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Abstract. This paper deals with the quenching solution of the initial boundary val-
ue problem for aclass of semilinear reaction-diffusion equation controlled by two ab-
sorption sources in control system and estimate upper bound and lower bound of the
quenching time. We point that the number of absorption sources influences the time
of quenching phenomenon.The solution can solve some boundary value problem in
control system.
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1 Introduction

The purpose of the present paper is to consider the quenching phenomenon for the initial
boundary value problem (IBVP) of semilinear reaction-diffusion equation

ut(x,t)−∆u(x,t)=(b−u(x,t))−p+(b−u(x,t))−q in Ω×(0,T), (1.1)

u(x,t)=0 on ∂Ω×(0,T), (1.2)
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u(x,0)=u0(x)≥0 in Ω, (1.3)

where 2< p< q, b= const>0, Ω⊂RN is a bounded domain, ∂Ω is its smooth boundary,
and u0(x) is the nonnegative initial data in C1(Ω̄) and sup

x∈Ω
u0(x)<b. We define (0,T) to be

the maximal existence time interval of the solution u of (1.1)-(1.3) throughout the whole
paper. The solution u(x,t) of (1.1)-(1.3) has the following properties: u(x,t) has twice
continuous derivate in x∈Ω and once in u(x,t)< b for all t∈ (0,T). Problem (1.1)-(1.3)
represents an elastic membrane inside an idealized electrostatically actuated MEMS.

Definition 1.1. If T=+∞, we say problem (1.1)-(1.3) admits a global solution. If T<∞ and the
solution u(x,t) of problem (1.1)-(1.3) has a singularity

lim
t→T

sup
x∈Ω

u(x,t)=b,

then the solution u(x,t) is the so-called quenching solution of problem (1.1)-(1.3), T is the quench-
ing time.

In 1975, Kwawarada [1] investigated the quenching phenomena firstly, formed the
basis for further investigation by various authors [2]- [11]. Particularly, Boni and Bernard
[7] studied a class of parabolic model with a single absorption source

ut =Lu+r(x)(b−u)−p, (x,t)∈Ω×(0,T), (1.4)

u=0, (x,t)∈∂Ω×(0,T), (1.5)

u(x,0)=u0(x)>0, x∈Ω. (1.6)

Further, they obtained the quenching phenomena of problem (1.4)-(1.6) and estimated
the quenching time. Also, they clearly demonstrated that the absorption source term has
an pronounce affect on the quenching phenomenon for the nonlinear reaction diffusion
equation. Xu [9] investigated initial boundary value problem (1.4)-(1.6) for nonlinear
parabolic differential equations with several combined nonlinearities and carries out nu-
merical experiments. Selcuk [10] and Ozalp [11] showed quenching phenomenon occurs
on the singular boundary conditions. The present paper focuses on the solution of the
same type of equation with two absorption sources, which are both positive. We change
the exponents of both two absorption sources such that the two terms have a large e-
nough gaps in the sense of growth order, in order to reveal and compare the importance
of the two factors acting on the behavior of the quenching phenomena, which are the
number of the absorption source terms and the exponents of these terms. The result-
s obtained in the preset paper suggests the dominant influence of the exponents of the
absorption terms comparing the number of them, which is not only different from the
classical heat equation with nonlinear power-type external force [12, 13], but also dif-
ferent from the nonlinearities and their corresponding behaviours and affects in other
models [14–30].
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The paper consists of following sections: In Section 2, we show the local solution of
problem (1.1)-(1.3) by approximation method. In Section 3, we prove the quenching phe-
nomenon and estimate the quenching time by the maximum principle and corresponding
ODE theory.

2 Local existence

Firstly, we prove that the solution locally exists.

Theorem 2.1. Problem (1.1)-(1.3) admits a unique local solution on Ω×(0,T), where T<∞.

Proof. Let V(x,y,t) be the fundamental solution of problem

ht−△h=0 in Ω×(0,∞),

h=0 on ∂Ω×(0,∞),

which is defined on Ω̄×Ω̄×(0,∞) and satisfies

V(x,y,t)>0, (x,y,t)∈Ω×Ω×(0,∞),∫
Ω̄

V(x,y,t)dy61.

Then problem (1.1)-(1.3) has the solution of the following form

u(x,t)=
∫

Ω
V(x,y,t)u(y,0)dy+

∫ t

0

∫
Ω

g(u(y,τ))V(x,y,t−τ)dydτ,

where (x,y,t)∈Ω×Ω×(0,T) and g(u)=(b−u)−p+(b−u)−q.
Next we construct the function sequence {un} by putting

u1(x,t)=0, (2.1a)

un+1(x,t)=
∫

Ω
V(x,y,t)u(y,0)dy+

∫ t

0

∫
Ω

g(un(y,τ))V(x,y,t−τ)dydτ, n≥0. (2.1b)

It is obvious that un > 0 for all n > 1, as g(u) is increasing and V(x,y,t)> 0. From the
recurrence of (2.1), we can get un+1>un in Ω×(0,T).

Assume that u0(x)6b−2γ and un6b−γ, where γ is a positive number. We claim that
un+1 has upper bounds, and un+16b−γ on a small time interval. From (2.1), we have

un+1≤ (b−2γ)+g(b−γ)
∫ T

0

∫
Ω

V(x,y,t−τ)dydτ. (2.2)

As

lim
t→0

∫ t

0

∫
Ω

V(x,y,t−τ)dydτ=0,
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there exists a small enough T such that∫ T

0

∫
Ω

V(x,y,t−τ)dydτ6 γ

g(b−γ)
. (2.3)

Combined (2.2) and (2.3), we have un+1 ≤ b−λ for sufficient small T. Hence {un}n>1 is
the increasing sequence and has the upper bound, i.e., un

∣∣
n>1≤b−γ. From the monotone

convergence theorem, there exists lim
n→∞

un =u in Ω×(0,T) satisfying

u(x,t)=
∫

Ω
Vu(y,0)dy+

∫ t

0

∫
Ω

g(u(y,τ))V(x,y,t−τ)dydτ, (x,t)∈Ω×(0,T).

3 Quenching time

In this section, we investigate the quenching phenomenon of the problem (1.1)-(1.3) and
estimate the time of quenching.

For the initial datum, we define its supremum by taking x= a∈Ω as follows

M=sup
x∈Ω

u0(x)=u0(a). (3.1)

Show the eigenvalue problem as follows

λδ φ(x)+∆φ(x)=0, x∈R(a,δ), (3.2)

φ(x)=0, x∈∂R(a,δ), (3.3)

φ(x)>0, x∈R(a,δ), (3.4)

where R(a,δ)={x∈RN : |x−a|<δ}⊂Ω for δ>0. Boni and Bernard [7] pointed that there
exists a solution (φ,λδ) of problem (3.2)-(3.4) satisfying 0<λδ6 D

δ2 , where D>0 depends
on the dimension N and the upper bound of the coefficients of the operator ∆. Further,
we define

∫
R(a,δ) φdx=1.

Next, we show the main theorem.

Theorem 3.1. Assume that K>0 satisfies sup
x∈Ω

du0

dx
≤K. Let M>0 and E=K2Db2q. Then the

quenching phenomenon occurs provided

b−M<min

{
1,
(

1
E

) 3
q+1

,
(

Kdist(a,∂Ω)
3

q+1

)}
.

Further we estimate its quenching time T as follows

∫ b

Q

du
g(u)

6T6

(
b−M+(b−M)(q+1)/3

)q+1

(q+1)
(
1−E(b−M)(2q−1)/3

) , (3.5)

where g(u)=(1−u)−p+(1−u)−q.
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Proof. Since u0∈C1(Ω̄), by the mean value theorem, there exists a x0∈R(a,δ) satisfying

u′
0(x0)=

u0(a)−u0(x)
δ

.

Taking M= u0(a), K = sup
x∈Ω

u′
0, we have K> M−u0(x)

δ , that is u0(x)> M−Kδ. If δ= 1
K (b−

M)(q+1)/3, we have

u0(x)>M−(b−M)(q+1)/3. (3.6)

Let ϕ(x,t) be a solution of the following IBVP
ϕt−∆ϕ=(b−ϕ)−p+(b−ϕ)−q, (x,t)∈R(a,δ)×(0,T∗),
ϕ=0, (x,t)∈∂R(a,δ)×(0,T∗),
ϕ(x,0)=u0(x)>0, x∈R(a,δ),

(3.7)

where T∗ is the maximal existence time of ϕ(x,t). Since ϕ(x,0)=u0(x)>0 in R(a,δ), from
the maximum principle, it follows that ϕ(x,t)≥ 0 in R(a,δ)×(0,T∗). We define l(t) as
follows

l(t) :=
∫

R(a,δ)
ϕ(x,t)φ(x)dx, t∈ [0,T∗).

Through using (3.2) and (3.7), we have the derivative of l(t)

l′(t)=
∫

R(a,δ)
φ(x)∆ϕ(x,t)dx+

∫
R(a,δ)

(b−ϕ(x,t))−p φ(x)dx+
∫

R(a,δ)
(b−ϕ(x,t))−q φ(x)dx

=
∫

R(a,δ)
ϕ(x,t)∆φ(x)dx+

∫
R(a,δ)

(b−ϕ(x,t))−p φ(x)dx+
∫

R(a,δ)
(b−ϕ(x,t))−q φ(x)dx

=−λδl(t)+
∫

R(a,δ)
(b−ϕ(x,t))−p φ(x)dx

+
∫

R(a,δ)
(b−ϕ(x,t))−q φ(x)dx, t∈ (0,T∗).

By Jensen’s inequality, we have

l′(t)>−λδl(t)+(b−l(t))−p+(b−l(t))−q.

Combined with l(t)∈ [0,b] for 0< t<T∗ and

0<λδ6
D
δ2 =

DK2

(b−M)(2q+2)/3
,

we obtain that

l′(t)> (b−l(t))−q
(

1+(b−l(t))q−p−DK2b(b−l(t))q(b−M)−(2q+2)/3
)

. (3.8)
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From (3.6), we have

l(0)=
∫

R(a,δ)
u0(x)φ(x)dx≥

∫
R(a,δ)

M−(b−M)(q+1)/3 φ(x)dx

=M−(b−M)(q+1)/3
∫

R(a,δ)
φ(x)dx=M−(b−M)(q+1)/3,

that is

b−l(0)6b−M+(b−M)(q+1)/362(b−M). (3.9)

From (3.8) and (3.9), we have

l′(0)> 1+(b−l(0))q−p

(b−l(0))q − DK2b2q(b−M)(q−2)/3

(b−l(0))q ,

that is

l′(0)> 1+(b−l(0))q−p

(b−l(0))q − E(b−M)(q−2)/3

(b−l(0))q >0.

Next we prove
l′(t)>0, t∈ (0,T∗).

Arguing by contradiction, we suppose that t1 ∈ (0,T∗) is the first time that l′(t)> 0 for
t∈ [0,t1) and l′(t1)=0. Then we see l(t1)> l(0), which means

0=l′(t1)

>1+(b−l(t1))
q−p

(b−l(t1))q − DK2b(b−l(t1))
q(b−M)−(2q+2)/3

(b−l(t1))q

>1+(b−l(0))q−p

(b−l(0))q − E(b−M)(q−2)/3

(b−l(0))q >0,

which is a contradiction. Hence we have

b−l(t)6b−l(0)62(b−M).

Further we obtain

l′(t)> 1−E(b−M)(q−2)/3

(b−l(t))q .

By the direct calculation, one sees

(b−l(t))qdl(t)> (1−E(b−M)(q−2)/3)dt. (3.10)

Integrating (3.10) from 0 to T∗ with respect to t gives

(b−l(0))q+1(q+1)−1> (1−E(b−M)(q−2)/3)T∗,



Quenching Time Estimates for Semilinear Parabolic Equations 45

that is

T∗6
(b−M+(b−M)(q+1)/3)q+1

(q+1)(1−E(b−M)(q−2)/3)
. (3.11)

Since the right hand of (3.11) is bounded, we obtain that ϕ(x,t) quenches in a finite time.
Using the maximum principle, it implies u(x,t)>0 in Ω×(0,T). And extending the esti-
mate, we get

u(x,t)>ϕ(x,t), (x,t)∈R(a,δ)×(0,T̃),

for T̃=min{T,T∗}, and

T6T∗6
(b−M+(b−M)(q+1)/3)q+1

(q+1)(1−E(b−M)(q−2)/3)
. (3.12)

In fact, assume that T > T∗, we see ∥u(x,T∗)∥∞ > ∥ϕ(x,T∗)∥∞ = b, which contradicts the
interval (0,T) of the solution u. From the finite T, ut>0, and u<b, we see that u quenches
in a finite time.

In the subsequence, we discuss an ODE problem to show the lower bound of T

dη(t)
dt

= g(η),

η(0)=M,

where g(η)=(b−η)−p+(b−η)−q and M=sup
x∈Ω

u0(x)<b.

Assume that s(x,t)=η(t) in Ω̄×[0,Tk), we have
st−∆s=(b−s)−p+(b−s)−q, (x,t)∈Ω×(0,Tk),
s>0, (x,t)∈∂Ω×(0,Tk),
s(0)>u0(x), x∈Ω.

By the maximum principle, one sees 06u6 s=η(t), (x,t)∈Ω×(0,Tk).
Hence g(u)>0 implies ∫ η(t)

M

du
g(u)

= t.

Assume that Tk is the time such that lim
t→Tk

η(t)=b. Then we see

Tk =
∫ b

M

du
g(u)

,

which implies that

T>Tk =
∫ b

M

du
g(u)

. (3.13)
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However if Tk>T, then η(T)>∥ϕ(x,T)∥∞=b, which contradicts the interval (0,Tk) of the
solution η(t).

Combined with (3.12) and (3.13), we have the following estimate for T∫ b

M

du
g(u)

6T6 (b−M+(b−M)(q+1)/3)q+1

(q+1)(1−E(b−M)(q−2)/3)
.
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