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Abstract. Let S: [0, 1]→[0, 1] be a chaotic map and let f ∗ be a stationary density of
the Frobenius-Perron operator PS: L1→L1 associated with S. We develop a numer-
ical algorithm for approximating f ∗, using the maximum entropy approach to an
under-determined moment problem and the Chebyshev polynomials for the sta-
bility consideration. Numerical experiments show considerable improvements to
both the original maximum entropy method and the discrete maximum entropy
method.
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1 Introduction

In the past fifty years, since the publication of the pioneering work of Jayne (see [8]),
the idea of maximum entropy method has been widely applied to solving density
function recovering problems in mathematical physics and stochastic analysis. This
idea was first adopted in [4] to numerically compute a stationary density of a chaotic
map S from the interval [0, 1] to itself, based on the classic Hausdorff moment prob-
lems.

The maximum entropy method developed in [4] has been applied to the compu-
tation of Lyapunov exponents of chaotic maps in [5], which is closely related to the
computation of the stationary density f ∗ since the Lyapunov exponent can be calcu-
lated by

λ =
∫ 1

0
f ∗(x) ln |S′(x)|dx,
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that quantitatively describes the sensitivity of the orbits on the initial conditions for the
chaotic dynamics. The numerical experiments in [4,5] suggest that for relatively small
number of moments, the algorithm can produce better approximations of the station-
ary density and exact Lyapunov exponent than the famous Ulam’s method (see [7,11]).
But due to the ill-conditioning resulting from employing the standard monomial ba-
sis of {1, x, x2, · · · , xn} (the condition number may reach the order of 1017 for n=12),
round-off errors dominate the computation of the algorithm even if a high precision
Gauss quadrature is used in numerical integration.

Recently, the authors of [2] proposed a discrete version of a maximum entropy
method for computing stationary densities and Lyapunov exponents. Basically they
first approximate the Boltzmann entropy functional, which is the objective function of
the maximum entropy optimization problem, by a high precision Gauss quadrature,
and do the same thing for the moment constraints. The resulting optimization prob-
lem is still finite dimensional, but integration is avoided, which is natural since the
Gauss quadrature numerical integration had been done before solving the discretized
optimization problem. In their implementation of the algorithm, the monomial basis
of polynomials is replaced with the Chebeshev polynomial basis. The computation-
ally needed moments of the unknown stationary density with respect to the Chebe-
shev polynomials are estimated by the average values of the polynomials along the
orbit of an initial point under the repeated iteration of the map S. This is justified in
theory by the classic Birkhoff individual ergodic theorem, which says that the time
average equals the space average for ergodic maps. As many as 150 moments can be
used in [2] for the implementation of the algorithm. However, there is an approxima-
tion accuracy issue here, that is, some additional errors occur from approximating the
Boltzmann entropy functional and the constraint equations. Such errors explain why
a relatively large number of moments are needed for the numerical recovery of the
stationary density to a prescribed precision.

In this paper, we intend to overcome the two main drawbacks of the original maxi-
mum entropy method for solving the stationary density problem of Frobenius-Perron
operators. The first drawback is the ill-conditioning of the monomials, so we employ
orthogonal polynomials in our numerical computation. The second drawback is re-
lated to the ”homogeneous moment problem” proposed in [4] since the maximum
entropy solution involves the underlying map which is only piecewise continuous
in general. Thus, a good accuracy of the computed stationary density may not be
guaranteed. To solve this problem, as is done in the paper [2], we use the same idea
of Birkhoff’s individual ergodic theorem, and consequently we solve a ”nonhomoge-
neous moment problem” whose solution is a smooth function. Thus we propose a new
practical algorithm for solving the stationary density problem of Frobenius-Perron op-
erators, which combines the original idea of the maximum entropy method [4] and
the idea of solving a nonhomogeneous moment problem [2], using the good stabil-
ity property of the orthogonal polynomials. From the reported numerical experiment
results one can see that the present algorithm can not only use as many moments as
needed, but also give a faster convergence. For some maps our algorithm uses much
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fewer moments to achieve the same accuracy as the one from [2].
After giving some preliminaries in the next section, we present a general maximum

entropy algorithm in Section 3. A special algorithm using orthogonal polynomials
such as Chebyshev or Legendre ones will be presented in Section 4. Numerical exper-
iments using Chebyshev polynomials will be presented in Section 5 and we conclude
in Section 6.

2 Preliminaries

Let a measurable transformation S: [0, 1]→[0, 1] be nonsingular, that is, m(A)=0 im-
plies

m
(
S−1(A)

)
= 0,

for any Lebesgue measurable subset A of [0, 1], where m denotes the Lebesgue mea-
sure. The linear operator PS: L1(0, 1)→L1(0, 1) defined by∫

A
PS f (x)dx =

∫
S−1(A)

f (x)dx, (2.1)

for every measurable A⊂[0, 1] is called the Frobenius-Perron operator associated with S.
From the definition (2.1), we see that

PSk = (PS)
k,

for any k. It is well-known that Frobenius-Perron operators are Markov operators, that
is

f ≥ 0 ⇒ PS f ≥ 0 and ∥PS f ∥1 = ∥ f ∥1,

where

∥ f ∥1 =
∫ 1

0
| f (x)|dx.

If
f ∗ ≥ 0 and ∥ f ∗∥1 = 1,

then the absolutely continuous probability measure µ f ∗ defined by

µ f ∗(A) =
∫

A
f ∗(x)dx, ∀ measurable sets A ⊂ [0, 1],

satisfies the invariance property

µ f ∗
(
S−1(A)

)
= µ f ∗(A), ∀ measurable sets A ⊂ [0, 1],

if and only if f ∗ is a fixed point of PS. This fixed point density f ∗ is called a stationary
density of PS, which gives the asymptotic statistical properties of chaotic orbits of S.
See [1, 6] for details related to Frobenus-Perron operators in ergodic theory.
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The dual of PS is the operator US: L∞(0, 1)→L∞(0, 1) defined by

USg(x) = g
(
S(x)

)
, (2.2)

which is called the Koopman operator with respect to S. Thus, we have∫ 1

0
g(x)PS f (x)dx =

∫ 1

0
USg(x) f (x)dx, (2.3)

for all f∈L1(0, 1) and g∈L∞(0, 1), which will be used in the next section.
The number

H( f ) = −
∫ 1

0
f (x) ln f (x)dx, (2.4)

is called the Boltzmann entropy, this number is either finite or −∞, and the functional

H :
{

f ≥ 0 : f ∈ L1(0, 1)
}
→ [−∞, ∞),

defined via (2.4) is a proper, upper semi-continuous concave function, strictly concave
on its domain that consists of all functions f≥0, with H( f )>−∞. Moreover, for any
α>−∞, the upper level set {

f ≥ 0 : H( f ) ≥ α
}

,

is weakly compact in L1(0, 1) (see [3]).
Let

D ≡ D(0, 1) =
{

f ≥ 0 : f ∈ L1(0, 1), ∥ f ∥1 = 1
}

,

be the set of all densities. The theoretical background of the maximum entropy method
is the following maximization problem

max
{

H( f ) : f ∈ D,
∫ 1

0
f (x)gk(x)dx = µk, k = 1, · · · , n

}
, (2.5)

where {
g1, g2, · · · , gn

}
⊂ L∞(0, 1),

and µ1, · · · , µn are given constants. The maximum entropy method is justified by the
next result [6].

Theorem 2.1. Suppose the numbers λ1, · · · , λn are chosen, such that the density function

fn(x) =
e∑n

k=1 λk gk(x)∫ 1
0 e∑n

k=1 λk gk(x)dx
,

satisfies the equalities ∫ 1

0
gj(x) fn(x)dx = µj, j = 1, · · · , n,

then fn is the solution to the maximum entropy problem (2.5).
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Proof. (see [6]) The following Gibbs inequality

u − u ln u ≤ v − u ln v,

for u, v ≥ 0, which can be proved by elementary calculus, implies the inequality∫ 1

0
f (x) ln f (x)dx ≥

∫ 1

0
f (x) ln g(x)dx, ∀ f , g ∈ D. (2.6)

Denote

Z =
∫ 1

0
e∑n

k=1 λk gk(x)dx,

then

H( fn) = ln Z −
n

∑
k=1

λkµk.

Given f∈D that satisfies the constraints of (2.5), then from (2.6), we have

H( f ) ≤−
∫ 1

0
f (x) ln fn(x)dx

=−
∫ 1

0
f (x)

(
− ln Z +

n

∑
k=1

λkgk(x)
)

dx

= ln Z −
n

∑
k=1

λk

∫ 1

0
f (x)gk(x)dx

= ln Z −
n

∑
k=1

λkµk = H( fn).

Since the Boltzmann entropy is strictly concave, fn is the unique maximum entropy
solution. �

3 A general maximum entropy method

Now we develop a general maximum entropy method for solving the Frobenius-
Perron operator equation. First, we need a lemma.

Lemma 3.1. Let {qn}∞
n=0 be a sequence of differentiable functions defined on [0, 1], such that

q0(x)≡1 and its derivative function sequence {q′n}∞
n=1 is dense in L2(0, 1). If a function

f∈L1(0, 1) satisfies the equalities∫ 1

0
qn(x) f (x)dx = 0, n = 0, 1, · · · ,

then
f = 0.
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Proof. Let

f̂ (x) =
∫ x

0
f (t)dt,

for 0≤x≤1, then f̂ is a continuous function and

f̂ (0) = f̂ (1) = 0.

Integration by parts gives

0 =
∫ 1

0
qn(x) f (x)dx =

[
qn(x) f̂ (x)

]∣∣∣1
0
−

∫ 1

0
q′n(x) f̂ (x)dx

=−
∫ 1

0
q′n(x) f̂ (x)dx, ∀n = 1, 2, · · · .

Since f̂∈L2(0, 1) and the set {q′n}∞
n=1 is dense in L2(0, 1), we have f̂ (x)≡0, which im-

plies that f=0. �

Remark 3.1. The special case that qn(x)=xn was proved in [9].
Let S: [0, 1]→[0, 1] be a nonsingular transformation, such that the fixed point equa-

tion PS f= f of the corresponding Frobenius-Perron operator PS: L1(0, 1)→L1(0, 1) has
a density solution f ∗.

Choose a sequence of linearly independent functions {qn} that satisfies the condi-
tion of the above lemma. For any positive integer N, we have

1
N

N

∑
i=1

Pi
S f ∗ = f ∗,

then ∫ 1

0
qn(x)

1
N

N

∑
i=1

Pi
S f ∗(x)dx =

∫ 1

0
qn(x) f ∗(x)dx,

for n=1, 2, · · · , by the dual relation (2.3) and the definition (2.2) of the Koopman oper-
ator ∫ 1

0
qn(x)

1
N

N

∑
i=1

Pi
S f ∗(x)dx =

∫ 1

0

1
N

N

∑
i=1

qn
(
Si(x)

)
f ∗(x)dx,

so f ∗ solves the following system∫ 1

0

[
qn(x)− 1

N

N

∑
i=1

qn
(
Si(x)

)]
f (x)dx = 0, n = 1, 2, · · · , (3.1)

of infinitely many equations. Conversely, if a density function f ∗ solves the above
system, then, by the duality relation (2.3) of the Frobenius-Perron operator PS and the
Koopman operator US defined by (2.2)∫ 1

0
qn(x)

[ 1
N

N

∑
i=1

Pi
S f ∗(x)− f ∗(x)

]
dx = 0, n = 1, 2, · · · .
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Thus
1
N

N

∑
i=1

Pi
S f ∗ = f ∗,

by Lemma 3.1. In many cases, the above equality implies

PS f ∗ = f ∗,

hence, finding a stationary density of the Frobenius-Perron operator is the same as
finding a density solution of the homogeneous moment problem (3.1).

The above equivalent condition for a stationary density naturally motivates a max-
imum entropy method for solving (3.1) numerically as follows: choose N and n and
solve the maximum entropy problem

max
{

H( f ) : f ∈ D,
∫ 1

0

[
qk(x)− 1

N

N

∑
i=1

qk
(
Si(x)

)]
f (x)dx = 0, k = 1, · · · , n

}
, (3.2)

to get an approximate stationary density fn to the exact stationary density f ∗ of the
Frobenius-Perron operator PS.

Remark 3.2. The original maximum entropy method of [4] just chose N=1 in the
above approach.

If the following algebraic system∫ 1

0

[
qj(x)− 1

N

N

∑
i=1

qj
(
Si(x)

)]
exp

{ n

∑
k=1

λk

[
qk(x)− 1

N

N

∑
i=1

qk
(
Si(x)

)]}
dx = 0,

with j=1, · · · , n, of equations has a solution (λ1, · · · , λn), then, by Theorem 2.1, the
corresponding density

fn(x) =
e∑n

k=1 λk

[
qk(x)− 1

N ∑N
i=1 qk(Si(x))

]
∫ 1

0 e∑n
k=1 λk

[
qk(x)− 1

N ∑N
i=1 qk(Si(x))

]
dx

, (3.3)

is a solution to (3.2). The above method, however, has a serious smoothness issue.
That is, the maximum entropy solution (3.3) of the homogeneous moment problem
contains the map S and its iterates which may only be piecewise smooth, so it may not
provide a good approximation of the stationary density f ∗ of PS. In order to address
this issue, we need Birkhoff’s individual ergodic theorem. This classic result asserts
that if S is ergodic with respect to the invariant measure µ f ∗ , then

lim
N→∞

1
N

N

∑
i=1

qk
(
Si(x)

)
=

∫ 1

0
qk(x) f ∗(x)dx, ∀x ∈ [0, 1], a.e. µ f ∗ ,

which is just the kth moment of f ∗ with respect to qk. Therefore, we can pick a large
integer N, so that

1
N

N

∑
i=1

qk
(
Si(x)

)
≈

∫ 1

0
qk(x) f ∗(x)dx.
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This leads to the following nonhomogeneous maximum entropy algorithm:

Algorithm 3.1. Approximate the moments

µk = lim
N→∞

1
N

N

∑
i=1

qk
(
Si(x)

)
, (3.4)

with a large integer N for k=1, · · · , n, and solve the following maximum entropy prob-
lem with nonhomogeneous moments

max
{

H( f ) : f ∈ D,
∫ 1

0
qk(x) f (x)dx = µk, k = 1, · · · , n

}
. (3.5)

The solution of the above nonhomogeneous moment problem is

fn(x) =
e∑n

k=1 λkqk(x)∫ 1
0 e∑n

k=1 λkqk(x)dx
,

where the numbers λk’s satisfy∫ 1
0 qj(x)e∑n

k=1 λkqk(x)dx∫ 1
0 e∑n

k=1 λkqk(x)dx
= µj, j = 1, · · · , n. (3.6)

From now on, we assume that system (3.6) is consistent for all n for the given map
S, which guarantees that the maximum entropy method is well-posed. A sufficient
condition that guarantees the consistency of the above system is that f ∗ is positive on
[0, 1] almost everywhere, as proved in [4].

Note that the limiting case of the homogeneous moment problem (3.2) is equiva-
lent to the nonhomogeneous moment problem (3.5) because due to (3.4) the equations

∫ 1

0

[
qk(x)− lim

N→∞

1
N

N

∑
i=1

qk
(
Si(x)

)]
f (x)dx = 0,

for k=1, · · · , n, are equvalent to∫ 1

0

(
qk(x)− µk

)
f (x)dx = 0,

for k=1, · · · , n, which are ∫ 1

0
qk(x) f (x)dx = µk,

for k=1, · · · , n, because f∈D.
Using the abstract convergence theory for general moment problems from [3] as

was done in the paper [4], we have the following convergence result for our Algo-
rithm. Its proof is basically the same as that given in [4], so it is omitted here.
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Theorem 3.1. Suppose f ∗ is a unique stationary density of the Frobenius-Perron operator PS,
such that H( f ∗) is finite. Let { fn} be the sequence of the maximum entropy solutions from
the Algorithm. Then

lim
n→∞

fn = f ∗,

under the L1-norm. Furthermore, we have an L1-norm error upper bound

∥ fn − f ∗∥1 ≡
∫ 1

0
| fn(x)− f ∗(x)|dx ≤ bne

bn
2 ,

where bn is the L∞-norm distance of the function 1 + ln f ∗ to the subspace of L∞(0, 1) that is
spanned by q1, · · · , qn.

The original maximum entropy method for computing a stationary density of the
Frobenius-Perron operator as developed in [4] chose qk(x)=xk for all k. Although this
choice of the ”monomial moment functions” is natural and simple, the main problem
of instability for relatively large n limited its use for n>10, due to the huge condi-
tion number and resulting round-off error dominance. In the next section, we use a
sequence of orthogonal polynomials as qk functions. In particular, we use re-scaled
Chebyshev polynomials or Legendre polynomials.

4 Practical maximum entropy algorithms using orthogonal
polynomials

Let w be a nonnegative function defined on an open interval (a, b). A sequence of
polynomials pn is said to be orthogonal with respect to the weight function w over
[a, b] if ∫ b

a
pn(x)pk(x)w(x)dx = 0,

for all n ̸=k. For example, the sequence of Chebyshev polynomials

Tn(x) = cos(n arccos x),

is orthogonal with respect to the weight function

w(x) =
1√

1 − x2
,

over [−1, 1], and the Legendre polynomials

Ln(x) =
dn

dxn (x2 − 1)n,

are orthogonal with respect to the weight function w(x)≡1 over [−1, 1].
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The first several Chebyshev polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,
the first Legendre polynomials are

L0(x) = 1, L1(x) = 2x, L2(x) = 12x2 − 4, L3(x) = 120x3 − 72x.

In general, Tn and Ln are even functions, if n is even and odd functions, if n is odd.
Suppose {pn} is a sequence of orthogonal polynomials with respect to the weight

function w over [a, b]. Let

qn(x) = pn
(
(b − a)x + a

)
,

then {qn} is an orthogonal polynomial sequence with respect to the weight function
w((b − a)x + a) over [0, 1]. Since the set {q0, q1, · · · , qn} forms a basis for the space
of all polynomials of degree less than or equal to n for all n, it is easy to see that
the sequence {qn} of the re-scaled and shifted orthogonal polynomials satisfies the
condition of Lemma 3.1.

With the choice of {qn} in the general algorithm of the previous section, the mo-
ment constraint equations (3.6) become∫ 1

0 pj
(
(b − a)x + a

)
e∑n

k=1 λk pk

(
(b−a)x+a

)
dx∫ 1

0 e∑n
k=1 λk pk

(
(b−a)x+a

)
dx

= µj, j = 1, · · · , n. (4.1)

As an example, if we choose the Chebyshev polynomials, then the above nonlinear
equations are ∫ 1

0 Tj(2x − 1)e∑n
k=1 λkTk(2x−1)dx∫ 1

0 e∑n
k=1 λkTk(2x−1)dx

= µj, j = 1, · · · , n. (4.2)

The main numerical work of the orthogonal polynomial maximum entropy method
here is solving the system (4.1) of nonlinear equations for λ1, · · · , λn. There are many
numerical methods to solve the above nonlinear system, such as Newton’s method or
the quasi-Newton method [10]. In applying any nonlinear system solver, we can im-
plement a high precision numerical integration scheme, such as a composite Gaussian
quadrature, to approximate the involved integrals with high accuracy.

After a numerical solution (λ1, · · · , λn) is obtained, the density function

fn(x) =
e∑n

k=1 λk pk

(
(b−a)x+a

)
∫ 1

0 e∑n
k=1 λk pk

(
(b−a)x+a

)
dx

,

is a maximum entropy approximation to the stationary density f ∗ of the Frobenius-
Perron operator PS associated with S: [0, 1]→[0, 1].

Even if the map S: [0, 1]→[0, 1] is only piecewise continuous, the above computed
density function fn is still smooth that can approximate the exact stationary density
well. Numerical experiments in the next section show that the proposed approach
works nicely for non-smooth S.
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5 Numerical results

In this section, we present some numerical results. And we also compare them with
those obtained in earlier papers. The test maps are

S1(x) =


2x

1 − x2 , 0 ≤ x ≤
√

2 − 1,

1 − x2

2x
,

√
2 − 1 ≤ x ≤ 1,

S2(x) =


2x

1 − x
, 0 ≤ x ≤ 1

3
,

1 − x
2x

,
1
3
≤ x ≤ 1,

S3(x) = 4x(1 − x).

The unique stationary densities of Si are given by

f ∗1 (x) =
4

π(1 + x2)
, f ∗2 (x) =

2
(1 + x)2 , f ∗3 (x) =

1
π
√

x(1 − x)
,

here, we use the maximum entropy method with various n to approximate the sta-
tionary density. We used the Chebyshev polynomials, and we used Newton’s method
to solve the system (4.2) of nonlinear equations for λ1, λ2, · · · , λn. For the evaluation
of each equation we used the composite 3-node Gaussian quadrature. In Tables 1-9,
Algorithm I stands for our algorithm that computes the exact moments using f ∗i (x)
(i=1, 2, 3) with absolute errors not more than 10−8. Algorithm II and Algorithm III
stand for our algorithm that approximates the exact moments using (3.4) with N=106

and N=107, respectively.
In Tables 1-3, we compared the quantities

αn =
∫ 1

0
fn(x)

√
x

2
dx,

with the exact average

α∗ =
∫ 1

0
f ∗(x)

√
x

2
dx,

Table 1: Relative errors in αn for S1.

n Algorithm in [5] Algorithm I Algorithm II Algorithm III
1 2.9 × 10−3 3.1 × 10−3 3.1 × 10−3

2 1.5 × 10−2 2.3 × 10−4 4.4 × 10−4 3.7 × 10−4

3 1.4 × 10−2 4.6 × 10−7 2.5 × 10−4 1.4 × 10−4

4 1.2 × 10−2 2.0 × 10−6 2.7 × 10−4 1.4 × 10−4

5 1.2 × 10−2 2.0 × 10−7 2.7 × 10−4 1.4 × 10−4

6 1.2 × 10−2 1.0 × 10−8 2.9 × 10−4 1.4 × 10−4

7 1.2 × 10−2 4.8 × 10−9 2.8 × 10−4 1.4 × 10−4

8 1.2 × 10−2 3.4 × 10−10 2.9 × 10−4 1.4 × 10−4

9 1.1 × 10−2 5.3 × 10−11 2.9 × 10−4 1.4 × 10−4

10 5.2 × 10−3 4.1 × 10−11 2.8 × 10−4 1.4 × 10−4
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Table 2: Relative errors in αn for S2.

n Algorithm in [5] Algorithm I Algorithm II Algorithm III
1 3.1 × 10−3 2.7 × 10−3 3.1 × 10−3

2 4.5 × 10−2 1.5 × 10−4 4.0 × 10−4 1.6 × 10−4

3 4.0 × 10−2 1.1 × 10−5 5.5 × 10−4 1.5 × 10−5

4 3.5 × 10−2 9.1 × 10−7 5.8 × 10−4 1.0 × 10−5

5 3.3 × 10−2 8.7 × 10−8 5.7 × 10−4 8.5 × 10−6

6 3.0 × 10−2 9.2 × 10−9 5.9 × 10−4 2.8 × 10−6

7 3.0 × 10−2 1.1 × 10−9 5.9 × 10−4 3.6 × 10−6

8 3.0 × 10−2 2.5 × 10−10 5.8 × 10−4 2.9 × 10−6

9 1.5 × 10−10 5.8 × 10−4 2.4 × 10−6

10 1.4 × 10−10 5.8 × 10−4 1.8 × 10−6

Table 3: Relative errors in αn for S3.

n Algorithm in [5] Algorithm I Algorithm II Algorithm III
1 4.7 × 10−2 4.7 × 10−2 4.7 × 10−2

2 1.2 × 10−1 8.0 × 10−3 7.7 × 10−3 8.1 × 10−3

3 1.2 × 10−1 8.0 × 10−3 7.7 × 10−3 8.0 × 10−3

4 1.1 × 10−1 3.1 × 10−3 2.7 × 10−3 3.1 × 10−3

5 1.1 × 10−1 3.1 × 10−3 2.7 × 10−3 3.1 × 10−3

6 1.1 × 10−1 1.6 × 10−3 1.3 × 10−3 1.6 × 10−3

7 1.1 × 10−1 1.6 × 10−3 1.3 × 10−3 1.6 × 10−3

8 9.6 × 10−2 9.7 × 10−4 6.3 × 10−4 1.0 × 10−3

9 9.6 × 10−2 9.7 × 10−4 6.4 × 10−4 1.0 × 10−3

10 9.6 × 10−2 6.5 × 10−4 3.2 × 10−4 6.8 × 10−4

to estimate the errors in the sense of weak convergence, as in the paper [5]. For S3,
since we are using re-scaled and shifted Chebyshev polynomials, all the moments are
zero. Hence the exact zero moments are used in Algorithm I. Note that for all Si Al-
gorithms I, II and III with n=1 give smaller relative errors than those of the algorithm
in [5] with n=10 for S1 and S3, and with n=8 for S2,

In Tables 4-6, we compared the approximated Lyapunov exponents

λn =
∫ 1

0
fn(x) ln |S′(x)|dx,

with the exact Lyapunov exponent

λ∗ =
∫ 1

0
f ∗(x) ln |S′(x)|dx.

It is striking to note that according to Table 4 Algorithms I, II and III with n=4 gave
the comparable results with the Algorithm in [2], when n=100.

In Tables 7-9, we compiled L1-norm errors∫ 1

0
| f ∗(x)− fn(x)|dx,
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Table 4: Relative errors in λn for S1.

n Algorithm I Algorithm II Algorithm III
1 1.2 × 10−2 1.2 × 10−2 1.2 × 10−2

2 6.7 × 10−4 6.7 × 10−4 7.3 × 10−4

3 5.6 × 10−6 9.9 × 10−5 3.7 × 10−5

4 1.2 × 10−5 4.9 × 10−5 3.3 × 10−5

5 1.3 × 10−6 7.4 × 10−5 2.9 × 10−5

6 8.1 × 10−8 8.7 × 10−7 1.8 × 10−5

7 1.4 × 10−7 1.6 × 10−5 1.7 × 10−5

8 1.3 × 10−7 2.9 × 10−5 1.8 × 10−5

9 1.2 × 10−7 1.3 × 10−5 1.7 × 10−5

10 1.2 × 10−7 9.6 × 10−6 1.7 × 10−5

Table 5: Relative errors in λn for S2.

n Algorithm I Algorithm II Algorithm III
1 1.6 × 10−2 1.7 × 10−2 1.6 × 10−2

2 9.5 × 10−4 7.8 × 10−4 9.6 × 10−4

3 3.2 × 10−5 2.0 × 10−4 4.7 × 10−5

4 8.7 × 10−6 1.3 × 10−4 3.6 × 10−5

5 2.5 × 10−7 1.5 × 10−4 1.8 × 10−5

6 8.1 × 10−8 8.7 × 10−5 6.9 × 10−6

7 8.1 × 10−9 5.5 × 10−5 1.4 × 10−5

8 1.8 × 10−9 1.9 × 10−5 6.2 × 10−6

9 1.5 × 10−9 1.6 × 10−5 7.4 × 10−6

10 1.4 × 10−9 3.2 × 10−5 1.5 × 10−5

Table 6: Relative errors in λn for S3.

n Algorithm in [2] Algorithm I Algorithm II Algorithm III
20 2.5 × 10−3 2.8 × 10−3 2.5 × 10−3

40 3.5 × 10−3 6.7 × 10−4 8.9 × 10−4 7.0 × 10−4

60 1.5 × 10−3 3.0 × 10−4 4.6 × 10−4 3.1 × 10−4

80 4.3 × 10−4 1.7 × 10−4 2.7 × 10−4 1.7 × 10−4

100 2.5 × 10−4 1.1 × 10−4 1.3 × 10−4 1.1 × 10−4

in fn for S1, S2 and S3. We note that the same maps were tested in the original paper [4]
with the homogeneous moment approach and n=4, and the L1-norm errors are

4.5 × 10−2 for S1, 1.3 × 10−1 for S2 and 3.2 × 10−1 for S3.

As a comparison, our Algorithm III errors from Tables 7-8 are 5.8 × 10−4 for S1 and
2.6 × 10−4 for S2. This shows a great improvement from the new approach. Also
the L1-norm error from our Algorithms I, II and III in Table 9 is 1.8 × 10−1 for S3.
This shows that even when S is smooth, nonhomegeneous moment approach has an
advantage over homogeneous moment approach.
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Table 7: L1-norm errors in fn for S1.

n Algorithm I Algorithm II Algorithm III
1 3.3 × 10−2 3.3 × 10−2 3.3 × 10−2

2 6.7 × 10−3 6.7 × 10−3 6.7 × 10−3

3 2.1 × 10−4 1.1 × 10−3 5.8 × 10−4

4 1.8 × 10−4 1.6 × 10−3 5.8 × 10−4

5 3.0 × 10−5 1.5 × 10−3 5.6 × 10−4

6 1.6 × 10−6 1.8 × 10−3 6.1 × 10−4

7 1.3 × 10−6 1.8 × 10−3 6.1 × 10−4

8 1.6 × 10−7 1.7 × 10−3 6.1 × 10−4

9 1.9 × 10−8 1.7 × 10−3 6.2 × 10−4

10 8.3 × 10−9 2.5 × 10−3 6.2 × 10−4

Table 8: L1-norm errors in fn for S2.

n Algorithm I Algorithm II Algorithm III
1 3.0 × 10−2 3.0 × 10−2 3.0 × 10−2

2 3.5 × 10−3 3.9 × 10−3 3.6 × 10−3

3 4.6 × 10−4 1.9 × 10−3 4.6 × 10−4

4 6.4 × 10−5 1.9 × 10−3 2.6 × 10−4

5 9.2 × 10−6 1.9 × 10−3 2.2 × 10−4

6 1.4 × 10−6 2.0 × 10−3 7.3 × 10−4

7 2.0 × 10−7 2.0 × 10−3 7.1 × 10−4

8 2.7 × 10−8 2.4 × 10−3 7.2 × 10−4

9 3.9 × 10−9 2.4 × 10−3 7.2 × 10−4

10 6.4 × 10−10 2.4 × 10−3 7.4 × 10−4

Table 9: L1-norm errors in fn for S3.

n Algorithm I Algorithm II Algorithm III
4 1.8 × 10−1 1.8 × 10−1 1.8 × 10−1

20 6.5 × 10−2 6.5 × 10−2 6.5 × 10−2

40 3.8 × 10−2 3.8 × 10−2 3.8 × 10−2

60 2.7 × 10−2 2.8 × 10−2 2.8 × 10−2

80 2.2 × 10−2 2.3 × 10−2 2.2 × 10−2

100 1.8 × 10−2 2.0 × 10−2 1.8 × 10−2

6 Conclusions

In this paper, we approximated the stationary densities of the Frobenius-Perron opera-
tors using the improved maximum entropy method. We modified the ”homogeneous
moment problem” proposed in [4] to become the ”nonhomogeneous moment prob-
lem” using the Birkhoff individual ergodic theorem (see (3.4)). Then we combined it
with the orthogonal polynomial technique and developed a stable maximum entropy
method with much faster convergence. As the last section of the paper [4] mentioned,
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”The choice of the standard monomial sequence xn in the paper is only for the sake of
simplicity of presentation. Better conditioned ones, such as orthogonal polynomials
or basic splines, can be used to improve the convergence and stability of the max-
imum entropy method.” The numerical experiments presented in the current paper
have shown the above prediction.
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