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Abstract. This paper concentrates on the wave motion at the interface of viscous
compressible fluid half-space and homogeneous isotropic, generalized thermoelas-
tic diffusive half-space. The wave solutions in both the fluid and thermoelastic
diffusive half-spaces have been investigated; and the complex dispersion equation
of leaky Rayleigh wave motion have been derived. The phase velocity and attenua-
tion coefficient of leaky Rayleigh waves have been computed from the complex dis-
persion equation by using the Muller’s method. The amplitudes of displacements,
temperature change and concentration have been obtained. The effects of viscosity
and diffusion on phase velocity and attenuation coefficient of leaky Rayleigh waves
motion for different theories of thermoelastic diffusion have been depicted graphi-
cally. The magnitude of heat and mass diffusion flux vectors for different theories
of thermoelastic diffusion have also been computed and represented graphically.
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1 Introduction

The problem of fluid-structure interaction is wide and covers many types of both fluid
and structural behavior. Such problems can be interesting for researching processes
of vibrodisplacement and localization, decontamination of liquid medium, airing and
dispersion; in bioacoustics and cardiovascular medicine (for instance, for some prob-
lems involving blood flow, where fluid and structures models are coupled); in non-
destructive testing (for instance, the scattering of acoustic waves can give important
information about the internal composition of solids and fluids, yielding information
about internal inhomogeneities, asymmetries and defects from the scattering system);
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in technologies of resumption of oil production in foul wells, etc. For many years, nu-
merous authors have been interested in dynamics of fluid-structure interaction both
for unbounded domains of either fluid or structure and for delimited ones, involving
both motionless and flowing fluids.

Sorokin and Terentiev [26] investigated the effects of generation and transmission
of the vibro-acoustic energy in an elastic cylindrical shell filled with water. Sorokin [27]
discussed the assessment of the validity of elementary models of wave propagation in
an isotropic elastic layer under heavy fluid loading as well as analysis of coupling ef-
fects due to uneven fluid loading. Sorokin and Chubinskij [28] studied free wave prop-
agation and attenuation in elastic plates loaded by a quiescent viscous compressible
fluid. Ashour [6] discussed wave motion in a viscous fluid-filled fracture. Hashemine-
jad and Safari [12, 13] studied dynamic viscoelastic effects on sound wave diffraction
by spherical and cylindrical shells submerged in and filled with viscous compressible
fluids and acoustic scattering from viscoelastically coated spheres and cylinders in vis-
cous fluids. Nayfeh and Nagy [17] investigated the problem of excess attenuation of
leaky Lamb waves due to viscous fluid loading in which they also studied the propa-
gation of leaky rayleigh waves at the interface of viscous compressible fluid half-space
and homogeneous isotropic elastic half-space.

The classical theory of thermoelasticity is based on the Fourier’s heat conduction
theory which assumes that the thermal disturbances propagate at infinite speed. This
prediction is unrealistic from the physical point of view, particularly in situations like
those involving very short transient durations, sudden high heat flux exposures, and
at very low temperatures near the absolute zero. In the last two decades, two differ-
ent generalizations of the classical theory of thermoelasticity were developed which
predict the so-called second-sound effects, that is, which predict only finite veloc-
ity of propagation for heat and displacement fields. Lord and Shulman [16] incor-
porated a flux rate term into the Fourier’s law of heat conduction and formulated
a generalized theory admitting finite speed for thermal signals. Green and Lind-
say [11] have developed a temperature rate dependent thermoelasticity by including
temperature rate among the constitutive variables, which does not violate the classi-
cal Fourier’s law of heat conduction when the body under consideration has a center
of symmetry, and this theory also predicts a finite speed of heat propagation. The
Lord and Shulman [16] theory of generalized thermoelasticity was further extended
to homogeneous anisotropic heat conducting materials recommended by Dhaliwal
and Sherief [8]. Chanderashekhariah [7] refers to this wave like thermal disturbance
as second sound. A survey article of various representative theories in the range of
generalized thermoelasticity have been brought out by Hetnarski and Ignaczak [14].

The spontaneous movement of the particles from high concentration region to the
low concentration region is defined as diffusion and it occurs in response to a con-
centration gradient expressed as the change in the concentration due to change in
position. The thermodiffusion in elastic solids is due to coupling of fields of temper-
ature, mass diffusion and that of strain in addition to heat and mass exchange with
environment. Thermal diffusion utilizes the transfer of heat across a thin liquid or gas
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to accomplish isotope separation. Today, thermal diffusion remains a practical process
to separate isotopes of noble gases (e.g., xexon) and other light isotopes (e.g., carbon)
for research purposes. In integrated circuit fabrication diffusion is used to introduce
dopants in controlled amounts into the semiconductor substance. In particular, dif-
fusion is used to form the base and emitter in bipolar transistors, integrated resistors,
and the source/drain regions in Metal Oxide Semiconductor (MOS) transistors and
dope poly-silicon gates in MOS transistors. In most of the applications, the concentra-
tion is calculated using what is known as Fick’s law. This is a simple law which does
not take into consideration the mutual interaction between the introduced substance
and the medium into which it is introduced or the effect of temperature on this in-
teraction. Study of phenomenon of diffusion is used to improve the conditions of oil
extraction (seeking ways of more efficiently recovering oil from oil deposits). These
days, oil companies are interested in the process of thermodiffusion for more efficient
extraction of oil from oil deposits.

Nowacki [18–21] developed the theory of thermoelastic diffusion by using coupled
thermoelastic model. Sherief and Saleh [23] investigated the problem of a thermoelas-
tic half-space in the context of the theory of generalized thermoelastic diffusion with
one relaxation time. Singh discussed the reflection phenomena of waves from free
surface of an thermoelastic diffusion elastic solid with one relaxation time in [24] and
with two relaxation times in [25]. Aouadi studied in [1] the generalized thermoelastic
diffusion problem with variable electrical and thermal conductivity. Aouadi studied
also the interaction between the processes of elasticity, heat and diffusion in an in-
finitely long solid cylinder [2] and in an infinite elastic body with spherical cavity [3].
Gawinecki and Szymaniec [9] proved a theorem about global existence of the solu-
tion for a nonlinear parabolic thermoelastic diffusion problem. Gawinecki et al. [10]
proved a theorem about existence, uniqueness and regularity of the solution for the
same problem. Uniqueness and reciprocity theorems for the equations of generalized
thermoelastic diffusion problem, in isotropic media, was proved by Sherief et al. [22]
on the basis of the variational principle equations, under restrictive assumptions on
the elastic coefficients. Due to the inherit complexity of the derivation of the varia-
tional principle equations, Aouadi [4] proved this theorem in the Laplace transform
domain, under the assumption that the functions of the problem are continuous and
the inverse Laplace transform of each is also unique. Recently, Aouadi [5] derived
the uniqueness and reciprocity theorems for the generalized problem in anisotropic
media, under the restriction that the elastic, thermal conductivity and diffusion ten-
sors are positive definite. Kumar and Kansal [15] developed the basic equation of
anisotropic thermoelastic diffusion based upon Green-Lindsay model.

The present article is aimed to study the propagation of leaky Rayleigh waves in
a viscous compressible fluid half-space overlying a homogeneous isotropic, thermoe-
lastic diffusive half-space in the context of generalized theories of thermoelastic dif-
fusion. The phase velocity, attenuation coefficients of leaky Rayleigh wave propaga-
tion have been computed from the complex dispersion equation by using the Muller’s
method. The amplitudes of displacements, temperature change and concentration
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have been obtained. The magnitude of heat and mass diffusion flux vectors for dif-
ferent theories of thermoelastic diffusion have also been computed and represented
graphically.

2 Basic equations

Following Sherief et al. [22] and Kumar et al. [15], the basic equations for homoge-
neous isotropic generalized thermoelastic diffusion in the absence of body forces, heat
and mass diffusion sources are:

Constitutive relations

σij = 2µeij + δij
[
λekk − β1(T + τ1Ṫ)− β2(C + τ1Ċ)

]
, (2.1a)

ρT0S = k + ρCE(T + αṪ) + β1T0ekk + aT0(C + βĊ), (2.1b)

P = −β2ekk + b(C + τ1Ċ)− a(T + τ1Ṫ); (2.1c)

Equations of motion

µui,jj + (λ + µ)uj,ij − β1(T + τ1Ṫ),i − β2(C + τ1Ċ),i = ρüi; (2.2)

Equation of heat conduction

ρCE(Ṫ + τ0T̈) + β1T0(ėkk + ετ0ëkk) + aT0(Ċ + γC̈) = KT,ii; (2.3)

Equation of mass diffusion

Dβ2ekk,ii + Da(T + τ1Ṫ),ii + (Ċ + ετ0C̈)− Db(C + τ1Ċ),ii = 0; (2.4)

where
β1 = (3λ + 2µ)αt, and β2 = (3λ + 2µ)αc,

λ, µ are Lame’s constants, αt is the coefficient of linear thermal expansion and αc is the
coefficient of linear diffusion expansion. a, b are, respectively, coefficients describing
the measure of thermoelastic diffusion effects and of diffusion effects, T0 is the ref-
erence temperature assumed to be such that |T/T0| ≪ 1. σij are the components of
the stress tensor. ui are the components of the displacement vector u, ρ is the density
assumed to be independent of the time, eij are the components of the strain tensor, S
is the entropy per unit mass, P is the chemical per unit mass, T(x1, x2, x3, t) is the tem-
perature change, C is the concentration, CE is the specific heat at the constant strain, K
is the coefficient of the thermal conductivity, D is the thermoelastic diffusion constant.
τ0, τ1 are diffusion relaxation times with τ1 ≥ τ0 ≥ 0, and τ0, τ1 are thermal relaxation
times with τ1 ≥ τ0 ≥ 0. Here

α = β = ε = γ = k = τ0 = τ0 = τ1 = τ1 = 0,
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for Coupled Thermoelasticity (CT) model,

α = β = k = τ1 = τ1 = 0, ε = 1, γ = τ0,

for Lord-Shulman (L-S) model, and

α = τ0, β = τ0, ε = 0, γ = τ0,

for Green-Lindsay (G-L) model. Following Sorokin et al. [28], the linearlised Navier-
Stokes equations of motion of viscous compressible fluid are:

Equations of momentum

ρ f
∂⃗ν

∂t
= −∇p +

η

3
∇(∇ · ν⃗) + η∇2⃗ν; (2.5)

Equation of continuity
∂ρ0

∂t
+ ρ f∇ · ν⃗ = 0; (2.6)

The constitutive law
∂p
∂ρ0 = c2

f . (2.7)

Here, ν⃗=(ν1, ν2, ν3) is the velocity vector, p is the fluid pressure, ρ0 is the density pertu-
bation, ρ f is the fluid density at rest, c f=

√
K f /ρ f is the sound velocity, K f is the bulk

modulus, ν and η=ρ f ν are the kinematic and dynamic fluid viscosity, respectively.
The stress tensor πij in the fluid is

πij =
(
− p − 2

3
η∇ · ν⃗

)
δij + 2ηϵij. (2.8)

Here, δij is a unit tensor, ϵij=(νi,j + νj,i)/2 is the tensor of velocities of deformations.

3 Formulation of the problem

We consider viscous compressible fluid half-space (Medium II) overlying a homoge-
neous isotropic, generalized thermoelastic diffusive half-space (Medium I). The origin
of the cartesian coordinate system (x, y, z) is taken at any point on the plane surface
(interface) and z-axis points vertically downwards into the solid half-space which is
thus represented by z ≥ 0 (see Fig. 1). We chose x-axis in the direction of wave propa-
gation so that all particles on a line parallel to y-axis are equally displaced. Therefore
all the field quantities are independent of y. Therefore for two dimensional problem,

−→u (x, z, t) = (u, 0, w), T(x, z, t), C(x, z, t), −→ν (x, z, t) = (ν1, 0, ν3), (3.1)
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Figure 1: Geometry of the problem.

are displacement vector, temperature change, concentration and velocity vector. We
define the dimensionless quantities:

x′ =
w∗

1 x
c1

, z′ =
w∗

1z
c1

, t
′
= w∗

1 t, u′ =
w∗

1u
c1

, w′ =
w∗

1w
c1

, (3.2a)

T
′
=

β1T
ρc2

1
, C

′
=

β2C
ρc2

1
, P

′
=

P
β2

, τ
′
0 = w∗

1τ0, τ
′
1 = w∗

1τ1, (3.2b)

τ0
′
= w∗

1τ0, τ1
′
= w∗

1τ1, ν⃗
′
=

ν⃗

c1
, p

′
=

p
β1T0

, ρ∗f =
ρ f c2

1
β1T0

, (3.2c)

ρ0
′
=

ρ0c2
1

β1T0
, η∗ =

ηw∗
1

ρ f c2
1

, η∗
1 =

ηw∗
1

β1T0
, σ

′
ij =

σij

β1T0
, π

′
ij =

πij

β1T0
, (3.2d)

w∗
1 =

ρCEc2
1

K
, c2

1 =
λ + 2µ

ρ
, c2

2 =
µ

ρ
, δ2 =

c2
2

c2
1

. (3.2e)

Here w∗
1 is the characteristic frequency of the Medium I, c1, c2 are the longitudinal and

transverse wave velocities in the Medium I. Upon introducing the quantities Eq. (3.2)
in Eqs. (2.2)-(2.4) with the aid of Eq. (3.1) and after suppressing the primes, we obtain

(1 − δ2)∇(∇ · u⃗) + δ2∇2u⃗ − τ1
t ∇T − τ1

c ∇C = ¨⃗u, (3.3a)

∇2T = τ0
t Ṫ + ζ1τ0

c Ċ + ζ2τ0
e ė, (3.3b)

q∗1∇2e + q∗2τ1
t ∇2T − q∗3τ1

c ∇2C + τ0
f Ċ = 0, (3.3c)

where

ζ1 =
aT0c2

1β1

w∗
1Kβ2

, ζ2 =
β2

1T0

ρKw∗
1

, q∗1 =
Dw∗

1 β2
2

ρc4
1

, q∗2 =
Dw∗

1 β2a
β1c2

1
, q∗3 =

Dw∗
1b

c2
1

,

τ1
t = 1 + τ1

∂

∂t
, τ1

c = 1 + τ1 ∂

∂t
, τ0

t = 1 + τ0
∂

∂t
, τ0

c = 1 + γ
∂

∂t
,

τ0
e = 1 + ετ0

∂

∂t
, τ0

f = 1 + ετ0 ∂

∂t
, e =

∂u
∂x

+
∂w
∂z

, ∇2 ≡ ∂2

∂x2 +
∂2

∂z2 .
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Using Eq. (3.2) in Eqs. (2.5)-(2.7), we obtain

∂⃗ν

∂t
= − 1

ρ∗f
∇p +

η∗

3
∇(∇ · ν⃗) + η∗∇2⃗ν, (3.4a)

∂ρ0

∂t
+ ρ∗f∇ · ν⃗ = 0, (3.4b)

∂p
∂ρ0 =

c2
f

c2
1

. (3.4c)

Straightforward transformation of Eqs. (3.4a) and (3.4c) with the aid of Eq. (3.4b) yield

∂⃗ν

∂t
− η∗∇2⃗ν +

1
ρ∗f

(
1 +

η∗c2
1

3c2
f

∂

∂t

)
∇p = 0. (3.5)

For thermoelastic diffusive half-space, we introduce the potential functions ϕ and ψ
through the relations

u =
∂ϕ

∂x
− ∂ψ

∂z
, w =

∂ϕ

∂z
+

∂ψ

∂x
, (3.6)

where ϕ and ψ are the displacement potentials of longitudinal and shear waves. For
viscous fluid, we have

ν1 =
∂Φ
∂x

− ∂Ψ
∂z

, ν3 =
∂Φ
∂z

+
∂Ψ
∂x

, (3.7)

where Φ and Ψ are the respectively scalar velocity and vector velocity potential com-
ponents. Using Eq. (3.6) in Eqs. (3.3a)-(3.3c), we obtain

∇2ϕ − τ1
t T − τ1

c C = ϕ̈, (3.8a)

∇2ψ − ψ̈

δ2 = 0, (3.8b)

∇2T = τ0
t Ṫ + ζ1τ0

c Ċ + ζ2τ0
e ∇2ϕ̇, (3.8c)

q∗1∇4ϕ + q∗2τ1
t ∇2T − q∗3τ1

c ∇2C + τ0
f Ċ = 0. (3.8d)

Similarly, using Eq. (3.7) in Eq. (3.5), we get(
1 +

4
3

η∗c2
1

c2
f

∂

∂t

)
∇2Φ − c2

1

c2
f

∂2Φ
∂t2 = 0, (3.9a)

η∗∇2Ψ − ∂Ψ
∂t

= 0, (3.9b)

where, the pressure p is given by the relation

p = ρ∗f

(4
3

η∗∇2 − ∂

∂t

)
Φ. (3.10)
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4 Solution of the problem

We assume solutions of Eqs. (3.8a)-(3.9b) of the form

(ϕ, ψ, T, C, Φ, Ψ) =
[

f (z), g(z), w(z), h(z), Φ̄(z), Ψ̄(z)
]
eιξ(x−ct), (4.1)

where c=ω/ξ is the dimensionless phase velocity, ω is the frequency, ξ is the complex
wave number. Using Eq. (4.1) in Eqs. (3.8a)-(3.9b) and solving the resulting differential
equations, the expressions for ϕ, ψ, T, C, Φ and Ψ are obtained as

ϕ = (A1e−ξm1z + A2e−ξm2z + A3e−ξm3z)eιξ(x−ct), (4.2a)

T = (n1A1e−ξm1z + n2 A2e−ξm2z + n3 A3e−ξm3z)eιξ(x−ct), (4.2b)

C = (k1 A1e−ξm1z + k2A2e−ξm2z + k3A3e−ξm3z)eιξ(x−ct), (4.2c)

ψ = A4e−ξm4zeιξ(x−ct), (4.2d)

Φ = A5eξm5zeιξ(x−ct), (4.2e)

Ψ = A6eξm6zeιξ(x−ct), (4.2f)

where m2
i , i = 1, 2, 3 are the roots of polynomial equation:

m6 + A∗m4 + B∗m2 + C∗ = 0, (4.3)

where

τ11
t = 1 − ιωτ1, τ11

c = 1 − ιωτ1, τ10
t = −ιω(1 − ιωτ0),

τ10
c = −ιω(1 − ιωγ), τ10

e = −ιω(1 − ιωετ0), τ10
f = −ιω(1 − ιωετ0),

r1 = (q∗1 − q∗3)τ
11
c ,

r2 = τ10
f − (q∗1 + q∗2)(τ

10
t τ11

c − ζ1τ10
c τ11

t ) + (q∗2 + q∗3)(τ
10
t + ζ2τ11

t τ10
e )τ11

c − q∗3τ11
c ω2,

r3 = τ10
f (ω2 − τ10

t − ζ2τ11
t τ10

e ) + ω2(q∗2 + q∗3)τ
10
t τ11

c − q∗2ω2(τ10
t τ11

c − ζ1τ10
c τ11

t ),

r4 = c2τ10
f τ10

t ,

A∗ =
−3ξ2r1 + r2

r1ξ2 , B∗ =
3ξ4r1 − 2ξ2r2 + r3

r1ξ4 , C∗ =
−ξ4r1 + ξ2r2 − r3 − r4

r1ξ4 ,

∆1i = (−q∗3τ11
c )ξ4m4

i + (q∗3τ11
c (τ10

t + 2ξ2) + τ10
f + q∗2ζ1τ11

t τ10
c )ξ2m2

i

− (ξ2 + τ10
t )(q∗3τ11

c ξ2 + τ10
f )− q∗2ξ2ζ1τ11

t τ10
c ,

∆2i = (q∗1ζ1τ10
c + q∗3τ11

c ζ2τ10
e )ξ4m4

i − (2ξ2q∗1ζ1τ10
c + ζ2τ10

f τ10
e + 2q∗3ξ2τ11

c ζ2τ10
e )ξ2m2

i

+ q∗1ζ1τ10
c ξ4 + ζ2τ10

e ξ2(τ10
f + q∗3τ11

c ξ2),

∆3i = −q∗1ξ6m6
i + (3q∗1ξ2 − q∗2τ11

t ζ2τ10
e + q∗1τ10

t )ξ4m4
i − (3q∗1ξ2 − 2ζ2q∗2τ11

t τ10
e

+ 2q∗1τ10
t )ξ4m2

i + ξ4(q∗1(ξ
2 + τ10

t )− ζ2q∗2τ11
t τ10

e
)
,

ni = −∆2i
∆1i

, ki =
∆3i
∆1i

, i = 1, 2, 3.
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The roots m2
i , i = 4, 5, 6 are given as

m2
4 = 1 − c2

δ2 , m2
5 = 1 − c2

1c2

c2
f − 4ιωη∗c2

1/3
, m2

6 = 1 − ιc
η∗ξ

.

5 Boundary conditions

The boundary conditions at the solid-fluid interface z = 0 to be satisfied are as follows:
(i) Mechanical conditions

σzz = πzz, σxz = πxz, (5.1)

(ii) Velocity conditions
∂u
∂t

= ν1,
∂w
∂t

= ν3, (5.2)

(iii) Thermal condition
∂T
∂z

= 0, (5.3)

(iv) Concentration condition
∂C
∂z

= 0. (5.4)

6 Derivation of secular equations

Invoking the boundary conditions Eqs. (5.1)-(5.4) on the surface z=0 and using
Eqs. (4.2a)-(4.2f) and solving a system of six simultaneous equations, we obtain the
complex dispersion equation at the interface of viscous compressible fluid half-space
and homogeneous isotropic, generalized thermoelastic diffusive half-space as:

R1S1 + ιR2(µ
∗S2 − ωS3) + ωR3S4 = 0, (6.1)

where

λ∗ =
λ

β1T0
, µ∗ =

µ

β1T0
,

di = −λ∗ + (λ∗ + 2µ∗)(m2
i − τ11

t niξ
−2 − τ11

c kiξ
−2), i = 1, 2, 3,

R1 = (k2n1 − n2k1)(n1m1d3 − n3m3d1)m2 − (k3n1 − n3m1)(n1m1d2 − n2m2d1)m3,
R2 = m1m2m3[(k2n1 − n2k1)(n1 − n3)− (k3n1 − n3k1)(n1 − n2)],
R3 = (k2n1 − n2k1)(n1m1 − n3m3)m2 − (k3n1 − n3m1)(n1m1 − n2m2)m3,

S1 = −µ∗

2
(m2

4 + 1)(m5m6 − 1)− ιωη∗
1

(
m5m6 −

1
2
(m2

6 + 1)
)
+

ιωη∗
1 m4m5

2
(m2

6 − 1),

S2 = −2ιµ∗m4(m5m6 − 1) + 2ωm4η∗
1

(
m5m6 −

1
2
(m2

6 + 1)
)
− ωη∗

1 m6(m2
6 − 1),
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S3 = −2µ∗η∗
1 m4

(
m5m6 −

1
2
(m2

6 + 1)
)
−

µ∗η∗
1 m6

2
(m2

4 + 1)(m2
6 − 1)

−
ιωη∗

1 m4

2
(4m5m6η∗

1 − (m2
6 + 1)2η∗

1 ),

S4 = −ιµ∗η∗
1 m4m5(m2

6 − 1)− ιµ∗η∗
1 (m

2
4 + 1)

(
m5m6 −

1
2
(m2

6 + 1)
)

+
ωη∗

1
2

(4m5m6η∗
1 − (m2

6 + 1)2η∗
1 ).

6.1 Particular cases

In the absence of diffusion effect, i.e., if we take a=b=β2= 0 in Eq. (6.1), we obtain the
corresponding complex dispersion equation at the interface of viscous compressible
fluid half-space and homogeneous isotropic generalized thermoelastic half-space as

(n′
1 f1h2 − n′

2 f2h1)S1 + ι f1 f2(n′
1 − n′

2)(µ
∗S2 − ωS3) + ω(n′

1 f1 − n′
2 f2)S4 = 0, (6.2)

where

E = −2ξ2 + ω2 − τ10
t − τ11

t ζ2τ10
e , F = ξ2 − (ω2 − τ10

t − τ11
t ζ2τ10

e )− τ10
t c2,

f 2
i =

−E ±
√

E2 − 4Fξ2

2ξ2 , n′
i = −

ζ2τ10
t (1 − f 2

i )

( f 2
i − 1 − τ10

t ξ−2)
,

hi = −λ∗ + (λ∗ + 2µ∗)( f 2
i − τ11

c ξ−2n′
i), i = 1, 2.

Further in the absence of diffusion and thermal effects, i.e., if we take a=b=β1=β2= 0,
in Eq. (6.1), we obtain the corresponding complex dispersion equation at the interface
of viscous compressible fluid half-space and homogeneous isotropic elastic half-space
as

d∗S1 + ιq(µ∗S2 − ωS3) + ωS4 = 0, (6.3)

where

d∗ = −λ∗ + (λ∗ + 2µ∗)q2, q2 = 1 − c2.

Eq. (6.3), by changing dimensionless quantities into physical quantities, is similar as
obtained by Nayfeh and Nagy [17].

7 Amplitudes of displacements, temperature change and
concentration

In this section, the amplitudes of displacement components, temperature change and
concentration have been computed for stress free, thermal and concentration bound-
aries of homogeneous isotropic generalized thermoelastic diffusive half-space. Upon
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using Eqs. (3.6) and (4.2a)-(4.2d), we obtain

u =
{

ι(e−ξm1z + Le−ξm2z + Me−ξm3z) + Nm4e−ξm4z}ξ A1eιξ(x−ct), (7.1a)

w =
{
− (m1e−ξm1z + Lm2e−ξm2z + Mm3e−ξm3z) + ιNe−ξm4z}ξ A1eιξ(x−ct), (7.1b)

T =
{

n1e−ξm1z + Ln2e−ξm2z + Mn3e−ξm3z + Nn4e−ξm4z}A1eιξ(x−ct), (7.1c)

C =
{

k1e−ξm1z + Lk2e−ξm2z + Mk3e−ξm3z + Nk4e−ξm4z}A1eιξ(x−ct), (7.1d)

where

L = −m1(n1k3 − n3k1)

m2(n2k3 − n3k2)
, M =

m1(n1k2 − n2k1)

m3(n2k3 − n3k2)
,

N = −
2ιm1

[
(n2k3 − n3k2)− (n1k3 − n3k1) + (n1k2 − n2k1)

]
(m2

4 + 1)(n2k3 − n3k2)
.

8 Numerical results and discussion

With the view of illustrating theoretical results obtained in the preceding sections and
compare these in the context of various theories of thermoelastic diffusion. We now
represent some numerical results for copper material (thermoelastic diffusive solid),
the physical data for which is given below:

λ = 7.76 × 1010kgm−1s−2, µ = 3.86 × 1010kgm−1s−2, T0 = 0.293 × 103K,

CE = .3831 × 103 Jkg−1K−1, αt = 1.78 × 10−5K−1, αc = 1.98 × 10−4m3kg−1,

a = 1.2 × 104m2s−2K−1, b = 9 × 105kg−1m5s−2, D = 0.85 × 10−8kgsm−3,

ρ = 8.954 × 103kgm−3, K = 0.383 × 103Wm−1K−1, τ0 = 0.2s,

τ1 = 0.9s, τ0 = 0.3s, τ1 = 0.4s.

The values of physical constants for different viscous fluids (Seawater and Gasoline)
are given as:
Seawater

ρ f = 1.025 × 103kgm−3, η = 1.07 × 10−7kgm−1s−1, K f = 2.33 × 109Nm−2.

Gasoline

ρ f = 0.68 × 103kgm−3, η = 0.292 × 10−7kgm−1s−1, K f = 0.958 × 109Nm−2.

Figs. 2 and 3 show a flow chart to compute the phase velocity and attenuation coef-
ficient of leaky rayleigh waves by using the Muller’s method. Eq. (6.1) is a complex
polynomial equation in two unknowns ξ and ω. For a given value of ω, Eq. (6.1) can
be written as F(ξ)=0. Muller’s method is used to find an estimated root of F(ξ)=0.
The algorithm of Muller’s method to find phase velocity and attenuation coefficient is
as follows:
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          Take three initial guesses of ξ i.e., ξ1, ξ2 and ξ3 

     Calculate values of F (ξ1), F (ξ2) and F (ξ3) 

     Input I=1 

Compute q*= (ξ3-ξ2)/ (ξ2-ξ1), z
*= (1+ q*) F (ξ3), 

x*= q*F(ξ3)- q
*(1+ q*) F(ξ2)+q*2F(ξ1), 

y*=(2 q*+1) F(ξ3)-(1+ q*)2 F(ξ2)+q*2F(ξ1), 

    x*
≠0 

Yes 

          Disc=y*2-4x*z*,   

z1=y*+√Disc, z2=y*-√Disc 

No 
    y*

≠0 

      |z1|≤|z2| 

   ξ4=ξ3-2z*(ξ3- ξ2)/z2 
     ξ4=ξ3-2z*(ξ3- ξ2)/z1 

Yes 

No 

|ξ4- ξ3| < eps1 & 

|F (ξ4)| < eps2 

No 

I ≤ maxit 

Yes 

No 
Process does not converge to the root 

G 

   Put ξ1=ξ2,     

ξ2= ξ3, ξ3= ξ4 

  I=I+1                                                                                                       

Yes 

ξ4=ξ3-z
*(ξ3- ξ2)/ y

* 

The root ξ4 is  

obtained 

N Yes 

                        

maxit― maximum iterations allowed,  

eps1, eps2― error bounds 

M 

Muller’s method fails 

to find the root 

G 

No 

Figure 2: Flow chart to find an estimate root of F(ξ) = 0.

1. Decide initially three approximations say ξ1, ξ2 and ξ3 of the root, number of iterations
(maxit) and two error bounds (eps1 and eps2).

2. Put I = 1.

3. If I ≤ maxit, then compute F(ξ1), F(ξ2) and F(ξ3), otherwise write ”Process fails
to converge the root”, and go to Step 10.
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Start 

Input the data 

    Calculate intermediate data 

Compute phase velocity, attenuation coefficient as 

                         V=ω/real (ξ4), Q=imag(ξ4) 

          Set up the boundary conditions 

End 

 

 Input the initial value of frequency (ω) 

Use Muller’s method 

to solve F (ξ) =0 

ω+∆ω 

M N 

G 

Figure 3: Flow chart for calculating phase velocity, attenuation coefficient.

4. Compute q∗, x∗, y∗ and z∗ by the following relations:

q∗ =
ξ3 − ξ2

ξ2 − ξ1
, x∗ = q∗F(ξ3)− q∗(1 + q∗)F(ξ2) + q∗2F(ξ1),

y∗ = (2q∗ + 1)F(ξ3)− (1 + q∗)2F(ξ2) + q∗2F(ξ1),
z∗ = (1 + q∗)F(ξ3).

5. If x∗ ̸=0, then calculate

discriminant (disc) = y∗2 − 4x∗z∗,

z1 = y∗ +
√

disc, and z2 = y∗ −
√

disc.
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6. If |z1|≤|z2|, then compute

ξ4 = ξ3 −
2z∗(ξ3 − ξ2)

z2
,

otherwise compute

ξ4 = ξ3 −
2z∗(ξ3 − ξ2)

z1
.

7. If |ξ4 − ξ3|<eps1, and if |F(ξ4)|<eps2, then root ξ4 is obtained and go to Step 9.
Otherwise put ξ1=ξ2, ξ2=ξ3 and ξ3=ξ4, I=I + 1 and go to Step 3.

8. Otherwise if x∗=0, then check whether y∗ ̸=0, or y∗=0. If y∗ ̸=0, then calculate

ξ4 = ξ3 −
z∗(ξ3 − ξ2)

y∗
,

and go to Step 7. If not, write ”Muller’s method fails to find the root” and go to
Step 10.

9. Compute phase velocity (V) and attenuation coefficient (Q) as

V =
ω

real(ξ4)
, Q = imag(ξ4).

10. Stop the process.

Similarly, we can find an estimated root of dispersion equation corresponding to stress
free, thermal and concentration boundaries of homogeneous isotropic generalized
thermoelastic diffusive half-space. After that, the magnitude of heat flux vector can
obtained as:

|⃗q| =
√

q2
1 + q2

3 =
K
τ0

t

√(∂T
∂x

)2
+

(∂T
∂z

)2
, (8.1)

where τ0
t =1 for CT and G-L models, and τ0

t =1 + τ0∂/∂t for L-S model. In the similar
way, the magnitude of mass diffusion flux vector is obtained as:

|⃗η| =
√

η2
1 + η2

3 =
D
τ0

f

√(∂P
∂x

)2
+

(∂P
∂z

)2
, (8.2)

where τ0
f =1 for CT and G-L models, and

τ0
f = 1 + τ0 ∂

∂t
,

for L-S model. The phase velocity and the attenuation coefficient of wave propagation
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Figure 4: Variations of phase velocity w.r.t. frequency.

in the context of CT, L-S and G-L theories of thermoelastic diffusion have been repre-
sented graphically in Figs. 4-9 for various the values of frequency. The viscosity effect
on phase velocity and attenuation coefficient in the context of CT, L-S and G-L theories
of thermoelastic diffusion have been shown in Figs. 4 and 5 respectively. Similarly, the
diffusion effect on phase velocity and attenuation coefficient in the context of CT, L-S
and G-L theories of thermoelastic diffusion have been shown in Figs. 6 and 7 respec-
tively. The magnitude of heat and mass diffusion flux vectors in the context of CT,
L-S and G-L theories of thermoelastic diffusion have also been represented in Figs. 8
and 9 respectively. In Figs. 4-7, the solid, small dash and big dash lines correspond to
CT, L-S and G-L theories of thermoelastic diffusion for Seawater and these are repre-
sented by CTD1, LSD1 and GLD1 respectively, whereas for Gasoline, in Figs. 4 and 5,

Figure 5: Variations of attenuation coefficient w.r.t. frequency.
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Figure 6: Variations of phase velocity w.r.t. frequency.

the star, square and triangle symbols on these lines correspond to CT, L-S and G-L the-
ories of thermoelastic diffusion and these are represented by CTD2, LSD2 and GLD2
respectively. In Fig. 4, small figure is made to show the effect of relaxation times for
Gasoline. In Figs. 6 and 7, the star, square and triangle symbols on solid, small dash
and big dash lines, respectively, correspond to CT, L-S and G-L theories of thermoe-
lasticity for Seawater and these are represented by CT1, LS1 and GL1 respectively. In
Figs. 8 and 9, the solid, small dash and big dash lines correspond to CT, L-S and G-L
theories of thermoelastic diffusion and these are represented by CTD, LSD and GLD
respectively.

8.1 Phase velocity

From Fig. 4, it is noticed that corresponding to Seawater and Gasoline, the values of
phase velocity increase with the increase in the values of frequency for all theories
of thermoelastic diffusion. The reason is that as the value of frequency increases, the
value of estimate root, that is, complex wave number increases, but the increase in the
value of complex wave number is smaller as compared to the increase in the value
of frequency. Therefore value of phase velocity (=frequency/real (wave number)) in-
creases. The phase velocity for GLD1 remains higher than that of CTD1 and LSD1.
On the other hand, the phase velocity for CTD2 remains lower than that of LSD2 and
GLD2. Thus for Seawater, the effect of relaxation times increase the values of phase
velocity, whereas for Gasoline, the effect of relaxation times decreases the values of
phase velocity. On comparing the values of phase velocity for Seawater and Gasoline,
we depict that the values of phase velocity are more corresponding to Seawater as
compared to Gasoline.

It is evident from Fig. 6 that for Sewater, the values of phase velocity increase
corresponding to three theories of thermoelasticity. The values for the case of CT1
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Figure 7: Variations of attenuation coefficient w.r.t. frequency.

are lower as compared to the cases of LS1 and GL1. On comparing the three theories
of thermoelastic diffusion and the three theories of thermoelasticity, we find that for
Seawater, the diffusion effect increases the values of phase velocity.

8.2 Attenuation coefficient

It is evident from Fig. 5 that the values of attenuation coefficient corresponding to three
theories of thermoelastic diffusion increase with the variation in frequency for both
viscous fluids Seawater and Gasoline. As already mentioned, the value of complex
wave number increases with the increase in value of frequency, therefore the value
of attenuation coefficient (=imaginary (wave number)) increases. On comparing the

Figure 8: Variations of magnitude of heat flux vector w.r.t. frequency.
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Figure 9: Variations of magnitude of diffusion flux vector w.r.t. frequency.

results for CTD1, LSD1 and GLD1, we find that the values of attenuation coefficient
corresponding to GLD1 are more in comparison to CTD1 and LSD1, whereas the val-
ues are higher for CTD2 as compared to other two theories. On comparing the cases
of Gasoline and Seawater, we depict that the values corresponding to Gasoline remain
higher than that of Seawater.

It is noticed from Fig. 7 that for Sewater, the values of attenuation coefficient in-
crease corresponding to three theories of thermoelasticity. The values for the case of
GL1 are lower as compared to the cases of CT1 and LS1. We note that the values of
attenuation coefficient corresponding to three theories of thermoelasticity are higher
in comparison to the three theories of thermoelastic diffusion.

8.3 Heat flux

Fig. 8 clearly indicates that the values of magnitude of heat flux vector increase corre-
sponding to three theories of thermoelastic diffusion. The values of magnitude of heat
flux vector for CTD are more than that of LSD and GLD. Thus, we find that the effect
of relaxation times decreases the values of magnitude of heat flux vector.

8.4 Mass diffusion flux

It is observed from Fig. 9 that the values of magnitude of mass diffusion flux vector
increase corresponding to CTD, LSD and GLD. The values of magnitude of mass dif-
fusion flux vector increase higher for CTD as compared to LSD and GLD. So we notice
that if we neglect the effect of relaxation times, the values increase. In Figs. 8 and 9,
the magnitude of heat flux and mass diffusion flux vectors are demagnified by 10−5

times to show the effect of relaxation times.
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9 Conclusions

In the present paper, the propagation of leaky Rayleigh waves in a viscous compress-
ible fluid half-space overlying a homogeneous isotropic, thermoelastic diffusive half-
space in the context of generalized theories of thermoelastic diffusion has been stud-
ied. The phase velocity and attenuation coefficient of leaky Rayleigh waves have been
computed from the complex dispersion equation by using the Muller’s method. The
amplitudes of displacements, temperature change and concentration have been ob-
tained. The viscosity and diffusion effects on phase velocity and attenuation coeffi-
cient of leaky Rayleigh waves motion for different theories of thermoelastic diffusion
have been depicted. In addition, the magnitude of heat and mass diffusion flux vec-
tors for different theories of thermoelastic diffusion have also been computed.

It is observed that for Seawater and Gasoline, the values of phase velocity and at-
tenuation coefficient increase with the increase in the value of frequency correspond-
ing to three theories of thermoelastic diffusion. Corresponding to Seawater, the values
of phase velocity are higher in comparison to Gasoline. But the values of attenuation
coefficient are more corresponding to Gasoline as compared to Seawater. If we ne-
glect the diffusion effect, the values of phase velocity decrease, whereas the values of
attenuation coefficient increase. The values of magnitude of heat flux and mass diffu-
sion flux vectors increase in all theories of thermoelastic diffusion. If we neglect the
effect of relaxation times, the values of magnitude of heat flux and mass diffusion flux
vectors decrease.
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