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Abstract. An application of the meshless Local Radial Basis Function Collocation
Method (LRBFCM) [22, 30–33] in solution of incompressible turbulent combined
forced and natural convection is for the first time explored in the present paper.
The turbulent flow equations are described by the low-Re number k − ε model with
Launder and Sharma [23] and Abe et al. [1] closure coefficients. The involved tem-
perature, velocity, pressure, turbulent kinetic energy and dissipation fields are rep-
resented on overlapping 5-noded sub-domains through the collocation by using
multiquadrics Radial Basis Functions (RBF). The involved first and second order
partial derivatives of the fields are calculated from the respective derivatives of the
RBF’s. The involved equations are solved through the explicit time stepping. The
pressure-velocity coupling is based on Chorin’s fractional step method [11]. The
adaptive upwinding technique, proposed by Lin and Atluri [27], is used because
of the convection dominated situation. The solution procedure is represented for
a 2D upward channel flow with differentially heated walls. The results have been
assessed by achieving a reasonable agreement with the direct numerical simula-
tion of Kasagi and Nishimura [20] for Reynolds number 4494, based on the channel
width, and Grashof number 9.6× 105. The advantages of the represented mesh-free
approach are its simplicity, accuracy, similar coding in 2D and 3D, and straightfor-
ward applicability in non-uniform node arrangements.

AMS subject classifications: 76F60, 76M25, 76R05, 76R10, 65D05, 65M22 and 65M70
Key words: Turbulent combined convection, two-equation turbulence model, radial basis
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1 Introduction

Meshless methods represent a particular class of numerical methods for solving engin-
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eering and science problems. They differ from the classical numerical methods such
as the Finite Difference Method (FDM), the Finite Element Method (FEM), and the
Boundary Element Method (BEM) in the principal characteristic that the solution is
represented on a set of nodes which are not confined to coordinate lines (as in FDM),
and no polygonisation of the domain (as in FEM) or boundary (as in BEM) is re-
quired. There is a strong development in this class of novel numerical methods,
demonstrated by the emerging books [3, 4, 8, 12, 26, 28, 29] and conference proceed-
ings [5,13]. There exists a simple class of meshless methods, structured on collocation
of the continuum fields by the radial basis functions [9]. The method has been pio-
neered by Kansa [18,19] and since then experiences a very fast development [31]. The
main disadvantage of the original Kansa’s formulation of the method was its inability
to cope with large-scale problems due to the involved ill-conditioned full collocation
matrices. This drawback was overcome in an elegant way through the local version
of the method-LRBFCM, where the collocation is made point-wise on a subsets of the
nodes [31] instead on their entire set.

In the last century, a lot of research has been devoted towards understanding of
the turbulent flows. In spite of those attempts, a general physical theory still does
not exist. Numerically, those flows could be very well predicted by the direct numeri-
cal simulation (DNS) of the Navier-Stokes equations. Unfortunately, in the DNS very
fine spatial discretization has to be used in order to model and track all eddies of the
flow, especially the smallest ones. The applicability of the DNS is currently limited to
very simple geometries and for turbulent flows with moderate Reynolds (Re) num-
bers [24]. Other turbulent models are mainly derived through the time-averaging of
the Navier-Stokes (N-S) equations. Due to the nonlinearity of the time-averaged N-
S equations, a closure problem arises (more unknowns than equations), which puts
these family of models into the category of semi-empirical ones. Various models were
proposed [36], which are rather old, but still in use nowadays. Probably the most
known and representative is the family of two-equation k − ε models, which are fur-
ther divided into two groups, standard (ST) and low-Re (LRN) models. The ST k − ε
models use the wall-functions, while the LRN models use special closure coefficients
to correctly predict the turbulent boundary layers. Better predictions are obtained
with the LRN models, but a very fine disretization near the walls is required. In this
work, the LRN k − ε model is used with the closure coefficients proposed by Launder
and Sharma (LS) [23] and Abe et al. (AKN) [1].

The experimental and numerical investigation of turbulent flow due to the nat-
ural convection still remains very challenging. A lot of efforts were put into solv-
ing the turbulent natural convection in a closed square cavity [2, 16, 17, 40], where
the system is closed and the natural convection is the only mechanism which drives
the turbulent flow. However, many applications in nature and industry characterise
the open layout in which the combined turbulent forced and natural convection take
place. These problems became more interesting for researchers after the first DNS data
were available in the mid-nineties. Kasagi and Nishimura [20] performed DNS calcu-
lations of fully developed turbulent flow between two vertical parallel plates kept
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at different temperatures. The forced convection drives the fluid upward, while the
buoyancy force acts upward at the hot wall and downward at the cold wall. Vari-
ous turbulent statistics were presented, i.e., the mean temperature and velocity fields,
Reynolds stress tensor, and turbulent heat flux. Those results were used by many re-
searchers to evaluate various turbulence models, such as the Large Eddy Simulations
(LES) [35, 38] and eddy-viscosity (EV) models [6]. Billard et al. [6] used a EV v2 − f
model with a new uncoupled formulation. The results were also compared with the
k − ω SST model. They reported very good agreement with the DNS data. Yin and
Bergstrom [38] used LES, were for the sub-grid-scale (SGS) model, both a Smaragon-
sky eddy viscosity model and a dynamic eddy viscosity model with a constant SGS
Prandtl number were investigated. They found out, that the dynamic model gives a
better prediction for the temperature field. Wang et al. [35] proposed a general dy-
namic linear tensor diffusivity model for representing the SGS heat flux. Very good
agreement with the DNS data were achieved, and concluded, that a LES computa-
tions with a new dynamic model are capable of reproducing the mean and variance of
the velocity and temperature fields, profiles of the shear stresses and heat fluxes, and
resolved turbulent heat fluxes. Yilmaz and Fraser [37] investigated turbulent natural
convection in a vertical parallel-plate channel with asymmetric heating, both exper-
imentally and numerically. They conducted experiments, where a two-dimensional
fully developed turbulent flow is achieved. One wall is heated in order to keep the
wall temperature at uniform constant value, while the opposite wall is made of glass.
The study was carried out also numerically using three different LRN k − ε models.
They concluded, that all three models are capable of predicting average heat transfer
and induced flow rate almost within the limits of experimental uncertainty. None of
them can be singled out as the best model. They also found out, that the value and
distribution of turbulent kinetic energy at the inlet effect the predicted heat transfer
and the induced flow rates considerably.

The principal goal of the present paper represents the development of the LRBFCM
for turbulent thermo-fluid problems. This novel meshless technique [31] has been
previously successfully applied to diffusion problems [30], convection-diffusion prob-
lems [32], laminar thermo-fluid problems [22], and forced convection turbulent fluid
problems [33].

The present paper is structured in the following way. The governing equations of
the incompressible turbulent flow are presented first. The general initial and bound-
ary conditions for the velocity, pressure, turbulent kinetic energy k and dissipation
ε are described. The explicit solution procedure of the governing equations is pro-
posed, where the fractional step method [11] is used to couple the velocity and the
pressure fields. The discretization is made by the LRBFCM by using multiquadrics on
five-noded sub-domains. Due to the convection-dominated problems, the adaptive
upwind technique (AUT) is introduced. At the end, the proposed numerical method
is assessed through the numerical example of the turbulent two-dimensional channel
flow with combined forced and natural convection. The results are compared with the
DNS data.
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2 Governing equations

Consider a connected fixed domain Ω with boundary Γ filled with a fluid that exhibits
incompressible turbulent flow. The flow is described (in a two-dimensional Cartesian
coordinate system with base vectors iς; ς = x, y and coordinates pς; ς = x, y, i.e.,
position of point p is determined as p = ix px + iy py by the following time-averaged
Reynolds equations for mass, energy, and momentum conservation

∂vx

∂px
+

∂vy

∂py
= 0, (2.1a)
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with vx, vy, P and T standing for the time averaged velocity components, pressure, and
temperature, respectively, and t, ρ, ν, νt, cp, λ, and λt are standing for time, density,
molecular kinematic viscosity, turbulent kinematic viscosity, specific heat, molecular
thermal conductivity and turbulent thermal conductivity, respectively. The turbulent
thermal conductivity is defined as

λt =
cpρνt

σt
, (2.2)

with σt standing for turbulent Prandtl number, which is constant and set to 0.9 in this
work. In the Eq. (2.1d), By is the buoyancy term, which is defined by the following
Boussinesq relation

By = gβT(T − Tre f ), (2.3)

where g, βT and Tre f are the gravitational accerelation, thermal expansion coefficient,
and reference temperature, respectively. Molecular kinematic viscosity is defined as
ν = µ/ρ where µ is molecular dynamic viscosity. Turbulent kinematic viscosity is
defined as

νt =
cµ fµk2

ε
, (2.4)

with cµ and fµ standing for closure coefficients of the turbulence model, and k and ε
are the turbulent kinetic energy and dissipation, calculated by the following transport
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equations
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where Pk, Gk, D, and E are the shear production of turbulent kinetic energy, produc-
tion due to the buoyancy body force, source term in k equation and source term in ε
equation, respectively. They are prescribed as
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, (2.6b)

respectively. The cµ, c1ε, f1, c2ε, σk and σε are the closure coefficients of the LRN turbu-
lence models, while fµ and f2 are the damping functions. Their values for the LS and
AKN turbulence models are defined in Tables 1 and 2.

In the damping functions, Ret is the turbulent Reynolds number and y∗ is the non-
dimensional distance from the wall. They are both defined as

Ret =
k2

νε
, y∗ =

uεy
ν

, (2.7)

Table 1: Closure coefficients, damping function f1, and source terms D, E of the involved LRN turbulence
models.
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( ∂
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cµ 0.09 0.09
c1ε 1.44 1.40
c2ε 1.92 1.40
σk 1.00 1.50
σε 1.30 1.90
f1 1.00 1.00

Table 2: Damping functions fµ and f2 of the involved LRN turbulence models.

LS AKN
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]
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respectively, where y is the normal distance from the wall. In Eq. (2.7), uε is the Kol-
mogorov velocity scale, defined as

uε = (νε)
1
4 . (2.8)

The closure coefficient c3ε in the Eq. (2.5b) is calculated according to [16] by the follow-
ing expression

c3ε = tanh
∣∣∣vy

vx

∣∣∣. (2.9)

Its value is close to 1 in vertical boundary layers, and close to 0 in horizontal boundary
layers.

In order to determine the turbulent flow, the system of Eqs. (2.1a)-(2.1d), (2.5a),
(2.5b) has to be solved, together with the problem-specific initial and boundary condi-
tions.

3 Solution procedure

We seek the solution of the x and y velocity components, pressure field, k and ε fields
and temperature field at time t + t0 by assuming known fields vx, vy, p, k, ε and T
at time t0 and known boundary conditions. The coupled set of mass conservation
Eq. (2.1a) and momentum conservation Eqs. (2.1c), (2.1d) are solved by the fourty
years old robust Chorin’s fractional step method [11], where the continuity of the mass
Eq. (2.1a) is considered by constructing and solving the pressure Poisson equation. At
every time step, the following explicit numerical algorithm is used:

Step 1 The intermediate velocity components v∗x and v∗y are calculated first, without con-
sidering the pressure gradient
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where index 0 represents initial conditions at time t = t0.

Step 2 The pressure Poisson equation is solved

∇2P =
ρ

∆t

( ∂v∗x
∂px

+
∂v∗y
∂py

)
. (3.2)

The pressure equation can be solved by converting it into a diffusion equation [14]
or by solving the sparse matrix [25]. An additional possibility represents the use of
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the local pressure correction [22] which seems to be most efficient. However the last
correction has not been yet successfully tested for inflow and outflow situations. In
this work, the approach by Lee et al. [25] is used, where the sparse matrix is solved
by the direct method. In case of the fixed node arrangement, the left-hand side of
the sparse matrix can be LU decomposed before starting with time stepping. This
numerical approach significantly improves the performance, since only the back-
substitution needs to be calculated to solve the pressure field at each time step.
The boundary conditions for the pressure equation are explicitly given in Section
3.2.

Step 3 The intermediate velocity components are corrected through the calculated pressure
gradient at time t = t0 + ∆t
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∆t
ρ

∂P
∂px
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∆t
ρ

∂P
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. (3.3)

Step 4 After the solution of the velocity field, given in Steps 1-3, the transport Eqs. (2.5a)
and (2.5b) of the turbulence model at time t = t0 + ∆t are solved
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Step 5 The temperature field is calculated as
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Step 6 The turbulent viscosity is updated from Eq. (2.4), and the solution is ready for the
next time step.

The block diagram of the described algorithm is schematically represented in Fig. 1.

3.1 Initial conditions

It is well known that all involved five transport Eqs. (3.1a), (3.1b), (3.4a), (3.4b) and
(3.5) are strongly coupled. So it is very important how we choose the initial condi-
tions for each transport variable. The initial conditions for velocity components are
obtained by solving the potential field

∇2ϕ = 0, (3.6)
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Initialization of variables 

xv ,
yv , k ,  , T  and t .
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Eqs. (3.1) and (3.2) 

solution of pressure, Eq. (3.3)
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1

2

4

6

set calculated values to initial and 

go to step 1 
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Eq. (3.8) 
5

3

Figure 1: Block diagram of the numerical algorithm.

where ϕ stands for the velocity potential. Laplace Eq. (3.6) is solved by the same
approach as pressure equation (3.2). The following boundary conditions are used:

• At the inlet boundaries and solid walls, the Neumann boundary conditions for
velocity potential are prescribed

∂ϕ

∂px
nx +

∂ϕ

∂py
ny = −(v0xnx + v0yny). (3.7)

• At the outlet boundaries, the Dirichlet boundary conditions for velocity potential
are set to

ϕ = 0. (3.8)

After solving the potential flow field, the velocity field in the domain is obtained by
the following relations

v0x =
∂ϕ

∂px
, v0y =

∂ϕ

∂py
. (3.9)
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This procedure guarantees the solenoidality of the initial velocity field.
The initial temperature field is uniform, and equal to the average value between

the temperature of the hot (left) and the cold (right) wall of the channel.
In order to prescribe the proper initial conditions for k and ε, two different tech-

niques might be employed:

• Use of the uniform profile for both k and ε. A few thousand time steps have to be
performed usually with smaller time step to achieve the consistency between the
velocity, pressure, turbulent energy and dissipation equation. When the large
mismatch of the calculated flow variables with the governing equations at the
initial times is reduced, larger time steps can be used.

• Use of the assumption of turbulent equilibrium [39], where the production of
turbulent kinetic energy equals the rate of dissipation. In order to use this tech-
nique, another turbulence model, usually algebraic model, is first run to get ini-
tial values of the turbulent viscosity.

In this work, the turbulence transport variables are initialized by the first approach.

3.2 Boundary conditions

Three different types of boundaries have to be considered in the present paper: inlet,
outlet and wall. The following boundary conditions are used at these boundaries:

• At the inlet boundary, the Dirichlet boundary conditions for velocity compo-
nents, k and ε and temperature are prescribed.

• At the outlet boundary, the Neumann boundary conditions for velocity compo-
nents, k and ε and temperature are prescribed and set to zero.

• At the wall, the Dirichlet no-slip boundary conditions are set, which implies
that the velocity components, as well as k and ε are set to zero. The Dirichlet
boundary conditions are set for the hot (left) and cold (right) wall temperature.

The boundary conditions for pressure Eq. (3.2) at inlet and wall boundaries are of the
Neumann type, i.e.,

∂P
∂px

nx +
∂P
∂py

ny =
1

∆t
(φxnx + φyny), (3.10)

where the nx and ny are the components of the normal vector in x and y directions. φx
and φy have the following form

φς = v∗ς − vw
0ς, ς = x, y, (3.11)

where v∗ς are the intermediate velocities, solved by the Eqs. (3.1a) for ς = x and (3.1b)
for ς = y at the wall. In Eq. (3.11) the vw

0ς; ς = x, y represent the wall velocities at t0. At
the outlet boundary, the Dirichlet boundary conditions for pressure are used and set
to zero.
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3.3 Radial basis function collocation method

The representation of function Φ over a set of l (in general) non-equally spaced l N
nodes lpn; n = 1, 2, · · · , l N is made in the following way

Φ(p) ≈
lK

∑
k=1

lψk(p)lαk, (3.12)

lψk stands for the shape functions, lαk for the coefficients of the shape functions, and
lK represents the number of the shape functions. The left lower index on entries of
Eq. (3.12) represents the domain of influence lω on which the coefficients lαk are de-
termined. The domains of influence lω can in general be contiguous (overlapping)
or non-contiguous (non-overlapping). Each of the domains of influence lω includes
l N grid-points of which l NΩ are in the domain and l NΓ are on the boundary. Typical
domains of influence are shown in Fig. 2.

The coefficients can be calculated from the nodal values in the domain of influ-
ence at least by two distinct ways. The first way is collocation (interpolation) and the
second way is approximation by the least squares method. Only the more simple col-
location version for calculation of the coefficients is considered in this paper. Let us
assume the known function values lΦn in the nodes lpn of the domains of influence
lω. The collocation implies

Φ(lpn) =
l N

∑
k=1

lψk(lpn)lαk. (3.13)

For the coefficients to be computable, the number of the shape functions has to match
the number of the collocation points lK = l N, and the collocation matrix has to be

Figure 2: Typical corner, boundary, and interior 5-noded domains of influence.
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non-singular. The system of Eqs. (3.13) can be written in a matrix-vector notation

lψlα = lΦ, lψkn
= lψk(lpn), lΦn = Φ(lpn). (3.14)

The coefficients lα can be computed by inverting the system (3.14)

lα = lψ
−1

lΦ. (3.15)

By taking into account the expressions for the calculation of the coefficients lα, the
collocation representation of function Φ(p) on the domain of influence lω can be ex-
pressed as

Φ(p) ≈
l N

∑
k=1

lψk(p)
l N

∑
n=1

lψ
-1
knlΦn. (3.16)

The first partial spatial derivatives of Φ(p) in the domain of influence lω can be ex-
pressed as

∂

∂pς
Φ(p) ≈

l N

∑
k=1

∂

∂pς
lψk(p)

l N

∑
n=1

lψ
-1
knlΦn, ς = x, y. (3.17)

The second partial spatial derivatives of Φ(p) in the domain of influence lω can be
expressed as

∂2

∂pς pξ
Φ(p) ≈

l N

∑
k=1

∂2

∂pς pξ
lψk(p)

l N

∑
n=1

lψ
-1
knlΦn, ς, ξ = x, y. (3.18)

The radial basis functions, such as multiquadrics, can be used for the shape function

lψk(p) = [lr2
k + c2]

1
2 , (3.19)

where c represents the shape parameter and lr0 the radial distance between two points
in the sub-domain. The lrk is scaled by the maximum distance between sub-domain
points in x and y directions

lr2
k =

( px − pkx

px max

)2
+

( py − pky

py max

)2
, (3.20)

where pς max is the maximum distance between any of the sub-domain points in the
direction ς.

The shape parameter c is fixed for all sub-domains, and set to 32 [30] in all numeri-
cal examples of the present paper. The accuracy of the results increases with increased
value of the shape parameter, however the condition number of the collocation matrix
worsens. The chosen value 32 represents a reasonable balance between both trends.
All sub-domains are chosen to contain five nodes as depicted in Fig. 2.



270 R. Vertnik and B. Šarler / Adv. Appl. Math. Mech., 3 (2011), pp. 259-279

4 Numerical example

The geometry of the problem is a vertical channel of width W and height H, H/W =
120, see Fig. 3. The flow with constant uniform velocity and temperature is entering
into the channel at the bottom and leaving the channel at the top. Vertical walls are
kept at different (left wall hot, right wall cold), but constant temperatures. At the out-
let, the flow is assumed to be fully developed. The forced flow and the buoyancy force
drive the flow upward near the hot wall (adding flow at the left wall), and downward
near the cold wall (opposing flow at the right wall). The Reynolds number based on
the channel width is set to 4494, and the Grashof number based on the temperature
difference between the vertical walls and the channel width is 9.6 × 105.

Calculations were performed on a node arrangement with 81 × 171 nodes (with-
out 4 corner nodes), which was found sufficiently fine to obtain a reasonably grid-
independent solution. We also used a 61 × 171 and 71 × 171 node arrangements,
where negligible difference was found between the 71 × 171 and 81 × 171 arrange-
ments. The same conclusions can be drawn, when more nodes were used in the ver-
tical direction. The discretization in the vertical direction py is uniform and in the
horizontal px direction is non-uniform, sufficiently refined near the walls to achieve
the position of the first point to be in the range y+ ≤ 1 at each of the vertical walls, see
Fig. 4.

The refinement in the x-direction from the centre of the channel to each of the walls
is made by the following procedure:

• First, the uniform node arrangement is created and normalized. The value of
each node position pu

x,n lies between 0 and 1.

Figure 3: Schematic of the problem.
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• The uniform node position pu
x,n is then displaced by the power function to obtain

the boundary refines setup

pa
x,n = 1.0 − (1.0 − pu

x,n)
b, (4.1)

where pu
x,n and b are standing for refined node position and exponent of the

power function, respectively. The exponent b defines the level of refinement,
which is in this paper set to 1.7.

• After refinement, the node positions are scaled back (de-normalized) to get the
final discretization in physical coordinates.

This procedure also allows us to use other refinement functions, i.e., tanh or parabolic,
but they are not used in this work. The time-step is set to ∆t = 0.001s for all calcu-
lations in this paper. The time-step length is the largest that does not lead to explicit
method time-stepping instability.

The results are presented as the dimensionless variables, i.e., v+y , T+ and k+ for ve-
locity, temperature and the kinetic energy, respectively. They are non-dimensionalised
with the variables on each wall by the following relations

v+y =
vy

uτ
, T+ =

Tw − T
Tτ

, k+ =
k

u2
τ

, (4.2)

with uτ, Tw and Tτ standing for the friction velocity, wall temperature and the friction
temperature, respectively. The friction velocity uτ is defined as

uτ =

√
τw

ρ
, (4.3)

Figure 4: Detail view of the 81×171 node arrangement. Symbols represents: ◦-boundary nodes and •-
domain nodes.
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Figure 5: Dimensionless velocity profile of the aiding flow in wall coordinates. X-DNS solution [20], dashed
line-represents LRBFCM with LS model, dash-dot-dashed line-represents LRBFCM with AKN model.

Figure 6: Dimensionless velocity profile of the opposing flow in wall coordinates. X-DNS solution [20], dashed
line-represents LRBFCM with LS model, dash-dot-dashed line-represents LRBFCM with AKN model.

with τw standing for the wall shear stress. Friction temperature is calculated by the
following expression

Tτ =
qw

ρcpuτ
, (4.4)

where qw is the heat flux at the wall.
Fig. 5 and Fig. 6 are representing the non-dimensional velocity profile of the aiding

and opposing flow at the outlet. The prediction of the velocity profile in the region
near the walls (viscous sub-layer) agrees very well with the DNS data. In the outer
layer, the LS model over-predicts the DNS data, which is a normal behaviour of the LS
model [6,7,36]. A better agreement with the DNS data is obtained by the AKN model,
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Figure 7: Dimensionless kinetic energy of the aiding flow in wall coordinates. X-DNS solution [20], dashed
line represents LRBFCM with LS model, dash-dot-dashed line represents LRBFCM with AKN model.

Figure 8: Dimensionless kinetic energy of the opposing flow in wall coordinates. X-DNS solution [20], dashed
line represents LRBFCM with LS model, dash-dot-dashed line represents LRBFCM with AKN model.

which predicts the velocity profile very well in both regions.
The non-dimensional turbulent kinetic energy is represented in Figs. 7 and 8 for

the aiding and opposing flow, respectively. On the aiding flow side, the kinetic energy
is under-predicted, also out of the viscous sub-layer region. The reason could be in
the anisotropy of the Reynolds stresses, which was found by the DNS solution to be
enhanced in the aiding flow. However, is seems that the anisotropy does not affect the
prediction of the velocity field, especially when the AKN model is used, see Figs. 5,
6 and 11. The kinetic energy of the opposing flow agrees very well, since it was re-
ported by the DNS data, that the anisotropy of the Reynolds stresses in this region is
weakened.
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Figure 9: Dimensionless temperature profile of the aiding flow in wall coordinates. X-DNS solution [20],
dashed line-represents LRBFCM with LS model, dash-dot-dashed line represents LRBFCM with AKN model.

Figure 10: Dimensionless temperature profile of the opposing flow in wall coordinates. X-DNS solution [20],
dashed line represents LRBFCM with LS model, dash-dot-dashed line represents LRBFCM with AKN model.

The temperature profile is shown in Figs. 9 and 10 for the hot (aiding flow) and
cold (opposing flow) walls, respectively. For the opposing flow, the calculated results
are in good agreement with the DNS. However, on the aiding side, we observe larger
differences between the LRN models and DNS. The reason could be in modelling the
turbulent diffusivity and turbulent viscosity with a constant turbulent Prandtl num-
ber (set to 0.9 in this work). This assumption holds only for simple boundary layer
flows, where the velocity and the temperature fields develop simultaneously [1]. In
our case, the similarity between the temperature and velocity fields does not hold,
since the boundary layer is affected by the buoyancy force. It was observed from the
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Figure 11: Dimensionless velocity profile at the outlet in wall coordinates. X-DNS solution [20], dashed line
represents LRBFCM with LS model, dash-dot-dashed line represents LRBFCM with AKN model.

Figure 12: Dimensionless temperature profile at the outlet in wall coordinates. X-DNS solution [20], dashed
line represents LRBFCM with LS model, dash-dot-dashed line represents LRBFCM with AKN model.

DNS [20] and LES [35] results, that the buoyancy force effects the velocity fluctuations
differently as the temperature fluctuations. The velocity fluctuations are enhanced
in the opposing flow and reduced in the aiding flow, while the opposite effects are
observed for the temperature fluctuations. For better prediction of such behaviours,
the turbulent diffusivity should be modelled by the two-equation models for thermal
field [1].

Due to the buoyancy effects, the velocity and the temperature profiles at the outlet
become un-symmetric. This behaviour is shown in Figs. 11 and 12 for the velocity and
temperature, respectively. The results are presented by the following non-dimensional
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Table 3: Nusselt number Nu and skin friction C f at the channel outlet.

turbulence aiding flow opposing flow
model Nu C f Nu C f

DNS [20] / 7.42 9.90E-3 20.94 7.90E-3
present method LS 6.67 9.96E-3 23.18 7.30E-3

AKN 7.96 1.05E-2 23.91 7.87E-3

relations

v∗y =
vy

u∗
τ

, Θ∗ =
T∗ − T∗

c
T∗

h − T∗
c

, (4.5)

where Θ∗ is standing for the normalized mean temperature. u∗
τ is friction velocity,

calculated from the wall shear stress, averaged on the two walls, i.e., cold and hot
walls. T∗ stands for friction temperature, calculated by the following equation

T∗ =
T
T∗

τ

, (4.6)

where T∗
τ is calculated from the averaged wall heat flux, i.e.,

T∗
τ =

(qh + qc)

2ρcpu∗
τ

. (4.7)

The Eq. (4.6) is used for calculating the T∗
h and T∗

c on the hot and cold walls, respec-
tively. We can conclude, that the AKN model predicts the velocity profile with a very
good accuracy, while the LS model over-predicts the velocity profile. The temperature
profile is over-predicted by both models for the aiding flow, and agrees very good
with the DNS data for the opposing wall.

The accuracy of the represented method was also evaluated as a function of Nus-
selt number and skin friction at the top of the channel (at the outlet), which are calcu-
lated by the following equations

Nu =
2 · qw · d · k
⟨T⟩ − Tw

, (4.8a)

C f =
2 · τw

ρ · ⟨u⟩2 , (4.8b)

respectively. In Eqs. (4.8a) and (4.8b), ⟨ ⟩ is a bulk-averaged quantity over d, which is
the interval from the wall to the maximum velocity location. The results are presented
in Table 3, where excellent agreement was achieved with both turbulence models used.

5 Conclusions

This paper probably for the first time represents a solution of the incompressible tur-
bulent thermo fluid problem by a meshless method. The LRN k − ε models with the
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two types of closure coefficients, proposed by LS [23] and AKN [1] are used. The novel
numerical solution is based on the local collocation with the radial basis functions for
spatial discretization and the first order (backward Euler) explicit method for the time
discretization. Due to its locality and explicit time stepping, the method appears very
suitable for parallelization. The partial differential equations are solved in their strong
form and no integrations are involved. A solution on a non-uniform node arrange-
ment and rectangular geometry was presented. This was done in order to be able to
compare the results with the previously published data. The method can cope with
more complicated node arrangements and more complicated geometries as well [34].
The transition from two-dimensional to three-dimensional cases is from the coding
point of view quite straightforward. The results were compared with the DNS for a
problem of combined forced and natural convection with a reasonably good agree-
ment, with both LS and AKN turbulence models. However, better prediction of the
velocity field was obtained by the AKN model. The prediction of the temperature field
was obtained slightly less accurate as the prediction for the velocity field. The reason
is not in the present novel numerical method, but in using the simplified model for the
turbulent diffusion. In the future, the method will be extended to cope with the tur-
bulent flows with solidification, as encountered for example in the continuous casting
of steel. With this, the LRBFCM will additionally strengthen its already established
reputation as a simple, accurate, robust, and reliable novel meshless computational
method.
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[30] B. ŠARLER AND R. VERTNIK, Meshfree local radial basis function collocation method for diffu-

sion problems, Comput. Math. Appl., 51 (2006), pp. 1269–1282.
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