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Abstract

The key aim of this paper is to show the strong convergence of the truncated Euler-
Maruyama method for neutral stochastic differential delay equations (NSDDEs) with
Markovian switching (MS) without the linear growth condition. We present the truncat-
ed Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under
the local Lipschitz condition plus Khasminskii-type condition. We also study its strong
convergence rates at time 7" and over a finite interval [0, T']. Some numerical examples are
given to illustrate the theoretical results.
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1. Introduction

Due to better explanations of the phenomena, stochastic differential equations (SDEs) and
stochastic differential delay equations (SDDEs) which are more efficient and reliable models
in dynamical systems receive more and more attention recently. Systems with Markovian
switching which were introduced by Kac and Krasovskii (see in [6]) have become a powerful tool
in the modelling of practical systems (see in [7,21] and the references therein). The structures
and parameters of the underlying neutral stochastic differential delay equations (NSDDEs)
may change abruptly because of environmental disturbances etc. We use the continuous-time
Markovian chain 7(t) to model such abrupt changes. Thus, the underlying NSDDE

dlz(t) — D(z(t — 7)) = F (z(t),z(t — 7)) dt + G (z(t), x(t — 7)) dw(t) (1.1)
becomes the following NSDDE with Markovian switching (MS), abbreviated as NSDDE-MS
dlz(t) — D(x(t —7),r(t))] = F (z(t),z(t — 7),r(t)) dt + G (x(t),z(t — 7),r(t)) dw(t). (1.2)

Since most SDEs-MS and SDDEs-MS have no explicit solutions, numerical methods to
approximate the underlying solutions become a useful technique. There are many results con-
cerned with the numerical solutions of SDEs-MS and SDDEs-MS in recent years (see e.g.,
[11,13,15,19,20,25-27,31]). Up to now, most of the strong convergence theories are consid-
ered under the global Lipschitz condition or the local Lipschitz condition and the linear growth
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condition. In 2003, Kolmanovskii et al. [8] discussed some important properties of the solu-
tions e.g. boundedness and stability for NSDDEs-MS under Global Lipschitz and linear growth
condition. Some numerical solutions to NSDDEs-MS were also discussed in [23, 24, 30]. How-
ever, lots of NSDDEs-MS do not satisfy the linear growth condition and there are a few results
about NSDDEs-MS without linear growth condition (see, e.g., [9,10,22] and the references cited
therein). As we know, the efficient explicit Euler schemes of SDEs (even without Markovian
switching) can not be convergent in strong sense with the super-linearly growing drift coeffi-
cients, see for example [4]. In 2012, Hutzethaler et al. presented tamed Euler method which can
solve this problem [5]. In [20], Nguyen et al. proposed tamed-Euler method for hybrid stochas-
tic differential equations with Markovian switching. In 2015 and 2016, Mao [17, 18] presented
the truncated Euler-Maruyama (EM) method for SDEs and gave its convergence rate. The
truncated (EM) method has been discussed intensively by some authors (see, e.g., [1,3,12]).
Recently, we established the strong convergence theory of the partially truncated EM method
for a class of SDDEs [28], and considered convergence rates of the truncated EM method for
stochastic functional differential equations (SFDEs) in [29] under the local Lipschitz condition
plus the Khasminskii-type condition. Though there are many papers on numerical methods for
NSDDEs-MS. Up to now, there is little numerical theory on NSDDEs-MS under local Lipschitz
condition and Khasminskii-type condition. Obviously, NSDDEs-MS is a generalization of SDEs
and SDDEs. However, some new difficulties will appear due to the nonlinear growth condition.
Owning to cheap computational cost, explicit numerical methods are indeed to be discussed.
Our aim here is to develop the truncated EM method of NSDDEs-MS under local Lipschitz
condition and Khasminskii-type condition. For the convenience, we will, in Section 2, develop
the truncated EM method. We will study the moment boundedness in Section 3 and the
convergence rate of the truncated EM method in Section 4, respectively. Some numerical
examples are given in Section 5. The conclusion of our paper is presented in Section 6.

2. The Truncated Euler-Maruyama Method

Throughout this paper, assume that (Q,F,{F,}+>0,P) denotes a complete probability space
with a filtration {F, };>¢ satisfying the usual conditions (i.e, it is right continuous and increasing
while Fy contains all P-null sets). Let E be the expectation corresponding to P. Assume
that w(t) = (wyi(t), w2(t), - ,wm(t))T is an m-dimensional Brownian motion defined on the
probability space. Let | - | denote both Euclidean norm in R™ and the trace norm in R™*™.
Denote by C([—,0],R™) the family of continuous functions from [—7,0] to R™ with the norm
lell = sup_,<y<ole(u)]. For a,b € R, we use a Vb and a A b for max{a,b} and min{a,b},
respectively. If D is a set of Q, its indicator function is denoted by 1p. |x| denotes the biggest
integer which is not bigger than x.

Let r(t) (t > 0) be a right-continuous Markovian chain on the probability space (,F {F,}+>0,
PP), taking values in a finite state space S = {1,2,---,Q} with I" = (v;j)ox@ given by

ijA o A, if 4 .,
P{(r(t + A)) = jlr(t) = i _{7 +o8) 7 (2.1)

where A > 0. Here ;; > 0 is the transition from ¢ to j if ¢ # j, while v;; = — > 745.
J#i
Assume that the Markovian chain r(¢) is independent of the Brownian motion w(t). It is
known that almost every sample path of r(t) is a right-continuous step function with a finite
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number of simple jumps in any finite subinterval of R;. In other words, there is a sequence of
stopping times 0 = 79 < 71 < --- < T}, — o0 almost surely such that

T(t) = Z T(Tk)1[7k17k+1) (t)v

k=0
r(t) is a constant on every interval [7x, T4+1), for every k >0
r(t) =r(tk), on1p <t < Thy1.
Consider an n-dimensional NSDDE-MS
dlz(t) — D(z(t — 7),r(t))] = F (2(t),z(t — 7),r(t)) dt + G (x(t),z(t — 7),7(t)) dw(t) (2.2)

for t > 0 with initial data z¢o = £ € C([—7,0];R") and r(0) = r¢. Here D : R® x S — R",
F:R"xR"x S — R" and g : R" x R” x § — R"*™,
We impose the following four assumptions as hypotheses:

(A1) For each integer R > 1, there exists a positive constant Cr such that
|F(z,y,i) = F(Z,9,9)| V|G(z,y,1) = G(Z,5,i)| < Crlz —Z[+ [y —g))  (2.3)
for all z, y € R™ and i € S with |z| V |y| V |Z| V |§] < R.

(A2) There is a pair of constants p > 2 and Ky > 0 such that

. . -1 .
(LL' - D(y,l))TF(.’IJ,y, Z) + pT|G(x7y7 Z)|2 S Kl (1 + |‘IE|2 + |y|2) (24)
forall z, y e R™ and i € S.
(A3) Assume that D(0,7) = 0 and there exists a positive x € (0,1) such that
|D(x,i) = D(y, i) < klz —y| (2.5)
for every z,y € R® and i € S.
From (2.5), we can see that
|D(x,)| < klx|. (2.6)
(A4) There is a constant Ky > 0 such that
€(t) = &(5)| < Kolt — s['/? (2.7)
for all s,t € [—7,0].

It is easy to show the following lemma by the similar way of Theorem 3.1 in [14] and Theorem
2.4 in [16].

Lemma 2.1. Under (A1)—~(A3), the NSDDE-MS (2.2) has a unique global solution x(t) and,
moreover,

sup Elz(t)|P <C (2.8)
te[—7,T]

for all T > 0, where C stands for a generic positive real constant (but independent of A and R
later) and its value may change between occurrences.
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In order to define the truncated Euler-Maruyama mthod, we first choose a strictly increasing
continuous function ¢: Ry — Ry such that ¢(v) — 0o as v — co and
sup  (|F(z,y,1)| V|G(z,y,9)]) < ¢(v), Vv =0. (2.9)
|z V]y|<v
¢! is the inverse function of ¢ and a strictly increasing continuous function from [¢(0), co) to

Ry. Then we can choose a number A* € (0,1] and a strictly decreasing function : (0, A*] —
(0, 00) such that

V(A") = ¢(2), (2.10)
iiinow(A) = o0, (2.11)
AY4p(A) <1, YA € (0,1). (2.12)

For a given step size A € (0, 1), we define the truncated functions

Falw,y.i) = F <(|x| AT (A)) L (o] A o ((A) i) ,
] vl 2.13)

Gale,y.i) = G <(|x| AT OAN) 5 (0] A 67 (0(a) %)

for all x,y € R™ and 7 € S, where we set % = 0 when x = 0. It is obvious that
[Fae,y,0] V |Gale,9,0)] < 6(67 (0(A)) =$(A) Va,y € R". (2.14)

That is, although both F' and G may be unbounded, both truncated functions Fa and Ga are
bounded.
We also impose the following assumption:

(H1) There exists a pair of constant p > 2 and K3 > 0 such that
. . -1 .
(0~ Dy, )7 Faleo,) + Lo GA @3, )P < Ky (Lt o +15) (215)

for all A € (0,A*], z,y € R™ and i € S.

Lemma 2.2. Let r2 = r(kA) for A > 0 and k = 0,1,2,---, then {r&,k = 0,1,2,---} is
discrete Markovian chain with the one-step transition probability matriz

P(A) = (]Pij(A))QXQ = et
Since the v;; are independent of x, before computing = the paths of r can be generated inde-
pendently of x.

From now on, we will consider NSDDE-MS (2.2). Let the step size A € (0,1). Without
loss of any generality, we may assume that 7/A = N where N € N. We simulate the discrete
Markovian chain {r, k = 0,1,2,---} as follows: Compute the one-step transition probability
matrix P(A). Let r§ = ip and generate a random number 7, which is uniformly distributed
in [0,1]. Define

i1—1 i1
i1, if iy €S —{Q} such that » Pi;(A)<m < Pi;(A),
Jj=1 J=1

Q-1
Q. if Y Pigi(A) <mi,
j=1
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where 2221 Py (A) =: 0. Generate independently a new random number 7, which is uniformly
distributed in [0, 1] and we define

12—1 12
12, ’Lf s €85 — {Q} such that Z Pilj(A) < < Z]P)ilj(A)?
=1 =1

A
Ty =

Q-1
Q, if Y Py (A) <me.
j=1

Repeating this procedure, the trajectory {rkA, k=0,1,2,--- } can be generated. The procedure

can be carried out independently to obtain more trajectories. Now we can form the discrete-

time truncated EM numerical solutions Ya (tx) = z(tx) by setting YA (0) = x(0), 75 = iy and

performing

Ya(ty) =€(tk), k=-N,—N+1,---,0,
Ya(trs1) = Ya(ts) + D(Ya(tps1-n),751) — D(Ya(te—n), 78) + Fa(Ya(tr), Ya(te—n),75)

+GA(YA(tk)aYA(tk*N)aTkA)Awka k205172a"' 5
where wi, = w(ty) and Awyg = w41 — wg. Define 7(t) = rkA = r(tg) for t € [tg,tky1). Let us

now establish the continuous-time truncated EM solutions. The first one is defined by

yA(t): Z YA(tk)l[tkvtk+1)(t)' (216)
k=—N

This is not a continuous simple step process. Let us refer this as the continuous-time step-
process truncated EM solution. The other one is defined by

ya(t) =£@),  te[-70],

ya(t) = £(0) + D(Gal(t — 7),7(t)) — D(E(—7),75") +/0 FA(9a(8),9a(s — 7),7(s))ds

t
+ [ Ga(@a(s). 1als = ). 7(s))dus).
0
(2.17)
Clearly, (2.17) can also be written as

t

ya(t) = Ya(ty) + / Fa(Ga(s). 9a(s — 7). 7(s))ds + / GaGa(s), 5a (s — ), 7(s))du(s).

tr 23
We will refer this as the continuous-time continuous-sample truncated EM solution. In partic-
ular, this shows that Ya (tx) = ya(tx) = ya(tx) for all k =0,1,---.
Moreover, for all ¢ € [0, T, we have

Elga(t)| < sup Elya(s)| = sup E[Ya ()]

0<s<t 0<t, <t
= sup Elya(te)] < sup Elya(s)], (2.18)
0<t, <t 0<s<t

dlya(t) = D(ga(t —7),7(t))]
= Fa(a®),ya(t = 7),7(t))dt + Ga(Ga(t), yalt — ), 7(t))dw(t).  (2.19)
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3. Moment Boundedness of the Truncated EM Method

In order to obtain moment boundedness of the truncated EM method, we need to show the
following lemma.

Lemma 3.1. For any A € (0,A*] and let p > 0, we have
Elya(t) — ga(t)P < C3AP2 (p(A))P, Wt > 0. (3.1)

Proof. For all t > 0 and any A € (0,A*], there is a unique integer £ > 0 such that
tr <t < tgq1, we divided the proof into two cases.

Case (I): For p > 2, by (2.14), elementary inequality
la+b° < 27 (|al® + [b]°) (3-2)
for ¢ > 1, Holder inequality and Ito isometry, we have
Elya(t) — ga(t)” = Elya(t) — ya(te)[?

/ Fa(9a(s), 9a(s — 7),7(s))ds

tr

Ga(Gals),yals = 7),7(s))dw(s)

tr

+E

|

< op—1 [E

< 20t {Ap_lE |Fa(Ga(s), gals —7),7(s))[" ds

¢
~ ) t ~
+20-275 [ 6o (6).ga(s - 7)) s
tr
< 2AP2((A))P.
Case (II): For p € (0,2), by Holder inequality, we get (3.1). O

Now we show the moment boundedness of the truncated EM method.

Lemma 3.2. Assume that (A1)—(A3) and (H1) hold. Then we have

sup sup Elya(®)|P <C (3.3)
0<A<A* —7<t<T

for all T > 0.

Proof. Fix any A € (0,A*] and 0 < ¢t < T. Define za(t) = ya(t) — D(ga(t),7(t)). By the
It6 formula, we derive from (2.17) that

Bl < BlzaOF +E | pla()P (A(0)Pa (a(s). 5als = 7).7(5)

22 1Ga (als),gals — 7). 7)) ) ds
=: |ZA(O)|p =+ Bl =+ BQ,

where

2 1Ga5a(5), 9als = 7). 7)) ds
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and

Using (H1), we get
t
By < KE / plea($)P2 (1+ [ga () + [7a(s — 7)[2) ds
0
t t
< K [ [ea(o)P s+ Kapl [ [ea(s)P2lga(o)Pds
0 0
t
KB / loa ()P ~2{gia(s — 7)|ds.
0
By the Young inequality, we compute
t t
pIE/ lza(s)[P~2ds < (p — 2)/ E|za(s)|Pds + 2T,
0 0
t t t
b5 [ s sl < (0-2) [ BlalPds+2 [ BlpaPds
0 0 0
t t
<(p-2) [ Eleat)Pds+2 [ sup Blya(u)Pds
0 0 uel0,s]
t
7B [ laaloP lgals - 7)fds
0
t t
<(p- 2)/ E|za(s)|Pds + 2/ E|ga(s — 7)Pds
0 0
t t
<(p-2) [ Blaato)Pds+2 [ Elgats)pds
0 -7

t t
<(p-2) / Elza(s)[Pds + 2r[l€]P + 2 / sup Elya(u)Pds,
0 0

u€[0,s]

and
]E/O pl2a(s)[P 2 (ya(s) — ga(s))  Fa(ga(s), ga(s — 7),7(s))ds
<(p—2E / lza(s)Pds + 2E / lya(s) — 5a(5) P2 Fa(3a(s). ga(s — 7). 7(s))[P/2ds.
0 0
By Lemma 3.1, (2.14) and (2.12), we get
E [ 10a(s) - 502 Fa(5(9). 92 (s = ). () 2ds
0
< (Y(A)PE / lya(s) — ga(s)P/2ds
0
< @) [ o)t <c. (3.4)
0

Using elementary inequality

Ja+b]° < (1+¢) (lal® +"[bl%) (3.5)
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for ¢ > 1, ¢ > 0 and (A3), we have

Elza()” < (1= 8)'"PElya(®) + &' PE[DGa(t - ),7(t))[”
< (1= K)PElya () + KE|ga(t — 1)
< (1= 8)"Elya@®) + & zt[gpt]lElyA(S)lp + €] (3.6)

Hence, we get

sup Elza(o) <C (1+ t (s Elar)as).

s€(0,t] 0<u<s
By elementary inequality (3.5) and (A3), we obtain

Elya(®F < (1= %) "PElza(t)|” + &' PE[D(Ga(t — 7),7(1))I”
<

(1= &) PE[2a(®) + & sup Elya(s)l”
se|—T,

< (1= R)"PElza(t)P + 5 sup Elya(s)]” + sll¢]l” (3.7)
s€[0,t]
Therefore,

1 _
sup Blya(s)|” < — ((1 — &) sup Elza(s)[” + HII&II”)
s€[0,t] -k s€[0,t]

t
<C (1 +/ ( sup E|yA(u)|p> ds) , (3.8)
0 0<u<s
where C' is independent of A.

As this holds for any ¢ € [0, T] while the right-hand side is non-decreasing in ¢, we can obtain
t
sup Sla(wl? <0 (14 [ (s Bator) as)
0<u<t 0 0<u<s

Applying the well-known Gronwall inequality, we obtain

sup Elya(t)P < C.
0<t<T

It is easy to show

sup Elya(t)P < C.
—r<t<T

As this holds for any A € (0, A*] while C is independent of A, we get the required (3.3). The
proof is complete. g

Using Lemma 3.2, we can get the following corollaries.

Corollary 3.1. Under (A1)—(A3) and (H1), for any A € (0,A*] and t € [0,T], we have
E[D(ya(t —7),7(t)) = D(ya(t — 7),7(1))|" < CA. (3.9)
Proof. For all t € [0,T] and any A € (0, A*], by (2.1), (A3) and Lemma 3.2, we have

EID(ya(t —7),7(t)) = D(ya(t —7),7(t))[*
= E[D(ya(t —7),7(t)) = D(ya(t —7),r(tx))|*
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= E(|D(yat = 7),7(t)) = D(ya(t = 1), 7))L ooy 2r(r,)))

< 297'E [(ID(ya(t = 7),r(t)|7 + [D(ya(t = 7), 7(tx))1) Liry e ]
< 29%°E (Jya(t — 1) Lgryzr(e))

<2941 sup t] Elya()|"E (L trnt) < CE (Lntytr(en)))

s€[—T,

= OZ Lir()2iy P(r(t) # ilr(te) = 4)

€S

- OZ L) Z(%—j (t —tx) + ot — t1))
€S jAi

< 0 e (=3l +0(8) 3 Liriu

€S
< i <
< Corgnz%XQ( YA + o(A)) < CA.

This completes the proof of the corollary. O

Corollary 3.2. Under (A1)—(A4) and (H1), for any A € (0,A*] and t € [0,T], we have

EID(z(t —7),7(t)) — D(alt —7),7(t)[*

< 3" k% sup Ela(s) — ya(s)|? + CAY2()(A)) + CA.
s€[0,t]

Proof. By (A3), Lemma 3.1, Corollary 3.1 and elementary inequality, we have
E|D(z(t —7),7(t)) — D(Ga(t — 7),7(t))|*
< 3" "E|D(a(t — 7),7(t) = D(ya(t - 7), (1))
+3" "E|D(ya(t — 7),7(t)) — D(ya(t — 7),7(t))|"
+3" "E[D(ya(t — 7),7(t) — D(Fa(t — 1), 7(t))|
<3 KBzt —7) —yat — )7+ 3" CA+3" KIEjya(t — ) — ga(t — 7)|?

< 3" ke ( sup E[z(s) —ya(s)|+ sup Elaz(s) - yA(S)|q>
s€0,t] s€[—T

q—1

0]
13" CA + 3" KTCAY2 (1 4 (¥(A))Y)

< 3" k% sup Elz(s) — ya(s)| + CAY2(h(A))7 + CA.
s€[0,t]

This completes the proof of the corollary. O

4. Strong Convergence the Truncated EM Method

4.1. Strong convergence at time T'

Before we show that both truncated EM solutions ya(T) and ga(T) will converge to the
true solution z(T") in L7 for any T > 0, we need to present several lemmas. In the following of
this subsection, we fix T" > 0 arbitrarily.

Lemma 4.1. Let (A1)—(A3) hold. For any real number R > ||&||, define the stopping time

or =inf {t > 0: |z(t)| > R},
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where throughout this paper we set inf ® = oo(and as usual  denotes the empty set). Then

C

P(O’R S T)

where C' is independent of A and R.

Proof. Define z(t) = x(t) — D(z(t — 7),7(t)). By the It6 formula and (A4), we derive that

tANoR
E|Z(t Aog)|? < E|Z(0)]? + E/ 2K (14 |2(s)|* + |z(s — 7)|*)ds
0
t t
< 2(0)* + 2K, T + 2K, / El|z(s A og)|[?ds + 2K, / Elz(s Aogr — 7)|%ds
0 0

t

t
< 2(0)* + 2K, T + 2K, / Elz(s A og)2ds + 2K, / Elz(s A og)|*ds
0

-7

t
< [5(0)2 + 2K 7||€ )% + 20T + 4K /O Ela(s A op)|2ds

forany 0 <t < T.

Applying elementary equality (3.5) and (A3), we get
2(0)]* < 2 (€(0)] + w2[&(=7) %) < 2(1 + w2)]I€]1%,

and

Ele(t)f? < ~EID(a(t — ), () + 7= El=(1)P

x| =

2

1
< N2 L w2
< KIE|x(t 7)| +1_HE|z(t)|

=

1
<k sup Elz(s)]* + EEV(UP

s€[—7,t]

1
Sn(prM$F+MW>+Ij;HﬂM?

€[0,t]

Hence we have

s€[0,tAoR] 1-k s€[0,tAoR]

1 1 _
sup  Elz(s)]* < (m sup IE|Z(5)|2+’f||§||2>

t
<C (1 —|—/ sup E|x(u/\03)|2ds> .
0

u€e[0,s]
The Gronwall inequality shows

sup E|z(s Aog)|* < C,

s€[0,T]
where C' is independent of A. This implies
R*P(or <T)<C

and the assertion follows. O
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Lemma 4.2. Let (A1)—-(A3) and (H1) hold. For any real number R > ||£|| and A € (0, A*],
define the stopping time
pa,r =inf {t > 0: |ya(t)| > R}.

Then o
P(pa,r <T) < Zk (4.2)

where C' is independent of A and R.

Proof. Write pa,r = p- za(t) is defined as in the proof of Lemma 3.2. By the It6 formula,
we have that for 0 <t < T,

Blaa(tn P < @) +E [ (22007 Pa(ga ()7 (s = 7).75)
+1Gaa(s),gals = 1), 7 () )ds
<1ealOF +E [ (20a(e) = Dlaals = 7). (o) Falra(s) 7as = 7).7(5)

+Ga(Gals), gals — ), 7(s))|> )ds

By (H1), we then obtain that,
tAp
Blaalt Ap) < 2aOF +E [ 2Ka(1+ (o) + lga(s — 7)P)ds
0
tAp
+E/ 2|lya(s) —ya(s)1Fa(Ga(s), ya(s — 1),7(s))|ds
0
t
< 122 (0) + 2K,T + 4K / Elga(s A p)[2ds + 2K57E| €]
0
T
+2E/ lya(s) —ya(s)1Fa(Ga(s), ya(s — 1),7(s))|ds
0
t T
< |2a(0)2 + 2K5T + 8K3/ Elya (s A p)[2ds + 8K3/ Elya(s) — ja(s)|ds
0 0
T
+2K3TE|€|* + 2E/ lya(s) —ya(s)1Fa(Ga(s), ga(s — 1),7(s))|ds.
0
Using Corollary 3.1, we have
T
| Bluals) - pals))Pds < TCA@)P < CT.
0
While by Lemma 3.2 and (2.14) and (2.12), we derive
T
]E/O lya(s) —ya()1Fa(Ga(s), yal(s — 1),7(s))|ds

T
< w(A)/O CAM2p(A)ds < C.
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Using elementary inequality (3.5) and (A3), we get
24 (0)]* < 2 (I€(0)|* + w*[E(—7)[%) < 2P7H(1 + K2)[€]%,

and
o 1 - - 2 1 2
Elya () < “E|D(ga(t - 7), 7)) + T Elza(0)
< CRlga(t— )P + ——Elea(0)?
T K 1—«x
_ 1
<r sup Elga(s)]* + mEVA(f)F
s€[—7,t]
2 2 1 2
< w | sup Elya(s)l” + €17 ) + = Elza(®).
se[0,t] — K
Hence we have
sup Elya()? < —— (— sup Elza(s)l + sl
“1-k ]‘_HSG[O,t/\oR]

s€[0,tAcR]

u€(0,s]

t
<C <1 —i—/ sup Elya(u A aR)|2ds> .
0

The Gronwall inequality shows that

sup Elya(s Aor)|? < C,
s€[0,T]

where C' is independent of A and R. This implies the assertion (4.2) easily.
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Lemma 4.3. Let (A1)—(A43) and (H1) hold. For any A € (0,A*] and t € [0,T], we have

tAOA R
E/O [Fa(ya(s),ya(s —7),7(s)) — Fa(ya(s),ya(s — 7),7(s))["ds < C(¢(A))?A,

tAOA.R
E/O |Ga(ya(s),yals = 7),7(s)) — Ga(ya(s),ya(s — 7),7(s))|%ds < C(¥(A))IA.

Proof. Using elementary inequality, (2.1) and (2.14), we have

<28 [ [(1Palua()a (s =)
+Fa(ya(s), yals — ), T(tl))lq)l{ms)#r(tz)}] ds

tiy1
< 2‘1”5/ (DAL () r(t)y) ds < CAD(A)IE (Lir(s)r(t))

t

= CA(y(A))? Z L2y P(r(s) # ilr(t) = i)

€S

= CAW(A)T Y Ly ) (ii(s — ) + o(s — 1)

i€S i

E / T Fa(ya(s).yals — 1), 7(5) — Fa(a(s)ya(s — 1), 7)1 L (e ds
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< CA(Y(A))1 omax, (—7iiA +0(A)) Z Lirt)2i)
ies
< CAWP(A))T max (—7iA +0(A)) < CA(H(A))(A +o(A)).

0<i<@Q

Hence, we get

B [ s s 60,305 — 7). 60) — B0 (61 s 7)) s
[tA0a,r/A] tig
— Z /l |[FA(ya(s),ya(s —7),7(s)) = Fa(ya(s),ya(s — 1), 7(t))|" 1 {r(s)y2r(t)1 5
< C(A)IA.
Similarly, we can obtain the second estimate of the lemma. ]
In order to show the convergence rate at time 7', we impose two more assumptions.

(A5) There is a pair of constants 2 < ¢ < p and K5 > 0 such that

(¢ = D(y,i) =&+ D(g,0))" (F(z,y,1) — F(z,7,1)
2D 6.y - G
S K (lr -2+ |y —9P?) (4.3)
forall x, y, Z, y ¢ R" and i € S.
(A6) There are constants K4 > 0 and v > 0 such that
|F(,y,1) = F(z,9,9)| V |G(2,9,1) = G(Z,9,1)]
S Ka(U [ + Jy[" + 191" + [217)(J — 2[ + [y — 9]) (4.4)
forall xz, y, z, y € R" and i € S.

Lemma 4.4. Let (A2)-(A6) and (H1) hold. Let or and pa r be the same as before. Define
Oa.r:=0rApar and ea(t):=xz(t) —ya(t).

Let A € (0, A*] be sufficient small such that ¥(A) > ¢(R). Then, for any A € (0,A), q € [2,p)
and gy < p,
Elea(T A 0a.r)|? < CA[(¥(A)IVI], V T>0. (4.5)

Proof. Define ea(t) = z(t) — D(z(t — 7),7(t)) — ya(t) + D(ga(t — 7),7(t)). By It6 formula
and Young inequality, we can show that for all ¢ € [0, 7],

Elea(t Afa.r)|? (4.6)

T A 5 |G @), 2(s = 7),7(5) = GalGals), gals = 7), 7“(8))!2> ds
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tAOa R
+E / (4 - 2)(3q — 1)]ea(s)|*ds

t/\GA’R
+E / 20ea ()72 Fa(ya (3),ya(s — 7),7(5)) — Falya(s), ya (s — 7),7(s))|"2ds

tAOA R
+E/O 20ea(s)|7?|Fa(ya(s),ya(s — 7),7(s)) — Fa(fa(s), ga(s — 7),7(s))|"?ds
tAOA R

+3(q - I)E/O 1G(ya(s),ya(s = 7),7(s)) = Galya(s),ya(s — 7),7(s))["ds

tAOA R
+3(q - I)E/O |Ga(yals) yals = 7),7(s)) = Ga(ya(s), gals — 7),7(s))|ds

tAOA R
< E/O glea(s)*™ <é£(5)[F(I(S)7$(S = 7),7(5)) = Falya(s),yal(s —7),7(s))]

3(g—1)

T

|G (s), (s — 7),7(s)) — Ga(ya(s), ya(s — 7), r(s»f) ds

w8 [ - D60 1) + s

+E [ T Eatya(s)yals — 70, 7(5)) — Faya(s), yals — ), 7(s)) ds

+ [ T Eaya(s),yals — 70, 7(5)) — Fa(Fa(s), 7als — ), 7(s)) s
+3(¢=VE | T G yas),yals — 7),7(5)) — Galya(s), yA(s — 7),7(5))[1ds
+3(¢=VE | T G ya(s),pals — 7),7(5)) — Ga(7a(s), 7als — 1), F(s)Iods.

Using Lemma 4.3, we have

E|éA (t A GA)R)VZ
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tAOA, R
< E/O glea(s)|"? <é£(5)[F(I(S)7 z(s —7),7(s)) — Fa(ya(s), ya(s —7),7(s))]

+3(q2— D \G(x(s), x(s —7),7(s)) — Galya(s),ya(s — 1), T(S))‘2> ds

tAOA R
—|—OE/ lea(s)|9ds + C((A))1A
0

tAOa
+E/O [Fa(ya(s),ya(s = 7),7(s)) — Fa(ya(s),ya(s —7),7(s))|"ds
tAOa r

+3(q - 1)E/0 1Ga(ya(s),yals —7),7(s)) = Ga(Gals), ya(s — 1), 7(s))|"ds.

Since s € [0,¢ A 0, R],
[2($)[ V [a(s =)V |ya($)[ V [yals = 7)| V [7a(s)[ V [gals = 7)| < R
and ¥(A) > ¢(R), we have

|2 ()| V [z (s = TV [ya(s)] V yals = 1) V [Fa () V [7als — )] < 671 (1(A))

and
Fa(ya(s),ya(s —7),r(s)) = F(ya(s),ya(s = 7),7(s))
Fa(ya(s),ya(s = 7),7(s)) = F(ya(s),ya(s —7),7(s)),
Fa(§a(s),yals = 7),7(s)) = F(ga(s),ya(s — 7),7(s)),
Ga(ya(s),ya(s = 7),7(s)) = G(ya(s),yals — 7),7(s)),
Ga(ya(s),yals = 7),7(s)) = Glya(s), yals = 7),7(s)),
Ga(ya(s),yals — 1), 7(s)) = G(Ia(s),yals — 7),7(s)).
Define éa(t) = z(t) — D(z(t — 7),7(t)) — ya(t) + D(ya(t — 7),7(t)). Consequently, we obtain

E|éA(t A 9A)3)|q
tAOA R
< E/O glea(s)|"? (eg(s)[F(iﬂ(S)w(S =7),7(s)) = Fya(s),yal(s = 7),7(s))]

@]G(x(s), x(s = 7),7(s)) — G(ya(s), yals — 7)77“(5))’2> ds

+
tAOAR
+C]E/0 |ea(s)|%ds + CA((A))?
tAOA R
+E/O [F(ya(s),ya(s — 7),7(s)) = F(ya(s), ya(s — 7),7(s))|"ds

tAOA R
+3(q - I)E/O 1G(ya(s),ya(s = 7),7(s)) = G(Gals), yals — 7),7(s))|"ds

t
< OE/ |éA(S A\ 9A7R)|qd5 + O(1/J(A))qA + J1+ Jo+ J3+ Jy,
0

where

tAOA R
Ji = E/O glea(s)|" (éﬁ(S)[F(:v(S)aw(S —7),7(s)) = F(ya(s),ya(s = 7),7(s))]
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#2926 (s). a5 - 7). () — Glyas).yals ). T(Sm?) “

tAOA R
J2 = E/O glea(s)|"*(D(ya(s —7),7(s)) = D(yal(s —7),7(s)"
[F(x(s),2(s = 7),7(s)) — F(ya(s),ya(s — 7),7(s))lds,

N
Js3 = E/O |F(ya(s),ya(s —7),7(s)) — F(ga(s),ya(s — 7),7(s))|?ds,

tAOA R
Ja=3(q - 1)E/0 Gyals), ya(s = 7),7(s)) — G(Gals), ya(s = 1), 7(s))|"ds.

By (A5) and the Young inequality, we get

t/\GA,R
J<E / alea(s)[2 15 (jo(s) — ya()[? + |e(s — 7) — yals — 7)) ds

£(([x)8) e o

t t
O<E/ |éA(sA9A7R)|qu+/ E|eA(sA9A,R)|qu+Aq/2).
0 0

t t 0
< c(m/ |éA(sA9A,R)|‘st+2/ E|eA(sA9A,R)|st+/
0 0 —T

IN

By (A4) and (A6), the Young inequality, Lemma 2.1 and Theorem 3.2, we have that
tAOA R
2B [ (0= Dleal)l +2D(als - 1),7(s) = Dlyals = ). r(s)
0
|F(2(s),x(s = 7),7(s)) = F(ya(s), yals = 1), T(S))|q/2)d8
t tAOA R
< IE/ (g —2)lea(s AN ba r)|%ds + 2(K4/£)q/2E/ [7a(s —T) —yals — )72
0 0
L+ s ()72 4 [2() 072 + lyals = )12 + [a(s — )0/
(le(s) = ()| + [a(s = 7) = yals = )I"'2) ds
t t/\eA,R
< IE/ (g —2)lea(s N Oa r)|%ds + CE/ [ga(s = 7) —ya(s —1)|¢
0 0
L+ s + 12 ()|7 + yals = 1|7+ [a(s — )| ds
tAOA R
4CE [ (ols) = pa(o)* + (s — 7) = (s — 7)) ds
0
t
< IE/ (g —2)|ea(s AN Oa.r)|%ds
0
tAOA R
+C/ (E|ja(s — 1) — ya(s — 7)[P9/ =)y p=an)/p
0

qv/p
1+ Elya(s)l” + Ela(s)l” + Elya(s — n)|? +Ela(s - )| ds

¢([x)8) -e0o|"

t
< CE/ 1Ea(s A Oa g)|%ds + CE/ lea(s A Bag)|?ds + CAY/ (1 + ((A))7).
0 0

t 0
+C/ E|6A(S/\9A)R)|qu+/
0 -7
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By Holder inequality and (A6), we obtain
t/\eA,R
T2 KIE [ (L4 s + sl + lyals = DI + lga(s = 1)l
0
(lya(s) = ga(s)l* + lyals = 7) = gals —7)|*) ds

tAOA R av/p
<0 [ 14 Eluao)lP + Blaae)P + Blya(s - 1P + Elga(s - 1P
0

(p—av)/p

- (Elya(s) = g ()@= + Blya(s - 7) = ga(s — 7)|#/ =) ds
< CAY2 (14 ($(A))7).
Simiarly, we have
Ji < CAY2 (14 (p(A)7).
Hence
Elea(®)]? < C <1 + Sz%l?t]E|eA(s)|Q> + CA[(W(A) V1]. (4.7)

Using elementary inequality and Corollary 3.2, we get
Elea(t)|” < 277 E (Jea(t)|” + [D(x(t —7),7(t)) — D(ga(t —7),7(1)|?)

< C |1+ sup Elea(s)|? | + CAYZ,
s€(0,t]

Therefore, we have
t
Blea(t 02" <C | Bleas Aba.r)f'ds + CA[(A) V1.
0

By Gronwall inequality, we have the assertion (4.5). O
Theorem 4.1. Let (A2)—(A6) and (H1) hold. Then, for any q € [2,p), p > qv, and P(A) >
P (Al(Y(A)TV 1])7p/2(p7q), then there is a A € (0, A*] such that for all A € (0, A]

E[z(T) —ya(T)|* <CA[(¢(A))* V1],

i (4.8)
Ela(T) — ya(T)|" <CA[((A))? vV 1].

Proof. Let or, pa.r, 0a r and ea(T) be the same as before. By the Young inequality, we
obtain that for any € > 0,

E |6A(T)|q =E (|6A (T)|q1{9A,R>T}) +E (|€A(T)|q1{9A,RST})

ge P—q
< E (lea(T)|"1qoy n>1) + o Eleal + rm—gPOar < T). (4.9)

Using Lemmas 2.1 and 3.2, we have

Elea(T)[? < 2P~ (E|ya(T)[? + Ely(T)|?) < C. (4.10)
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While by Lemmas 4.1 and 4.2, we obtain

C
Plar<T)<Plor <T)+Plpar<T) < 45
Substituting (4.10) and (4.11) into (4.9), we hence get

q€ (r—q)C
Elea(T)|* < E(lea(T)"1io5 n>1y) + ;C Ay eyl

Choosing
e=A[(Y(A) V1], R = (A[((A)! vV 1])*p/2(pfq) :

we have that
Elea(T)|” < E(lea(T)|"1(p5 n>73) + CA[(W(A))? V 1].

By Lemma 4.4, we can show that
E(lea(T)|%) < CA[((A))? V1],
It is easy to see that
67 (¥(A)) > (A[((A)T v 1) PR — R,

The proof is therefore complete.

4.2. Convergence rate over a finite time interval

W. ZHANG

(4.11)

(4.12)

(4.13)

We discussed that both truncated EM solutions ya(T) and ga(T) converge to the true
solution z(T') in L? for any T > 0 in the previous section. This is sufficient for some applications,

but we sometimes need the strong convergence for a numerical solution to the true solution over
a finite time interval (see, e.g., [2]). Now we will show the convergence rate over the finite time

interval [0, T]. A stronger assumption is needed.

(A7) There are constants K > 0 and v > 0 such that

(& = D(y,i) = 2+ D(5,0))" (Flz,y,9) — F(2,5,1) < K (Je = 2>+ |y - g*), (4.14)

|F(‘T7y7i) - F(jvgvl)
|G(‘T7y7i)_G(i7gvi) (|$—.’Z‘|+|y—g|)

for all z, y, &, y € R™.

(Lt f2l” + [yl” + 191" + |2[") (| = 2[ + |y — ),

(4.15)
(4.16)

Remark 4.1. We observe that (A7) implies (A1), (A2), (A5) and (A6) we imposed so far in

this paper. We now show that (A1), (A2), (A5) and (A6) are satisfied for p > 2.

(:E - D(y,i))TF(ZE,y, Z)
<

(0 — D(0,4))TF(0,0,i) + (x — D(y,4) — 0+ D(0,9))" (F(z,y,i) — F(0,0,1))

< K (|a” +[yl)
G(z,y,1)]* < 2|G(0,0,49)]* + 2|G(z,y,i) — G(0,0,4)[?
2/G(0,0,9)|* + 4K (|z|* + |y[*)
2 (|G(0,0,9))* + 2K2) (1 + |=|* + |y[*) ,

IN A
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. ) p—1 )
(z = D(y,1))" F(x,y,4) + TIG(%y,Z)I2 < Ki (|21* + [yl?)

and

3(¢—1)

(JJ-D(y,i)—Li'-i-D(g,i))T(F(,T,y,i)—F(i',g,i))-i-T

< Ky (| + [yl),

|G (@, y,i) — G(z,7,9)

where K1 = K + (p— 1) (|G(0,0,4)|? + 2K?) and K, = K + 3(q — 1)K?.
Using the same unique as the proof of Lemma 3.2, we therefore have the results under (A7).

Lemma 4.5. Under (A3) and (A7), we have

IE( sup |x(t)|p) <cC. (4.17)

0<t<T
For any real number R > ||£||, define the stopping time
or =inf{t > 0: |z(¢)| > R},
where throughout this paper we set inf ® = oo(and as usual ® denotes the empty set). Then

c
Flop <T) < 2. (4.18)

Proof. z(t) is defined se in the proof of Lemma 4.1. Using the Ité formula and (2.17), for
0 <t<T, we obtain

01 12O + [ 22672 (7 (6) Fals).als = 7).r(s)

+Z%1|G(:1:(s),3:(s —7), T(s))IQ)ds + /0 p|2(5)[P7227 (5)G(x(s), x(s — 7),7(s))dw(s).
Therefore we have

E( sup |z<u>|p> < [2(O) + 3T, + N,

0<u<t

where

M, = IE/O p|z(s)[P~2 (ET(S)F(:E(S),x(S —7),7r(s)) + p;21|G(x(s), x(s — T),r(s))|2)ds,

)

MQ_IE<sup

0<u<t

/Ouplf(S)lpziT(S)G(I(S% (s —7),7(s))dw(s)

Similarly to the proof of Lemma 3.2, we have

¢
M, =C (1 —|—/ ( sup E|x(u)|p) ds) .
0 0<u<s

Using Young inequality, elementary inequality and Lemma 3.1, we get

| ¢
M,y < §E< sup |5(u)|p> + 16p(p — 2)K2E/ |Z(s)|Pds
0

0<u<t
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¢
+32pK2E/ 1+ |z(s)]P + |z(s — 7)|P)ds
0

< %E ( sup |5(u)|”> + OIE/Ot |Z(s)|Pds + C + C/OtIE ( sup |a:(u)|p> ds.

0<u<t 0<u<s

Hence, using elementary inequality and (A3), we have

t
IE< sup |5(u)|p> <C (1 —I—/ IE< sup |x(u)|p) ds> ,
0<u<t 0 0<u<s

where C' is independent of A and its value may change between occurrences. By elementary
inequality and (A3), we get

B ( sup o) <t (148 (s ) ds)
0<u<t -k 0<u<s

oo [ 3{m o))

The well-known Gronwall inequality yields that

E( sup |x<t>|p) <c

0<t<T
Namely,
IE( sup |x(t)|p) <C.
—7<t<T
As this holds for any A € [0, A*] while C' is independent of A. The proof is complete. |

Lemma 4.6. Under (H1), (A3) and (A7), for any p > 2, we have

sup IE( sup |yA(t)|p>§C. (4.19)
0<A<A*  \—7<i<T

For any real number R > ||£||, define the stopping time
pa,r =inf {t > 0: |ya(t)| > R}.
Then
Ploan <T)< - (4.20)

Proof. za(t) is defined se in the proof of Lemma 3.2. By the It6 formula, we derive from
(2.17) that, for 0 < ¢ < T,
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Therefore we have

IE< sup |zA(u)|p) < |2(0)|P + My + Ma,

0<u<t

where

Mng(sup

0<u<t

)

Similarly to the proof of Lemma 3.2, we have

¢
My =C (1 —i—/ ( sup ]E|yA(u)|p) ds) .
0 0<u<s

Using Young inequality, elementary inequality and Lemma 3.1, we get

1 t
My < §IE< sup |2A(u)|p) + 16p(p — 2)K2IE/ |za(s)|Pds
0

0<u<t

t
39pKE / (1+ [ga)P + [gals — IP) ds
0

1 t t
< §E< sup |zA(t)|p> —I—CE/ |zA(s)|pds—|—C/ E( sup |yA(s)|p> ds + C.
0 0

0<u<t 0<u<s

Hence, by elementary inequality and (A3), we get

t
(s aawpP) <¢ (1+ [ £ s () as).
0<u<t 0 0<u<s

where C' is independent of A and its value may change between occurrences. By elementary
inequality and (A3), we have

IE< sup |yA(u)|p> SL <1 —|—E( sup |ZA(U)|p> ds>
0<u<t I-k 0<u<s

t
<C (l—l—/ E< sup |yA(u)|p) ds> .
0 0<u<s

The well-known Gronwall inequality yields that

E( sup |yA<t>|p) <o

0<t<T

Namely,
IE< sup |yA(t)|p) <C.

—7<t<T

As this holds for any A € [0, A*] while C' is independent of A. The proof is complete. O
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Lemma 4.7. Let (A3), (A4), (H1) and (A7) hold and qu < p. Let A € (0, A*] be sufficiently
small such that v~ (¢(A)) > R. Let Oa r, R and ea(t) be the same as defined in Theorem 4.1.
Let ¢ > 2 be arbitrary. Then for any A € (0,A), we have

E < sup |eA(t)|q> <CA@RA)TVI] VI >0, (4.21)
0<t<TAOa r

where C' is dependent on T, q,& but independent of A.

Proof. We also write a r = 0 for simplicity. eéa(t) is defined in the proof of Lemma 4.4.
By the It6 formula, we can show that for 0 <t <T,

B ( s |eA<t>|q)s1E< sup [ alea()" 2[R P (), als = 7).r()

0<u<tAl 0<u<tAd

+E< sup /OuQIeA(S)Iq262(8)[64(?6(5)793(8—7)77’(8))—GA(yA(S)vyA(S—T)vr(S))]dw(S)>

0<u<tAd

< Js+ J67 (4.22)

where

J5:E( swp | " glea(s)|7 Ea(s)T[F(a(s), 2(s — ),7(s)) — Fa(a(s). 7als — 7).7(5))]
0<u<tnd Jo
3(g—1)

M

|G(2(s), 2(s = 7),7(s)) = Ga(ya(s), gals —7), f(S))I2d8>,

JG‘E< sup /qulwan2é£<s>[a<x<s>,x<s—Tws))

0<u<tNnlg
Ga(gals). Gals — 7). r(s))]dw<s>) | (4.23)
Noting that
FA(yA(S)vyA(S - T),T(S)) = F(yA(S)vyA(S - T),T(S)),
Fa(ya(s),ya(s — 7),7()) = Flya(s).yals — 7). 7(s)),
Fa(3a(s), (s — 7),7()) = F5a(s). 5als — 7). 7(s)),
Ga(ya(s),ya(s — 7).7(s)) = Glya(s) yals — 7). r(s)).
Ga(ya(s),yas — 7),7(5)) = Glya(s), yals — 7). 7(s)),
Ca(9a(s).5a(s — 7).7(5)) = C(ga(s). 5als — 7). 7(s))

for 0 < s < tA 6. Similarly to the proof of Lemma 4.4, we can show that

Js < C/O Elea(s A 0a.g)|%ds + C[AW(A)T v 1]. (4.24)
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By the Burkholder-Davis-Gundy inequality and (A7) , we then have

tAB 1/2
Jo < 4\/§E</0 lea(s)" P V|G (x(s), x(s — 7),7(s)) — G(Fals), Ua(s — T)i(S))IQdS>

tAG

< 12\/§qKIE< sup |éA(u)T|q[/ lea(s)]7?
0<u<tAnl 0
(|G (). (s —7),7(s)) — Galyals), yals —7),7(s)|”
+|Galyals), yals —1),7(s) — Galya(s), yals — 7),7(s))|”

|G (yal(s).yals — 7),7(s)) — Ga(Gals), gals — 7),7(s))|"] 1“)

t
< %E( sup |eA(u)T|q) +C/ Elea(s A Oa,r)|%ds
0

0<u<tAd

t
+C’/ Elea(s AOa,r)|%ds + C [A(yp(A))? vV 1]. (4.25)
0
Substituting (4.24) and (4.25) into (4.22), we obtain

E( sup |eA<t>|q)scm<w<A>>qv1].

0<u<tAd

Noting that

E( up |eA<t>|q) < ClA@@) V],

0<u<tAf
by (4.8) and the Gronwall inequality, we get (4.21). The proof is complete. |

Before we state our theorem in this section, let us remark that it is straightforward to see
from (A7) that

sup (|F(z,y,1)| V|G(z,y,1)]) < K[o["T, Vo>1, (4.26)
[z|V]y|<v

where K is dependent of |F(0,0,4)|, |G(0,0,i)| and K.
Theorem 4.2. Let (A3), (A44), (H1) and (A7) hold and € € (0,1/2A2/q) be arbitrary. Define

o(v) = Kot v >0,
Y(A)=A"2 Ae(0,1].

Letting A € (0,A) be sufficiently small, we can make (2.10), (2.11) and (2.12) hold. Then, for
any q € [2,p) and qu < p, the truncated EM solutions satisfy

E ( sup |ya(t) — x(t)|q> = O(A'7%/2), (4.27)

0<t<T

E ( sup |ga(t) — x(t)|q> = O(A%/2), (4.28)

0<t<T
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Proof. Let ea(t) and 0 g be the same as defined in the proof of Theorem 4.1. Recalling
Remark 4.1, we know that the assumptions (A1), (A2), (A5) and (A6) in the previous sections
are satisfied under (A7). In particularly, we can choose p € [2,p) as large as we need for (H1)
to hold. For our proof, we choose p > ¢ V (1 4+ v) sufficiently large such that

e _q1+v)
- > —F=. 4.29
2" 20p—q) (4.29)
Using the Young inequality, we can show that, for any A € (0,A*), e > 0 and R > ||€],
€
E( sup |€A(t)|q> < E( sup |6A(t)|q1{9A’R>T}) + q—E( sup |€A(t)|p>
0<t<T 0<t<T P \o<t<T

P—q
+WP(9AR <T). (4.30)

By Lemmas 4.5, 4.1 and 4.2, we can then have

qe Clp—9q)
E He) <E #)]91 To4 ——— 1 .
(sup leatl) <5 ( s ea®1os om ) + Lo+ S0 (@.31)
We therefore see that the inequality
qe Clp—q)
E He) <E tAOA R )+ 0+ —1 2 .
<O§£TI6A( )| ) < (OittlngeA( AR >+ p " pei/—0 Rp (4.32)

holds for any A € (0,A), € > 0. Choosing € = A'"%/2 and R = (Al_q€/2)71/(pw), we then
get

E ( sup |eA(t)|q> <E < sup lea(t A 9A=R)|q) + CAl7/2 (4.33)
0<t<T 0<t<T

for any A € (0,A). On the other hand, by (4.29), we see that

A2 > (Aqufs)(uv)/z v A(H,,))*l/(f’*q)

for all sufficiently small A. For every such small A, we then have

~1/(p—a)
o) = (ae) T <R
By Lemma 4.7, we have
IE< sup |eA(t)|q) < O(AHE/?) (4.34)
0<t<T

for any A € (0,A). In other words, the required (4.27) has been proved. By the similar way of
Lemma 5.4 in [17], we have

£ wp liat) a0 ) < 0 (21077

0<t<T

for any A € (0,A). This, together with (4.34), implies

E ( sup ga(t) — x<t>|q> < (atoer) (4.35)

0<t<T

for all sufficiently small A, we must therefore have (4.28) as desired. O
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5. Numerical Experiments

In this section, to illustrate the therotical results, we present two numerical examples.

Example 5.1. Consider the NSDDE-MS

d(z(t) — 0.1z(t — 1)) = a(r(t))[z(t) — 0.1z(t — 1) — (x(t) — 0.1z(t — 1))3]dt
+b(r(t))]z(t) — 0.1z(t — 1)|32dw(t), (5.1)
on ¢t > 0 with initial data {y(t) = 1: —7 < ¢ < 0}. where w(t) is a 1-dimension Brownian

motion, r(t) is a Markovian chain on the state space S = {1, 2} and they are independent. Let
the generator of Markovain chain that

i I 5.2
S\ 2-2)° (5-2)

Moreover, a(1) =2, b(1) =1, a(2) = 1, b(2) = 2.

Here D(y,i) = 0.1y, F(z,y,i) = a(r(t))[z — 0.1y — (x — 0.1y)%] and G(x,y,1) = b(r(t))|z —
0.1y|?/2. Tt is easy to see that (A1), (A3) and (A4) are satisfied. It can be seen that

(o = D))" Fe,,0) + 116y, o)

q

~1
= (z—0.1y9)T2[z — 0.1y — (z — 0.1y)*] + Z=—|]z — 0.1y|>/?)?

q—1
2

= (z —0.1y)? [2—2(x—0.1y)2—|— |z — 0.1y

M}

< (z —0.1y)? [2 + 5

<22+ T o + )

and
-1
(z = D(y,i)) " Fla.y,0) + =Gl y. )

= (z—0.1y) [z — 0.1y — (z — 0.1y)*] + %m:p —0.1y[%/??
= (z—0.1y)*[1 — (z — 0.1y)* + 2(q¢ — 1)|= — 0.1y|]
< (2 —0.1y)*[L + (¢ — 1)
<201+ (g = 1?](J=* + [y[*).
Hence, if we choose K = 2[2 + %] V [1 4 (¢ — 1)?], we have (A2). Obviously,
|F(z,y,i) — F(2,7,1)]|
= |a(i)||z — 0.1y — (z — 0.1y)* — (z — 0.17) + (Z — 0.19)?|

<2|1—(z—0.1y)* = (2 — 0.19)* — (z — 0.1y)(z — 0.19)|(Jz — Z| + 0.1y — 7|)

(
1 , o1 i i
§2|1—§(:17—O.1y) —§(x—0.1y) [(|lz —Z| + 0.1y — g|)
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<21+ 2> +0.01|y> +|Z|*> + 0.01|g|*)(|]z — Z| + 0.1y — g|)
< 201+ J2 + [y* + [z + [9*) (Jo — 2] + 0.1]y — g])
and
|G, y,1) — G(2,5,7)] = [b(0)][]« — 0.1y[** — |z — 0.1g*/?|
< 2[|lz — 0.1y[*% — |7 — 0.17[*?|(|z — 0.1y| + | — 0.1g] + |z — 0.1y|V?|z — 0.15|*/?)
< 2|z —0.1y[Y% — |z — 0.15*?|(|z — 0.1y|"/? + |z — 0.15]*/?)?
< 2|z —0.1y| — |z — 0.17]|(|]= — 0.1y|*/? + |z — 0.1|"/?)
< 2()z|V? + |y|V? + |z]Y% + 5| ?)|z — 0.1y — 4 0.17]
< 2(e|"? + [y + 12V + 191 (o — 2] + |y — 7).

Therefore, (A6) is satisfied with v = 2.

o~ Dlyi) 7~ D) (Pl i) ~ £, 5,0) + 2D GG y.0) - 65,00

=[x —01ly—(z-0.19)]"2 [z — 0.1y — (z — 0.1y)* — (z — 0.17) + (z — 0.1y)*]
+@Hx —0.1y]*% — |z — 0.17/2?

<[z —0.1y— (- 0.19)* [2 - ((z — 0.1y)* + (z — 0.17)?)]
+3(q2_ D |z — 0.1y| — |z — 0.17|[>(J= — 0.1y|*/? + |z — 0.17|'/?)?

<[z — 0.1y — (2—0.19)]*[2 — ((z—0.1y)*+(Z — 0.1%)?) + 3(¢—1)(|z — 0.1y| + |z — 0.17])]

<2(24 5= ?) o + by - 57

and

[‘T - D(y,l) - - D(Q,Z)]T[F(,’E,y,l) - F(jagvz)] + ?)(qT_l)K;(xvyvl) - G(i'vyvi)|2
=[z—0.1y— (z—0.19)]" [z — 0.1y — (z — 0.1y)* — (z — 0.1) + (z — 0.1y)?]

1
+Lq2 ) 9]z — 0.1y*/2 — 217 — 0.15[*/2 2

<[z =01y —(z—0.19))* [1 - %((x —0.1y)* + (z — 0.19)?)

+6(q — 1)[|z — 0.1y| — |Z — 0.17)?|(Jo — 0.1y|*/% + |z — 0.17|*/?)?
<[z —0.1y — (z —0.19)]*[1 — %((x —0.1y)* + (z — 0.19)%)

+6(¢ — 1)(|z — 0.1y| + |z — 0.1g|)]
<2(1+436(q—1)%) (|2 — 21> + |y - 91*).

So (A2) is also fulfilled.
Then we define the truncated EM functions. Let ¢(s) = 2s® such that

sup ([F(z,9,0)|V|F(,y,0))) = sup (el V2a/?) <25%, Vs> 1.
|z[V]y|<s [z|V]y|<s
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Let ¢)(A) = A=Y/10 then (2.10)-(2.12) hold for any A* € (0,1]. Now we define the truncated
functions as follows:

FaGod) = F ((le A2 ) 2 (g aam) L)

9 ,
] 1yl

Ga(w) = G (2 &) 2 (g2 6770) L),
] 1yl

We use discrete Brownian paths over [0, 1] with A = 2712, We take the numerical solution with
h = A to be a approximation Xa of the exact solution and compare this with the numerical
approximation using h = 26A, h = 27A, h = 28A and h = 2°A over M = 500 sample paths.
Here the mean-square error is denoted as follows:

M

1/2
Errory, == (% Z |Y,H(T) - XiA(T)]2> (5.3)

=1

where Y;}(T') denotes the numerical solution of the truncated EM method along the ith sample
path at ¢ = T with stepsize h, and the strong convergence order is defined numerically by
Errory,

Order = log m/ log(2).

107 10° 107
at

Fig. 5.1. Strong convergence of the truncated EM for NSDDE-MS (5.1).

The strong convergence order of truncated EM for NSDDE-MS (5.1) is shown in Fig. 5.1.
From this, we can see that the strong convergence order of truncated EM for NSDDE-MS (5.1)
is close to %

Example 5.2. Consider the NSDDE-MS
d(z(t) — 0.1sin(z(t — 1)) = [—a(r(t))(z(t)*] dt + zdw(t), (5.4)

on t > 0 with initial data {y(t) = 1: —7 < ¢t < 0}. where w(¢) is a 1-dimension Brownian
motion, r(t) is a Markovian chain on the state space S = {1, 2} and they are independent. Let
the generator of Markovain chain that

r— * 1! 5.5
B 2-2)° (5:5)

Moreover, a(1) = 2, a(2) = 1.
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Here D(y,i) = 0.1siny, F(x,y,i) = —a(r(t))z® and G(z,y,i) = x. It is obvious that (A1),
(A3) and (A4) are satisfied. It can be seen that

(x — D(y,i))T F(x,y,i) + —IG(:v y,4)|?
= (z — 0.1siny)"2[-2%] + %VCP
<

2 2, 49—
:E[x+2]_2x,

(¢~ D0y, )" Fw9,1) + L0160 < Lo a2

21, we have (A2). Obviously,

|F(x,y,7) — F(2,9,7)| = |a(i)|| - 2° + 2°|
< 2(|z? + |z* + |2[|2])|z — 2| < 3(|=* + |2[*)|x — 2,
|G(Iayvl) - G(jagvl” = |I - ‘f|

Hence, if we choose K; =

Therefore, (A7) is satisfied.

[‘T - D(yvl) —-I- D(gv z)]T[F(xv yvi) - F(i'v v, l)]
=[x —0.1siny — (:E —0.1siny)]"2 [-2® + 2°] a(r(1))
<|z—z]*[-2* —2* —2%)] a(r(t)) + | — 0.1siny + 0.1sing|| — 2* + 2°|a(r(t))
)] a(r(t)) +0.2|z — z||2% + 2% 4 zz|a(r(t))
—2® — 2% — 22)] a(r(t)) + 0.2z — z||(z — 2)* + 32z|a(r(t))
#)] alr(t)) + 0.2l 7ll(x — )2 + o (@ — #la(r(1)
—2* — 2% — 22 + 0.5|z — Z[)] a(r(t))
—0.52° — 0.52% 4 0.5|z| + 0.5|z[)] a(r(t))

So (A7) is also fulfilled.
Then we define the truncated EM functions. Let ¢(s) = 2s® such that

swp  (IF(a,y,0)| VIG@,p,i)) = swp (ol V]e) <287, Vs> 1.
|z[V]y|<s lz|V]y|<s

Let ¢)(A) = A=Y/ then (2.10)-(2.12) hold for any A* € (0,1]. Now we define the truncated
functions as follows:

Fa(z,y,i) =F <(|x|/\A 1/30) III (|y|/\A1/30)%,i>,

Gatiy) =6 (11 27 2 (1 4 270) ).

Consider NSDDE-MS (5.4) with T'= 1 and A = 27!2. We use the numerical solution with
h = A to be a approximation Ya of the exact solution and compare this with the numerical
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approximation using h = 26A, h = 27A, h = 28A and h = 2°A over M = 1000 sample paths.
Here the mean-square error is denoted as follows:
1/2

M
1 , iy 2
Errory = | =Y ‘Y,f (T) — Yi(T) (5.6)
j=1

where Y}/(T') denotes the numerical solution of the truncated EM method along the ith sample
path at ¢ = T with stepsize h, and the strong convergence order is defined numerically by

Errory,

Order = log(2).

log — 2"
o8 ET’TOT’h/Q

strongconvergence

—#— Mean square errors
— — — Reference fine with order 1/2

107 10° 107
at

Fig. 5.2. Strong convergence of the truncated EM for NSDDE-MS (5.4).

The strong convergence order of truncated EM for NSDDE-MS (5.4) is shown in Fig. 5.2.
From this, we can see that the strong convergence order of truncated EM for NSDDE-MS (5.4)
is close to %

6. Conclusion

This paper aims to present an explicit method, called the truncated EM method, for the
nonlinear NSDDEs-MS. The moment boundedness is investigated. We also show strong con-
vergence rates at time 7" and over a finite interval [0, T7.
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