21) and (2.22) satisfying u(0)=u∗ and u(T)=0.

We remark that Lions’ problem in this special situation corresponds to fg =0
in (2.21). Hence even for this particular case, Lions’ problem has still not been
solved completely.

2.11 Complex fluid system and MHD system

One of the common origins and manifestations of anomalous phenomena in com-
plex fluids are different “elastic” effects. Most complex fluids are indeed vis-
coelastic. It is the interaction between the elastic properties and the fluid motions
that gives not only the complicated rheological phenomena, but also formidable
challenges in analysis, modeling and numerical simulations. For a general vis-
coelastic fluids, we have the following equation for conservation of momentum:

ρ(∂tu+u·∇u)=∇·τ, (2.24)

where τ is the total stress.
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In the case of linear elasticity, (2.24) writes
∂tu+u·∇u+∇p=µ∆u+∇·

(
FFT) in R+×Rd,

divu=0,
Ft+u·∇F=∇uF,
(u,F)|t=0=(u0,F0),

(2.25)

where u denotes the fluid velocity and F the deformation matrix.
Mathematically, Lin et al. [82] first proved the global existence of smooth so-

lutions to (2.25) in two space dimension when the initial data (u0,F0) is a small
perturbation of the trivial state

(
0, Id2×2

)
. Then a similar result was generalized

to three space dimension in [22, 77]. In general, the global existence or finite time
singularity of solutions, even the global existence of weak solution to (2.25), is
still open except the special case in [90].

In the case when the deformation matrix F in (2.25) is reduced to a vector-
valued function, the equation becomes incompressible MHD system without re-
sistance: 

∂tu+u·∇u+∇p=µ∆u+b·∇b in R+×Rd,
divu=divb=0,
∂tb+u·∇b=b·∇u,
(u,b)|t=0=(u0,b0),

(2.26)

where b denotes the magnetic field. Starting with [85] for a modified model of
(2.26), Lin et al. proved the global existence of solutions to (2.26) with initial
velocity being sufficiently small and the initial magnetic field being sufficiently
close to non-zero constant vector. The same result for (2.26) was proved in [1] and
an optimal decay rates for such solutions was obtained in [41]. He et al. proved
the vanishing viscosity limit of the viscous MHD system in [58] (see also [16,118]).

We remark that hydrodynamical and rheological properties of complex fluids
depend intimately on their molecular conformation and configurations. The hy-
drodynamics of these materials are described by the coupled micro-macro mod-
els. A model system is given by

∂tu+u·∇u+∇p=µ∆u+∇·τ in R+×Ω,
divu=0,
∂t f +u·∇ f =∆q f−∇q ·

(
∇uq f−∇qU f

)
in R+×Ω×B(0,R),

(u, f )|t=0=(u0, f0),

(2.27)

where U(q)=U(|q|2) and τ=
∫

B(0,R)∇qU⊗q f dq.
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Lin et al. [83] proved the global existence of smooth solutions to (2.27) for ini-
tial data near equilibrium. For the so-called polymeric fluids, the local existence
of smooth solutions was established in [45, 64, 96]. Masmoudi proved the global
existence of weak solution in [97].

One may refer to the survey paper [81] by Lin for more details in this direction.

2.12 SQG equations

The surface quasi-geostrophic (SQG) equation is an important model in geophys-
ical fluid dynamics. It was proposed as a two dimensional model to study the sin-
gularity formation of the inviscid incompressible flows [26]. The SQG equation
with the dissipation takes

∂tθ+u·∇θ+κ(−∆)αθ=0. (2.28)

Here α∈ [0, 1
2 ],κ>0 is the dissipative coefficient, θ(t,x) is a real-valued function of

t and x. The function θ represents the potential temperature, the fluid velocity u
is determined from θ by a stream function ψ

(u1,u2)=

(
− ∂ψ

∂x2
,

∂ψ

∂x1

)
, (−∆)

1
2 ψ=−θ. (2.29)

The fractional Laplacian (−∆)α is defined by

̂(−∆)α f (ξ)= |ξ|2α f̂ (ξ).

Due to maximum principle, ‖θ(t)‖L∞ ≤ ‖θ(0)‖L∞ . Formally, nonlinear term
u·∇θ behaves as |D|θ2. Thus, in the case of α> 1

2 , the linear diffusion term (−∆)α

will dominate nonlinear term so that (2.28) has a global in time smooth solution
for smooth data [27]. The SQG equation with α= 1

2 is called the critical SQG. The
global well-posedness of the critical SQG was independently proved by Caffarelli
and Vasseur [15], and Kiselev, Nazarov and Volberg [73]. The work [15] used
the harmonic extension and the De Georgi method, and the work [73] used the
method of constructing the moduli of continuity. Recently, Constantin and Vicol
gave a new proof via the so-called nonlinear maximum principles [28]. Global
regularity or finite time singularity for the super critical SQG with α∈ [0,1) re-
mains a challenging problem. Let us refer to [19,29] for some important progress
in this direction.
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[49] X. Y. Fu, Q. Lü and X. Zhang, Carleman Estimates for Second Order Partial Differential

Operators and Applications: A Unified Approach, Springer-Verlag, 2019.
[50] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I. Arch. Ration.

Mech. Anal., 16 (1964), 269-315.
[51] N. Garofalo and F. Lin, Monotonicity properties of variational integrals, Ap weights

and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
[52] P. Gérard, Patrick Microlocal defect measures, Comm. Partial Differential Equations,

16 (1991), 1761-1794.
[53] M. L. Gromov, Isometric imbeddings and immersions (Russian), Dokl. Akad. Nauk

SSSR, 192 (1970), 1206-1209.
[54] M. Gromov, Geometric, algebraic, and analytic descendants of Nash isometric em-

bedding theorems, Bull. Amer. Math. Soc., 54 (2017), 173-245.
[55] N. Gunther, On the motion of fluid in a moving container, Izvestia Akad. Nauk USSR,

Ser. Fiz.-Mat., 20 (1927), 1323-1348.
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[80] L. Lichtenstein, Über einige Existenz probleme der Hydrodynamik, Mat. Zeit. Phys.,
23 (1925), 89-154.

[81] F. Lin, Some analytical issues for elastic complex fluids, Comm. Pure Appl. Math., 65
(2012), 893-919.

[82] F. Lin, C. Liu and P. Zhang, On the hydrodynamics of visco-elasicity, Comm. Pure
Appl. Math., 58 (2005), 1437-1471.

[83] F. Lin, C. Liu and P. Zhang, On the multi-scal Dumbbell model in the polymer fluids
near equilibrium, Comm. Pure Appl. Math., 60 (2007), 838-866.

[84] F. Lin and C. Y. Wang, Energy identity of harmonic map flows from surfaces at finite
singular time, Calc. Var. Partial Differ. Equ., 6 (1998), 369-380.

[85] F. Lin and P. Zhang, Global small solutions to MHD type system (I): 3-D case, Comm.
Pure. Appl. Math., 67 (2014), 531-580.

[86] J.-L. Lions, Exact controllability for distributed systems. Some trends and some
problems. In: Applied and industrial mathematics (Venice, 1989), vol. 56 of Math.
Appl., pp. 59-84. Kluwer Academic Publications, Dordrecht (1991).

[87] J.-L. Lions, On the controllability of distributed systems, Proc. Nat. Acad. Sci. USA,



F. Lin / Commun. Math. Res., 36 (2020), pp. 1-30 29

94 (10) (1997), 4828-4835.
[88] J.-L. Lions, Remarks on the control of everything. In: European Congress on Com-

putational Methods in Applied Sciences and Engineering, Barcelona, 11-14 September.
ECCOMAS (2000)
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