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Abstract. In this paper, we consider numerical approximation of a class of nonlinear
backward stochastic partial differential equations (BSPDEs). By using finite element
methods in the physical space domain and the Euler method in the time domain, we
propose a spatial finite element semi-discrete scheme and a spatio-temporal full dis-
crete scheme for solving the BSPDEs. Errors of the schemes are rigorously analyzed
and theoretical error estimates with convergence rates are obtained.
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1 Introduction

Consider the following backward stochastic partial differential equations (BSPDEs):

−du(t,x)−Lu(t,x)dt= f
(
t,∇u(t,x),u(t,x),v(t,x)

)
dt−v(t,x)dW(t), (1.1)

for t∈ [0,T), x∈D. The associated boundary and terminal conditions are given by{
u(t,x)=v(t,x)=0, x∈∂D,
u(T,x)=uT(x), x∈D.

Here T>0 is a positive constant and D⊂Rd, (d=1,2,3) is a bounded convex domain with
a sufficiently smooth boundary ∂D. The operator L is a second order elliptic operator
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defined by

Lu=:
d

∑
j,k=1

∂

∂xj

(
ajk(x)

∂u
∂xk

)
−a0(x)u.

Moreover, W = {W(t) : t∈ [0,T]} is a standard Wiener process defined on a completed
probability space (Ω,F ,F,P) with F=: {Ft : t∈ [0,T]} being the augmented natural fil-
tration generated by W. Also, uT is an FT-measurable random field. In fact, the BSPDEs
(1.1) can be mathematically interpreted as the following integral form

u(t,x)−
∫ T

t
Lu(s,x)ds

=uT(x)+
∫ T

t
f (s,∇u(s,x),u(s,x),v(s,x))ds−

∫ T

t
v(s,x)dW(s). (1.2)

Precise assumptions on the operator L, the function f , and the terminal function uT will
be discussed in Section 2.

The above BSPDEs play an essential role in many real applications. In particular,
it serves as the adjoint equations in stochastic optimal control problems governed by
stochastic parabolic equations [3, 11, 34]. Also, the nonlinear BSPDEs appears as the
value functions in the optimal control problems of non-Markovian SDEs [20]. Other
applications of BSPDEs include the nonlinear filtering problems [18], and mathemati-
cal finance [9, 16]. Recently, great attention has been paid to develop theoretical analy-
sis of BSPDEs. Hu and Peng [11, 12] were the first to investigate the well-posedness of
adapted solutions to semilinear backward stochastic evolution equations. The existence
and uniqueness, as well as the regularity, of the adapted solutions for a class of BSPDEs
was discussed in [16, 24, 33]. For more recent developments, one can refer to [1, 7, 9, 22]
and references therein.

As analytic solutions to BSPDEs are seldom available, numerical methods become
popular approaches for solving BSPDEs. As a generalization of backward stochastic dif-
ferential equations (BSDEs), the associated numerical methods for BSPDEs have not been
well studied. In contract, the numerical methods for BSDEs have been well developed
in recent years [2, 4, 10, 15, 21, 23, 27, 28, 30, 32]. Up to now, there exist only a very lim-
ited number of works [8, 26] devoted to this field. In [8], finite element methods for lin-
ear forward-backward stochastic heat equations were considered and a rigorous conver-
gence analysis for the spacial semi-discrete scheme was presented for linear BSPDEs. A
semidiscrete Galerkin scheme based on spectral method for BSPDEs was studied in [26].

The primary goal of this paper is to develop and analyze numerical schemes which
are used to approximate the solutions of nonlinear BSPDEs (1.1). More precisely, we
study the strong approximation errors caused by spatial semi-discretization and space-
time full-discretization of (1.1). We first consider semidiscrete finite element method for
(1.1) and by a combination of the finite element method together with a linear implicit
Euler time-stepping scheme, we also investigate a spatio-temporal discretization of (1.1).
For both cases, we get the error estimates with precise strong convergence rate shown in
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Theorem 3.1 and Theorem 4.2. The convergence analysis of the proposed semidiscrete
scheme is based on some classic error estimates from deterministic finite element ap-
proximation and some techniques from stochastic calculus in Hilbert space such as Itô’s
formula and the Burkholder–Davis–Gundy inequality. The proof of Theorem 4.2 for the
full-discretization is more complicated and more technical. We first established a stabil-
ity theorem for the proposed fully discrete approximation, based on which, together with
some classical error estimates from the deterministic numerical analysis, we eventually
prove the strong approximation errors with convergence rate given. To the best of our
knowledge, this work is the first try to deal with numerical approximation BSPDEs of
type (1.1), the results we obtained are quite novel in the literature. The scientific novelty
and main contributions of this work could be summarized as follows.

• In difference to already existing results, the problem we considered here is more
general, especially the case f including the gradient of u is covered, which makes
the problem more complicated. As a consequence, the numerical analysis of the
problem becomes more involved.

• We present the convergence analysis for the fully discrete scheme–showing that the
proposed scheme admits a first order rate of convergence in both the temporary
domain and the physical domain. Compared to the spatially semi-discrete case, the
analysis for the spatio-temporally discrete scheme is much more involved and tech-
nical. In particular, the Itô formula, which plays a powerful role in the error analysis
for the spatially semi-discrete scheme, is not applicable for the fully discrete case.

The rest of this paper is organized as follows. In Section 2, some preliminaries are
collected and the well-posedness of the BSPDEs is discussed. Section 3 is devoted to the
convergence analysis of the semi-discrete scheme. This is followed by the analysis of the
fully discrete scheme in Section 4. Finally, we give some concluding remarks in Section 5.

2 Preliminaries

In this section, we present some preliminaries. Let |·| denote the usual Euclidean vec-
tor norm. For a Hilbert space X with inner product (·,·)X and the induced norm ‖·‖X,
we denote by L2(Ω,Ft;X) the space of all Ft-measurable X-valued random variables η
satisfying

E
[
‖η‖2

X
]
<∞.

Then for p≥1, Lp
F ((0,T);X) is the space of all F-adapted X-valued processes ϕ(t) on [0,T]

that satisfy

E

[∫ T

0
‖ϕ(t)‖p

Xdt
]
<∞.

Obviously, for the case p = 2, L2
F (0,T;X) is a Hilbert space which is a subspace of the

Hilbert space L2([0,T]×Ω;X). We also denoted by CF
(
[0,T];L2(Ω,X)

)
the space of all
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F-adapted, mean square continuous, X-valued processes ψ(t) satisfying

sup
0≤t≤T

E
[
‖ψ(t)‖2

X
]
<∞.

Similarly, L2(Ω;C([0,T];X)
)

is a subspace of CF ([0,T];L2(Ω,X)) in which it holds

E

[
sup

0≤t≤T
‖ψ(t)‖2

X

]
<∞.

We introduce the following assumptions for the BSPDEs (1.1).

Assumption 2.1. For the operator L, we suppose that

• The functions ajk(x) (j,k=1,··· ,d) and a0(x) are continuous functions in D̄ such that
a0(x)≥0,

• The matrix
[
ajk(x)

]
j,k is symmetric and uniformly positive definite in D, i.e.,

ajk(x)= akj(x),
d

∑
j,k=1

ajk(x)ξ jξk≥κ
d

∑
j=1

ξ2
j with κ>0 for any ξ∈Rd.

Now we define the bilinear form associated with the operator −L as follows:

a(u,φ)=:
∫

D

d

∑
j,k=1

ajk(x)
∂u
∂xj

(x)
∂φ

∂xk
(x)+a0(x)u(x)φ(x)dx. (2.1)

Assumption 2.2. The function f : [0,T]×Rd×R×R→R satisfies the following Lipschitz
condition, i.e., there is a constant L>0 such that

| f (t,q1,u1,v1)− f (t,q2,u2,v2)|≤L
(
|q1−q2|+|u1−u2|+|v1−v2|

)
, (2.2)

for any (q1,u1,v1),(q2,u2,v2)∈Rd×R×R.

Assumption 2.3. The function f (t,q,u,v) with (t,q,u,v)∈[0,T]×Rd×R×R has continuous
and uniformly bounded first and second partial derivatives with respect to t, q, u and v.

Let A=−L, we define the Hilbert space H=L2(D) equipped with inner product (·,·)
and the induced norm ‖·‖. Next, we introduce the space related to the fractional powers
of the linear operator A. For α∈R, define Ḣα=:D(Aα/2) with the norm ‖·‖α=:‖Aα/2·‖. By
the definition of fractional powers of the of A, it is well-known that Ḣ0=H, Ḣ1=H1

0(D)
and Ḣ2=H2(D)∩H1

0(D)=D(A).
Now, we formulate problem (1.1) in an abstract form in Itô’s sense taking values in

the Hilbert space (H,(·,·),‖·‖)

−du(t)+Au(t)dt= f
(
t,∇u(t),u(t),v(t)

)
dt−v(t)dW(t), u(T)=uT, (2.3)

for t∈
[
0,T
]
. We are ready to define the weak solution of (2.3). For more details, one can

refer to [7, 12, 33].
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Definition 2.1 (Weak solution). A pair of random fields

(u,v)∈
(

CF
(
[0,T];L2(Ω,H)

)
∩L2
F ((0,T);Ḣ1)

)
×L2
F ((0,T);H)

is called the weak solution to (2.3) if it satisfies almost surely

(u(t),φ)+
∫ T

t
a
(
u(s),φ

)
ds

=(uT,φ)+
∫ T

t
( f
(
s,∇u(s),u(s),v(s)

)
,φ)ds

−
∫ T

t
(v(s),φ)dW(s), ∀φ∈ Ḣ1, ∀t∈ [0,T]. (2.4)

Now we give the following theorem that shows that wellposedness of problem (2.3) [1,
7, 22, 24, 26, 33].

Theorem 2.1. Under Assumptions 2.1-2.2, and assume that uT : Ω→H is FT-measurable and
satisfies E

[
‖uT‖2

1

]
<∞, i.e., uT∈ L2(Ω,FT;Ḣ1). Then, the BSPDE (2.3) admits a unique weak

solution satisfying

sup
0≤t≤T

E
[
‖u(t)‖2]+E

[∫ T

0
‖u(t)‖2

1+‖v(t)‖2 dt
]
<∞. (2.5)

Moreover, if Assumption 2.3 also holds and uT∈L2(Ω,FT;Ḣ2), then we have

(u,v)∈
(

L2(Ω;C([0,T];Ḣ1)
)
∩L2
F ((0,T);Ḣ2)

)
×L2
F ((0,T);Ḣ1),

that is

E

[
sup

0≤t≤T
‖u(t)‖2

1

]
+E

[∫ T

0
‖u(t)‖2

2+‖v(t)‖2
1 dt
]
<∞. (2.6)

We also provide the following lemma:

Lemma 2.1. Under Assumptions 2.1, the following assertions hold:

• The bilinear form (2.1) is bounded on Ḣ1 : there exist α>0 such that

|a(u,φ)|≤α‖u‖1‖φ‖1, ∀u,φ∈ Ḣ1.

• The bilinear form (2.1) satisfies the coercivity condition: there exists β>0 such that

a(u,u)≥β‖u‖2
1, ∀u∈ Ḣ1.

We now close this section by providing the following Itô’s formula.
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Lemma 2.2 ([6, 18]). Consider the Itô process

X(t)=X(0)+
∫ t

0
b(s)ds+

∫ t

0
σ(s)dW(s), t∈ [0,T],

where X(0) is aF0-measurable H-valued random variable, b∈L1
F ((0,T);H) and σ∈L2

F ((0,T);H).
Assume that F : [0,T]×H→R and its partial derivatives Ft, Fx and Fxx are uniformly continuous
on bounded subsets of [0,T]×H, then it holds almost surely

F(t,X(t))=F(0,X(0))+
∫ t

0

(
Fx(s,X(s)),σ(s)

)
dW(s)

+
∫ t

0

[
Ft(s,X(s))+(Fx(s,X(s)),b(s))+

1
2
(Fxx(s,X(s))σ(s),σ(s))

]
ds. (2.7)

3 A semi-discrete scheme and its error estimates

To introduce the semi-discrete scheme, we let Th be a triangulation mesh of D indexed
by the maximal mesh size h. Furthermore, we assume that Th is quasi-uniform. On the
mesh Th, we introduce a finite element space Sh consisting of continuous piecewise linear
polynomials such that Sh⊂ Ḣ1.

To proceed, we first introduce some useful operators on Sh and H [13,25]. Let Ph : H→
Sh be the L2-projection operator defined by

(Phu,χ)=(u,χ), ∀χ∈Sh for u∈H. (3.1)

Also, we denote by Ah the discrete elliptic operator Ah : Sh→Sh :

(Ah ϕ,χ)= a(ϕ,χ), ∀ϕ,χ∈Sh⊂ Ḣ1. (3.2)

The so-called Ritz-projection operator Rh : Ḣ1→Sh is defined by

a(Rh ϕ,χ)= a(ϕ,χ), ∀ϕ∈ Ḣ1, χ∈Sh. (3.3)

Now, we are ready to introduce the semi-discrete finite element scheme. By Theorem 2.6
and the definition of weak solution, we have

(
u(t),φ

)
+
∫ T

t
a
(
u(s),φ

)
ds

=(uT,φ)+
∫ T

t

(
f
(
s,∇u(s),u(s),v(s)

)
,φ
)

ds

−
∫ T

t

(
v(s),φ

)
dW(s), ∀φ∈ Ḣ1, t∈ [0,T]. (3.4)
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Based on the above weak formulation (3.4), the semi-discrete finite element scheme for
BSPDEs (2.3) is defined as following: find uh∈ L2(Ω;C([0,T];Sh)

)
and vh∈ L2

F ((0,T);Sh)
such that (

uh(t),φh
)
+
∫ T

t
a
(
uh(s),φh

)
ds

=(uT,φh)+
∫ T

t

(
f
(
s,∇uh(s),uh(s),vh(s)

)
,φh

)
ds

−
∫ T

t

(
vh(s),φh

)
dW(s), ∀φh∈Sh, t∈ [0,T]. (3.5)

The above scheme (3.5) can also be rewritten as:

−duh(t)+Ahuh(t)dt=Ph f
(
t,∇uh(t),uh(t),vh(t)

)
dt−vh(t)dW(t) (3.6)

with uh(T) = PhuT. Obviously, (3.6) is a BSDE system. Due to the boundedness of the
operator Ph and the Lipschitz condition on f , the BSDE system admits a unique solution
(uh,vh)∈ L2(Ω;C([0,T];Sh)×L2

F ((0,T);Sh) (see e.g., [19]). To give the error estimates for
the semi-discrete scheme, we first introduce the following lemma:

Lemma 3.1 ([5, 13, 25]). The operators Ah, Ph and Rh enjoy the following properties:

1. The operator Ah is self-adjoint and positive definite on Sh.

2. For the operator Rh, under the regularity assumptions on the finite element space, the fol-
lowing standard error estimates hold:

‖Rhu−u‖+h‖Rhu−u‖1≤Chs‖u‖s, ∀u∈ Ḣs, 1≤ s≤2. (3.7)

3. For the operator Ph, under the regularity assumptions on the finite element space, it holds
that:

‖Phu−u‖≤Chs‖u‖s, ∀u∈ Ḣs, 0≤ s≤2, (3.8a)

‖Phu‖1≤C‖u‖1, ∀u∈ Ḣ1. (3.8b)

Notice that by (3.7) and (3.8b), we have

h‖A1/2(Phu−u)‖=h‖Phu−u‖1≤Chs‖u‖s, ∀u∈ Ḣs, 1≤ s≤2. (3.9)

To see this, ∀χ∈Sh we have

h‖A1/2(Phu−u)‖=h‖Phu−u‖1=h‖Phu−χ+χ−u‖1

≤h‖Ph(u−χ)‖1+h‖χ−u‖1≤Ch‖χ−u‖1. (3.10)

Then, the conclusion (3.9) follows by setting χ=Rhu.
We are now ready to give the following theorem which gives the error estimate for

the semi-discrete approximation (3.6).
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Theorem 3.1. Let (u,v) and (uh,vh) be the solutions of (2.3) and (3.6), respectively. We set

eu(t)=uh(t)−u(t), ev(t)=vh(t)−v(t).

Suppose that Assumptions 2.1-2.3 hold. If uT∈L2(Ω,FT;Ḣ2), then there exists a constant C that
is independent of h such that

E

[
sup

t∈[0,T]
‖eu(t)‖2

]
+E

[∫ T

0
‖eu(t)‖2

1 dt
]
+E

[∫ T

0
‖ev(t)‖2 dt

]
≤Ch2. (3.11)

Proof. We set φ=φh in (3.4) and subtract (3.4) from (3.5) to get

(
uh(t)−u(t),φh

)
+
∫ T

t
a
(
uh(s)−u(s),φh

)
ds

=
∫ T

t

(
f
(
s,∇uh(s),uh(s),vh(s)

)
− f
(
s,∇u(s),u(s),v(s)

)
,φh

)
ds

−
∫ T

t

(
vh(s)−v(s),φh

)
dW(s), ∀φh∈Sh. (3.12)

We define

ev(t)= θv(t)+ρv(t),

eu(t)= θu(t)+ρu(t)= θ̃u(t)+ ρ̃u(t),

where

θv(t)=vh(t)−Phv(t), ρv(t)=Phv(t)−v(t),
θu(t)=uh(t)−Phu(t), ρu(t)=Phu(t)−u(t),

θ̃u(t)=uh(t)−Rhu(t), ρ̃u(t)=Rhu(t)−u(t).

Notice that by the definitions of the project operators Rh and Ph we have

(ρu(t),φh)=0, a(ρ̃u(t),φh)=0 and (ρv(t),φh)=0, ∀φh∈Sh. (3.13)

Then, by (3.12) and (3.13), we have

(
θu(t),φh

)
+
∫ T

t
a
(
θ̃u(s),φh

)
ds

=
∫ T

t

(
f
(
s,∇uh(s),uh(s),vh(s)

)
− f
(
s,∇u(s),u(s),v(s)

)
,φh

)
ds

−
∫ T

t

(
θv(s),φh

)
dW(s), ∀φh∈Sh, (3.14)
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which yields

−dθu(t)+Ah θ̃u(t)dt

=Ph

(
f
(
t,∇uh(t),uh(t),vh(t)

)
− f
(
t,∇u(t),u(t),v(t)

))
dt−θv(t)dW(t) (3.15)

with θu(T)=0. Now, by applying the Itô formula (2.7) to ‖θu(t)‖2 we get

‖θu(t)‖2+
∫ T

t
‖θv(s)‖2ds

=−2
∫ T

t

(
Ah θ̃u(s),θu(s)

)
ds−2

∫ T

t

(
θv(s),θu(s)

)
dW(s)

+2
∫ T

t

(
Ph

(
f (s,∇uh(s),uh(s),vh(s))− f (s,∇u(s),u(s),v(s))

)
,θu(s)

)
ds.

By the definition of the operator Ah, we have

‖θu(t)‖2+
∫ T

t
‖θv(s)‖2 ds

=−2
∫ T

t
a
(
θ̃u(s),θu(s)

)
ds−2

∫ T

t

(
θv(s),θu(s)

)
dW(s)

+2
∫ T

t

(
Ph

(
f (s,∇uh(s),uh(s),vh(s))− f (s,∇u(s),u(s),v(s))

)
,θu(s)

)
ds

=2
∫ T

t
a
(
θ̃u(s),ρu(s)

)
ds−2

∫ T

t
a
(
θ̃u(s),θu(s)+ρu(s)

)
ds

+2
∫ T

t

(
Ph

(
f (s,∇uh(s),uh(s),vh(s))− f (s,∇u(s),u(s),v(s))

)
,θu(s)

)
ds

−2
∫ T

t

(
θv(s),θu(s)

)
dW(s). (3.16)

Notice that θu(t)+ρu(t) = eu(t) = θ̃u(t)+ ρ̃u(t). Consequently, by replacing θu(t)+ρu(t)
with θ̃u(t)+ ρ̃u(t) in (3.16) and taking expectation on both sides one gets

E
[
‖θu(t)‖2]+∫ T

t
E
[
‖θv(s)‖2]ds

=2
∫ T

t
E
[
a(θ̃u(s),ρu(s))

]
ds−2

∫ T

t
E
[
‖θ̃u(s)‖2

1
]

ds−2
∫ T

t
E
[
a(θ̃u(s),ρ̃u(s))

]
ds

+2
∫ T

t
E

[(
Ph

(
f (s,∇uh(s),uh(s),vh(s))− f (s,∇u(s),u(s),v(s))

)
,θu(s)

)]
ds.

Since
a
(
θ̃u(s),ρu(s)

)
−a
(
θ̃u(s),ρ̃u(s)

)
=−a

(
θ̃u(s),Phρ̃u(s)

)
,
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we obtain

E
[
‖θu(t)‖2]+∫ T

t
E
[
‖θv(s)‖2]ds

=−2
∫ T

t
E
[
a(θ̃u(s),Phρ̃u(s))

]
ds−2

∫ T

t
E
[
‖θ̃u(s)‖2

1
]
ds

+2
∫ T

t
E
[(

Ph
(

f
(
s,∇uh(s),uh(s),vh(s)

)
− f
(
s,∇u(s),u(s),v(s)

))
,θu(s)

)]
ds.

Then using together Lemma 2.1 and the Cauchy–Schwarz inequality we obtain

E
[
‖θu(t)‖2]+E

[∫ T

t
‖θv(s)‖2 ds

]
≤2αE

[∫ T

t
‖θ̃u(s)‖1‖Phρ̃u(s)‖1 ds

]
−2E

[∫ T

t
‖θ̃u(s)‖2

1ds
]

+2E

[∫ T

t

∥∥∥Ph

(
f
(
s,∇uh(s),uh(s),vh(s)

)
− f
(
s,∇u(s),u(s),v(s)

))∥∥∥‖θu(s)‖ds

]
.

Now by using together (3.8b) and the Lipschitz condition on f , we deduce

E
[
‖θu(t)‖2

]
+E

[∫ T

t
‖θv(s)‖2 ds

]
≤2αE

[∫ T

t
‖θ̃u(s)‖1‖ρ̃u(s)‖1ds

]
−2E

[∫ T

t
‖θ̃u(s)‖2

1 ds
]

+CE
[∫ T

t
‖∇uh(s)−∇u(s)‖‖θu(s)‖ds

]
+CE

[∫ T

t
‖uh(s)−u(s)‖‖θu(s)‖ds

]
+CE

[∫ T

t
‖vh(s)−v(s)‖‖θu(s)‖ds

]
=2αE

[∫ T

t
‖θ̃u(s)‖1‖ρ̃u(s)‖1ds

]
−2E

[∫ T

t
‖θ̃u(s)‖2

1 ds
]

+CE
[∫ T

t
‖∇θu(s)+∇ρu(s)‖‖θu(s)‖ds

]
+CE

[∫ T

t
‖θu(s)+ρu(s)‖‖θu(s)‖ds

]
+CE

[∫ T

t
‖θv(s)+ρv(s)‖‖θu(s)‖ds

]
.

Applying the triangle inequality yields

E
[
‖θu(t)‖2]+E

[∫ T

t
‖θv(s)‖2 ds

]
≤2αE

[∫ T

t
‖θ̃u(s)‖1‖ρ̃u(s)‖1 ds

]
−2E

[∫ T

t
‖θ̃u(s)‖2

1 ds
]

+CE

[∫ T

t
‖θu(s)‖2 ds

]
+CE

[∫ T

t
‖ρu(t)‖‖θu(s)‖ds

]
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+CE

[∫ T

t
‖∇θu(s)‖‖θu(s)‖ds

]
+CE

[∫ T

t
‖∇ρu(s)‖‖θu(s)‖ds

]
+CE

[∫ T

t
‖θv(s)‖‖θu(s)‖ds

]
+CE

[∫ T

t
‖ρv(s)‖‖θu(s)‖ds

]
.

Then by using together a kick-back argument, Lemma 3.1 and (3.9) we get

E
[
‖θu(t)‖2]+E

[∫ T

t
‖θ̃u(s)‖2

1 ds
]
+E

[∫ T

t
‖θv(s)‖2 ds

]
≤C

(
E

[∫ T

t
‖ρ̃u(s)‖2

1 ds
]
+E

[∫ T

t
‖ρu(s)‖2 ds

]
+E

[∫ T

t
‖ρv(s)‖2 ds

])
+CE

[∫ T

t
‖θu(s)‖2 ds

]
≤C

(
h2+E

[∫ T

t
‖θu(s)‖2 ds

])
.

Then by the Gronwall inequality one gets

E
[
‖θu(t)‖2]+E

[∫ T

0
‖θ̃u(s)‖2

1 ds
]
+E

[∫ T

0
‖θv(s)‖2 ds

]
≤Ch2. (3.17)

Similarly, we replace θu(t)+ρu(t) in (3.16) by θ̃u(t)+ ρ̃u(t) to obtain

sup
t∈[0,T]

‖θu(t)‖2

≤2
∫ T

0

∥∥a(θ̃u(s),Phρ̃u(s))
∥∥ds+2

∫ T

0

∥∥θ̃u(s)
∥∥2

1 ds

+2
∫ T

0

∥∥∥∥(Ph

(
f
(
s,∇uh(s),uh(s),vh(s)

)
− f
(
s,∇u(s),u(s),v(s)

))
,θu(s)

)∥∥∥∥ds

+2 sup
t∈[0,T]

∥∥∥∫ T

t
(θv(s),θu(s))dW(s)

∥∥∥,

where we have used the following argument

a
(
θ̃u(s),ρu(s)

)
−a
(
θ̃u(s),ρ̃u(s)

)
=−a

(
θ̃u(s),Phρ̃u(s)

)
.

Then by taking expectation on both sides of the above equation we obtain

E

[
sup

t∈[0,T]
‖θu(t)‖2

]

≤2E

[∫ T

0
‖a(θ̃u(s),Phρ̃u(s))‖ds

]
+2E

[∫ T

0
‖θ̃u(s)‖2

1 ds
]
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+2E

[∫ T

0

∥∥∥(Ph
(

f
(
s,∇uh(s),uh(s),vh(s)

)
− f
(
s,∇u(s),u(s),v(s)

))
,θu(s)

)∥∥∥ds
]

+2E

[
sup

t∈[0,T]

∥∥∥∫ T

t
(θv(s),θu(s))dW(s)

∥∥∥].

Now, by applying the Burkholder–Davis–Gundy inequality [6, 17] to the integral that
involves W(s) one gets

E

[
sup

t∈[0,T]
‖θu(t)‖2

]

≤2E

[∫ T

0
‖a(θ̃u(s),Phρ̃u(s))‖ds

]
+2E

[∫ T

0
‖θ̃u(s)‖2

1 ds
]

+2E

[∫ T

0

∥∥∥(Ph
(

f
(
s,∇uh(s),uh(s),vh(s)

)
− f
(
s,∇u(s),u(s),v(s)

))
,θu(s)

)∥∥∥ds
]

+CE

[(∫ T

0
‖θv(s)‖2‖θu(s)‖2 ds

) 1
2
]

.

Again, by using together Lemma 2.1, the Cauchy–Schwarz inequality, (3.8b), the Lips-
chitz condition on f and the triangle inequality, we get

E
[

sup
t∈[0,T]

‖θu(t)‖2
]

≤2αE
[∫ T

0
‖θ̃u(s)‖1‖ρ̃u(s)‖1ds

]
+2E

[∫ T

0
‖θ̃u(s)‖2

1ds
]

+CE
[∫ T

0
‖∇θu(s)‖‖θu(s)‖ds

]
+CE

[∫ T

0
‖∇ρu(s)‖‖θu(s)‖ds

]
+CE

[∫ T

0
‖θu(s)‖2ds

]
+CE

[∫ T

0
‖ρu(s)‖‖θu(s)‖ds

]
+CE

[∫ T

0
‖θv(s)‖‖θu(s)‖ds

]
+CE

[∫ T

0
‖ρv(s)‖‖θu(s)‖ds

]
+CE

[(∫ T

0
‖θv(s)‖2‖θu(s)‖2ds

) 1
2
]

.

Now, by the ε-inequality ab≤ εa2+ b2

4ε we get

E

[
sup

t∈[0,T]
‖θu(t)‖2

]

≤CE

[∫ T

0
‖ρu(s)‖2 ds

]
+CE

[∫ T

0
‖ρ̃u(s)‖2

1 ds
]
+CE

[∫ T

0
‖ρv(s)‖2 ds

]
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+C
∫ T

0
E
[
‖θu(s)‖2]ds+CE

[∫ T

0
‖θ̃u(s)‖2

1 ds
]
+CE

[∫ T

0
‖θv(s)‖2 ds

]
+εE

[
sup

t∈[0,T]
‖θu(t)‖2

]
.

Then, by choosing a small ε<1, and using together Lemma 3.1, (3.9) and (3.17) we get

E

[
sup

t∈[0,T]
‖θu(t)‖2

]
≤Ch2. (3.18)

Consequently, by Lemma 3.1 we obtain

E

[
sup

t∈[0,T]
‖eu(t)‖2

]
≤E

[
sup

t∈[0,T]
‖θu(t)‖2

]
+E

[
sup

t∈[0,T]
‖ρu(t)‖2

]
≤Ch2. (3.19)

Meanwhile, by (3.17) and Lemma 3.1 we also have

E

[∫ T

0
‖eu(t)‖2

1 dt
]
≤E

[∫ T

0
‖θ̃u(t)‖2

1 dt
]
+E

[∫ T

0
‖ρ̃u(t)‖2

1 dt
]
≤Ch2, (3.20a)

E

[∫ T

0
‖ev(t)‖2 dt

]
≤E

[∫ T

0
‖θv(t)‖2 dt

]
+E

[∫ T

0
‖ρv(t)‖2 dt

]
≤Ch2. (3.20b)

This completes the proof.

4 A fully discrete scheme and its error estimates

In this section, we shall analyze the convergence of a fully discrete scheme for BSPDEs (2.3).
To this end, we introduce the following partition for the time interval [0,T] :

T =:{0= t0< ···< tM =T}

with ∆tn =: tn+1−tn and ∆t=: max0≤n≤M−1 ∆tn. We assume that the time partition T has
the following regularity:

max
0≤n≤M−1

∆tn

min
0≤n≤M−1

∆tn
≤C0, (4.1)

where C0 is a positive constant. Now, by the weak formulation we have (for 0≤n≤M−1)(
u(tn),φ

)
+
∫ tn+1

tn

a
(
u(s),φ

)
ds

=(u(tn+1),φ)+
∫ tn+1

tn

(
f
(
s,∇u(s),u(s),v(s)

)
,φ
)

ds

−
∫ tn+1

tn

(
v(s),φ

)
dW(s), ∀φ∈ Ḣ1. (4.2)
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Taking conditional expectation E
y
tn
[·]=E[·|Ftn ,W(tn)=y] on both sides of (4.2) we get

(
u(tn),φ

)
=E

y
tn

[
(u(tn+1),φ)

]
+

(∫ tn+1

tn

E
y
tn

[
−Au(s)

+ f
(
s,∇u(s),u(s),v(s)

)]
ds,φ

)
. (4.3)

Notice that the integrand E
y
tn

[
−Au(s)+ f

(
s,∇u(s),u(s),v(s)

)]
on the right hand side of

(4.3) is a deterministic smooth function of time s. Thus we can resort to numerical inte-
gration to approximate the integral in (4.3). In particular, we use the left rectangle rule to
obtain ∫ tn+1

tn

E
y
tn

[
−Au(s)+ f

(
s,∇u(s),u(s),v(s)

)]
ds

=∆tn
[
−Au(tn)+ f

(
tn,∇u(tn),u(tn),v(tn)

)]
+Rn

u, (4.4)

where Rn
u is the approximation error defined by

Rn
u =

∫ tn+1

tn

E
y
tn

[
−Au(s)+ f

(
s,∇u(s),u(s),v(s)

)]
ds

−∆tn
[
−Au(tn)+ f

(
tn,∇u(tn),u(tn),v(tn)

)]
.

By inserting (4.4) into (4.3) we obtain the following reference equation:(
u(tn),φ

)
+∆tn

(
Au(tn),φ

)
=E

y
tn

[
(u(tn+1),φ)

]
+∆tn

(
f
(
tn,∇u(tn),u(tn),v(tn)

)
,φ
)
+
(

Rn
u,φ
)
. (4.5)

Next, we set ∆Ws=W(s)−W(tn) for tn≤ s≤ tn+1, then ∆Ws is a standard Wiener process
with mean zero and variance s−tn. By multiplying both sides of (4.2) with ∆Wtn+1 and
taking the conditional expectation E

y
tn
[·] on both sides of the derived equation, we obtain

0=E
y
tn
[(u(tn+1),φ)∆Wtn+1 ]

+
(∫ tn+1

tn

E
y
tn

[
−
(

Au(s)∆Ws+ f
(
s,∇u(s),u(s),v(s)

)
∆Ws

]
ds,φ

)
−
(∫ tn+1

tn

E
y
tn
[v(s)]ds,φ

)
. (4.6)

Using again the left rectangle formula to discretize the two temporal integrals on the right
hand side of (4.6) we obtain another reference equation

0=E
y
tn

[(
(u(tn+1),φ

)
∆Wtn+1

]
−∆tn

(
v(tn),φ

)
+
(

Rn
v ,φ
)

, (4.7)
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where the truncation error Rn
v is defined by

Rn
v =

∫ tn+1

tn

E
y
tn

[
−Au(s)∆Ws+ f

(
s,∇u(s),u(s),v(s)

)
∆Ws

]
ds

−
∫ tn+1

tn

E
y
tn

[
v(s)−v(tn)

]
ds.

Based on above two reference equations (4.5) and (4.7), we are now ready to present the
fully discrete finite element method for BSPDEs (2.3) as follows.

Scheme 4.1. Given the terminal condition (uM
h ,vM

h ), we solve a pair of Ftn -adapted Sh-
valued processes {(un

h ,vn
h)}0≤n≤M−1 by(

un
h ,φh

)
+∆tna

(
un

h ,φh
)

=E
y
tn

[(
(un+1

h ,φh

)]
+∆tn

(
f
(
tn,∇un

h ,un
h ,vn

h
)
,φh

)
, (4.8a)

E
y
tn

[(
(un+1

h ,φh

)
∆Wtn+1

]
−∆tn

(
vn

h ,φh

)
=0. (4.8b)

Since (4.8a) and (4.8b) hold for all φh∈Sh, consequently, (4.8a) and (4.8b) can also be
rewritten as

un
h+∆tn Ahun

h =E
y
tn

[
un+1

h

]
+∆tnPh f

(
tn,∇un

h ,un
h ,vn

h
)
, (4.9a)

E
y
tn

[
un+1

h ∆Wtn+1

]
−∆tnvn

h =0. (4.9b)

4.1 Error estimates for the fully discrete scheme

In this section, we shall present the error estimates for the fully discrete scheme. To
begin, let (u(tn),v(tn)) and (un

h ,vn
h) be the exact solution and the numerical solution of

BSPDEs (2.3) at t= tn, respectively. We then define

en
u =u(tn)−un

h =u(tn)−Phu(tn)+Phu(tn)−un
h =: ρn

u+θn
u ,

en
v =v(tn)−vn

h =v(tn)−Phv(tn)+Phv(tn)−vn
h =: ρn

v+θn
v ,

en
f = f

(
tn,∇u(tn),u(tn),v(tn)

)
− f
(
tn,∇un

h ,un
h ,vn

h
)
.

By the definition of Ph, we have

(ρn
u,φh)=0 and (ρn

v ,φh)=0, ∀φh∈Sh. (4.10)

We now present the following stability theorem that implies our error estimates.
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Theorem 4.1. Under similar assumptions as in Theorem 2.6, for sufficient small ∆t, we have

E
[
‖en

u‖
2
]
+

M−1

∑
i=n

∆tnE

[∥∥∥ei
u

∥∥∥2

1

]
+

M−1

∑
i=n

∆tnE

[∥∥∥ei
v

∥∥∥2
]

.E

[∥∥∥eM
u

∥∥∥2
]
+

M−1

∑
i=n

∆tE

[∥∥∥ρi
u

∥∥∥2

1

]
+

M−1

∑
i=n

∆tE

[∥∥∥ρi
u

∥∥∥2

1

]
+

M−1

∑
i=n

∆tE

[∥∥∥ρi
v

∥∥∥2
]

+
M−1

∑
i=n

∆t
(

E

[∥∥∥ρi
u

∥∥∥2
]
+E

[∥∥∥ρi
v

∥∥∥2
])

+
M−1

∑
i=n

1
∆t

E

[∥∥∥Ri
v

∥∥∥2
]

+
M−1

∑
i=n

1
∆t

E

[∥∥∥Ri
u

∥∥∥2
]

, (4.11)

where a.b stands for a≤Cb with C being a positive constant.

Proof. By (4.5) and (4.7), we have for ∀φh∈Sh(
u(tn),φh

)
+∆tna

(
u(tn),φh

)
=∆tn

(
f
(
tn,∇u(tn),u(tn),v(tn)

)
,φh

)
+E

y
tn

[(
u(tn+1),φh

)]
+
(

Rn
u,φh

)
, (4.12a)

0=E
y
tn

[(
(u(tn+1),φh

)
∆Wtn+1

]
−∆tn

(
v(tn),φh

)
+
(

Rn
v ,φh

)
. (4.12b)

Subtracting (4.8a) from (4.12a) leads to(
u(tn)−un

h ,φh

)
+∆tna

(
u(tn)−un

h ,φh

)
=E

y
tn

[(
u(tn+1)−un+1

h ,φh

)]
+∆tn

(
en

f ,φh

)
+
(

Rn
u,φh

)
,

which yields (
θn

u ,φh

)
+∆tna

(
θn

u ,φh

)
=−∆tna

(
ρn

u,φh

)
+E

y
tn

[(
θn+1

u ,φh

)]
+∆tn

(
en

f ,φh

)
+
(

Rn
u,φh

)
. (4.13)

By setting φh=θn
u in (4.13), and using together Lemma 2.1 and the property of conditional

expectation we have

‖θn
u‖

2+∆tnβ‖θn
u‖

2
1≤−∆tna

(
ρn

u,θn
u

)
+E

y
tn

[(
θn+1

u ,θn
u

)]
+∆tn

(
en

f ,θn
u

)
+
(

Rn
u,θn

u

)
≤−∆tna

(
ρn

u,θn
u

)
+
(

E
y
tn

[
θn+1

u

]
,θn

u

)
+∆tn

(
en

f ,θn
u

)
+
(

Rn
u,θn

u

)
≤−∆tna

(
ρn

u,θn
u

)
+
(

E
y
tn

[
θn+1

u

]
+∆tnen

f +Rn
u,θn

u

)
≤∆tnα‖ρn

u‖1 ·‖θ
n
u‖1+

∥∥∥E
y
tn

[
θn+1

u

]
+∆tnen

f +Rn
u

∥∥∥·‖θn
u‖.
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Then, by using the inequality ab≤ a2

2β +
βb2

2 we get

‖θn
u‖2+β∆tn‖θn

u‖2
1≤

∆tnα2‖ρn
u‖2

1
2β

+
∆tnβ‖θn

u‖2
1

2

+
1
2

∥∥∥E
y
tn

[
θn+1

u

]
+∆tnen

f +Rn
u

∥∥∥2
+

1
2
‖θn

u‖2,

which is equivalent to

1
2
‖θn

u‖2+
∆tnβ‖θn

u‖2
1

2
≤ ∆tnα2‖ρn

u‖2
1

2β
+

1
2

∥∥∥E
y
tn

[
θn+1

u

]
+∆tnen

f +Rn
u

∥∥∥2
. (4.14)

Thus we have

‖θn
u‖2+∆tnβ‖θn

u‖2
1≤ Ĉ∆tn‖ρn

u‖2
1+‖E

y
tn

[
θn+1

u

]
+∆tnen

f +Rn
u‖2, Ĉ=

α2

β
. (4.15)

By the inequalities (a+b)2≤ a2+b2+γ∆ta2+ 1
γ∆t b2 and (a+b)2≤2(a2+b2), we derive

‖θn
u‖2+∆tnβ‖θn

u‖2
1

≤Ĉ∆tn‖ρn
u‖2

1+(1+γ∆t)
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2
+

(
1+

1
γ∆t

)∥∥∥∆tnen
f +Ru

n

∥∥∥2

≤∆tn‖ρn
u‖2

1+(1+γ∆t)
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2
+

(
2+

2
γ∆t

)(
‖∆tnen

f ‖2+‖Rn
u‖2
)

. (4.16)

Now by applying the Lipschitz condition on f one gets

‖θn
u‖2+∆tnβ‖θn

u‖2
1

≤Ĉ∆tn‖ρn
u‖2

1+(1+γ∆t)
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2

+

(
2+

2
γ∆t

)(
3L2(∆tn)

2
(
‖en

u‖2
1+‖en

u‖2+‖en
v‖2
)
+‖Ru

n‖2
)

≤Ĉ∆tn‖ρn
u‖2

1+(1+γ∆t)
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2
+

(
2+

2
γ∆t

)
‖Rn

u‖2

+

(
6+

6
γ∆t

)
L2(∆tn)

2
(
‖ρn

u+θn
u‖2

1+‖ρn
u+θn

u‖2+‖ρn
v+θn

v‖2
)

≤Ĉ∆tn‖ρn
u‖2

1+(1+γ∆t)
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2
+

(
2+

2
γ∆t

)
‖Rn

u‖2

+

(
12+

12
γ∆t

)
L2(∆tn)

2
(
‖θn

u‖2
1+‖θn

u‖2+‖θn
v‖2
)

+

(
12+

12
γ∆t

)
L2(∆tn)

2
(
‖ρn

u‖2
1+‖ρn

u‖2+‖ρn
v‖2
)

. (4.17)
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Similarly, subtracting (4.8b) from (4.12b) leads to

∆tn

(
v(tn)−vn

h ,φh

)
=E

y
tn

[(
(u(tn+1)−un+1

h ,φh

)
∆Wtn+1

]
+
(

Rn
v ,φh

)
.

Then we have
∆tn

(
θn

v ,φh

)
=E

y
tn

[(
θn+1

u ,φh

)
∆Wtn+1

]
+
(

Rn
v ,φh

)
. (4.18)

We set φh = θn
v in the above equation to get

∆tn‖θn
v‖2=E

y
tn

[(
θn+1

u ,θn
v

)
∆Wtn+1

]
+
(

Rn
v ,θn

v

)
=
(

E
y
tn

[
θn+1

u ∆Wtn+1

]
,θn

v

)
+
(

Rn
v ,θn

v

)
≤
∥∥∥E

y
tn

[
θn+1

u ∆Wtn+1

]
+Rn

v

∥∥∥‖θn
v‖

≤1
ε

∥∥∥E
y
tn

[
θn+1

u ∆Wtn+1

]
+Rn

v

∥∥∥2
+

ε

4
‖θn

v‖2

≤1
ε
(1+γ)

∥∥∥E
y
tn

[
θn+1

u ∆Wtn+1

]∥∥∥2
+

1
ε

(
1+

1
γ

)
‖Rn

v‖2+
ε

4
‖θn

v‖2. (4.19)

In the above derivations, we have used the inequalities ab≤ 1
ε a2+ ε

4 b2 and (a+b)2≤ (1+
γ)a2+(1+ 1

γ )b
2. Notice that∥∥∥E

y
tn

[
θn+1

u ∆Wtn+1

]∥∥∥2
=
∥∥∥E

y
tn

[(
θn+1

u −E
y
tn

[
θn+1

u

])
∆Wtn+1

]∥∥∥2

≤∆tn

(
E

y
tn

[∥∥θn+1
u
∥∥2
]
−
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2)
.

Then, by (4.19) we get

∆tn‖θn
v‖2≤1

ε
(1+γ)∆tn

(
E

y
tn

[
‖θn+1

u ‖2
]
−
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2)
+

1
ε

(
1+

1
γ

)
‖Rn

v‖2+
ε

4
‖θn

v‖2. (4.20)

We set ε=∆tn in the above inequality to get

∆tn‖θn
v‖2≤(1+γ)

(
E

y
tn

[∥∥∥θn+1
u

∥∥∥2
]
−
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2
)

+
1

∆tn

(
1+

1
γ

)
‖Rn

v‖2+
∆tn

4
‖θn

v‖2.

Then we have

3∆tn

4
‖θn

v‖2≤ (1+γ)

(
E

y
tn

[∥∥∥θn+1
u

∥∥∥2
]
−
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2
)
+

1
∆tn

(
1+

1
γ

)
‖Rn

v‖
2 ,
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which yields

‖θn
v‖2≤4(1+γ)

3∆tn

(
E

y
tn

[∥∥∥θn+1
u

∥∥∥2
]
−
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2
)

+
4

3(∆tn)2

(
1+

1
γ

)
‖Rn

v‖2. (4.21)

Dividing both sides of the inequality (4.21) by 4(1+γ)
3∆t , we obtain

3∆t
4(1+γ)

‖θn
v‖2≤ ∆t

∆tn

(
E

y
tn

[∥∥∥θn+1
u

∥∥∥2
]
−
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2
)
+

∆t
γ(∆tn)2 ‖R

n
v‖2

≤C0

(
E

y
tn

[∥∥∥θn+1
u

∥∥∥2
]
−
∥∥∥E

y
tn

[
θn+1

u

]∥∥∥2
)
+

∆t
γ(∆tn)2 ‖R

n
v‖2. (4.22)

Now, we multiply (4.17) by C0 and add it with (4.22) to obtain

C0
∥∥θn

u
∥∥2

+C0β∆tn
∥∥θn

u
∥∥2

1+
3∆t

4(1+γ)

∥∥θn
v
∥∥2

≤C0Ĉ∆tn‖ρn
u‖

2
1+C0(1+γ∆t)Ey

tn

[∥∥∥θn+1
u

∥∥∥2
]

+C0

(
12+

12
γ∆t

)
L2(∆tn)

2
(
‖θn

u‖2
1+‖θn

u‖2+‖θn
v‖2
)

+C0

(
12+

12
γ∆t

)
L2(∆tn)

2
(
‖ρn

u‖2
1+‖ρn

u‖2+‖ρn
v‖2
)

+C0

(
2+

2
γ∆t

)
‖Rn

u‖2+
∆t

γ(∆tn)2 ‖R
n
v‖2,

which implies

C0(1−C1∆t)
∥∥θn

u
∥∥2

+C2∆tn
∥∥θn

u
∥∥2

1+C3∆t
∥∥θn

v
∥∥2

≤C0(1+γ∆t)Ey
tn

[∥∥∥θn+1
u

∥∥∥2
]
+C5∆t‖ρn

u‖
2
1+C6∆t

(
‖ρn

u‖
2+‖ρn

v‖
2
)

+C0(2+2/(γ∆t))‖Rn
u‖

2+1/(γ∆tn)‖Rn
v‖

2 , (4.23)

where

C1=

(
12∆t+

12
γ

)
L2, C2=C0β−

(
12C0∆tn+

12C0

γ

)
L2,

C3=
3

4(1+γ)
−
(

12C0∆t+
12C0

γ

)
L2,

C5=C0Ĉ+C0

(
12+

12
γ∆t

)
L2∆tn, C6=C0

(
12∆t+

12
γ

)
L2.
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Now we choose a large enough γ and sufficient small ∆t such that it holds C1≤C∗,γ≤
C∗,1−C∗∆t>0, where C∗ is positive constant. Then we obtain by (4.23)

C0(1−C∗∆t)
∥∥θn

u
∥∥2

+C2∆tn
∥∥θn

u
∥∥2

1+C3∆t
∥∥θn

v
∥∥2

≤C0(1+C∗∆t)Ey
tn

[∥∥θn+1
u
∥∥2
]
+C5∆t

∥∥ρn
u
∥∥2

1+C6∆t
(∥∥ρn

u
∥∥2

+
∥∥ρn

v
∥∥2
)

+C0

(
2+

2
γ∆t

)∥∥Rn
u
∥∥2

+
∆t

γ(∆tn)2

∥∥Rn
v
∥∥2. (4.24)

Dividing both sides of the inequality (4.24) by 1−C∗∆t and taking mathematical expec-
tation gives

C0E
[∥∥θn

u
∥∥2
]
+C2∆tnE

[∥∥θn
u
∥∥2

1

]
+C3∆tE

[∥∥θn
v
∥∥2
]

≤ 1+C∆t
1−C∗∆t

C0E
[∥∥θn+1

u
∥∥2
]
+

C5∆t
1−C∗∆t

E
[∥∥ρn

u
∥∥2

1

]
+

C6∆t
1−C∗∆t

(
E
[∥∥ρn

u
∥∥2
]
+E

[∥∥ρn
v
∥∥2
])

+
2C0(1+γ∆t)E

[∥∥Rn
u
∥∥2
]

γ(1−C∗∆t)∆t
+

∆tE
[∥∥Rn

v
∥∥2
]

γ(1−C∗∆t)(∆tn)2 . (4.25)

Then by induction we get

E
[∥∥θn

u
∥∥2
]
+

M−1

∑
i=n

(
1+C∗∆t
1−C∗∆t

)i−n

∆tnE
[∥∥θi

u
∥∥2

1

]
+

M−1

∑
i=n

(
1+C∗∆t
1−C∗∆t

)i−n

∆tE
[∥∥θi

v
∥∥2
]

.
(

1+C∗∆t
1−C∗∆t

)M−n

C0E
[∥∥θM

u
∥∥2
]
+

M−1

∑
i=n

(
1+C∗∆t
1−C∗∆t

)i−n C5∆t
1−C∗∆t

E
[∥∥ρi

u
∥∥2

1

]
+

M−1

∑
i=n

(
1+C∗∆t
1−C∗∆t

)i−n C6∆t
1−C∗∆t

(
E
[∥∥ρi

u
∥∥2
]
+E

[∥∥ρi
v
∥∥2
])

+
M−1

∑
i=n

(
1+C∗∆t
1−C∗∆t

)i−n 2C0(1+γ∆t)E
[∥∥Ri

u
∥∥2
]

γ(1−C∗∆t)∆t
+

M−1

∑
i=n

(
1+C∗∆t
1−C∗∆t

)i−n ∆tE
[∥∥Ri

v
∥∥2
]

γ(1−C∗∆t)(∆tn)2

.exp
{

2C∗C0T
}

C0E
[∥∥θM

u
∥∥2
]
+exp

{
2C∗C0T

}M−1

∑
i=n

C5∆t
1−C∗∆t

E
[∥∥ρi

u
∥∥2

1

]
+exp

{
2C∗C0T

}M−1

∑
i=n

C6∆t
1−C∗∆t

(
E
[∥∥ρi

u
∥∥2
]
+E

[∥∥ρi
v
∥∥2
])

+exp
{

2C∗C0T
}M−1

∑
i=n

2C0(1+γ∆t)E
[∥∥Ri

u
∥∥2
]

γ(1−C∗∆t)∆t
+exp

{
2C∗C0T

}M−1

∑
i=n

∆tE
[∥∥Ri

v
∥∥2
]

γ(1−C∗∆t)(∆tn)2 .
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Thus we finally get

E
[∥∥en

u
∥∥2
]
+

M−1

∑
i=n

(
1+C∗∆t
1−C∗∆t

)i−n

∆tnE
[∥∥ei

u
∥∥2

1

]
+

M−1

∑
i=n

(
1+C∗∆t
1−C∗∆t

)i−n

∆tnE
[∥∥ei

v
∥∥2
]

.exp
{

2C∗C0T
}

C0E
[∥∥eM

u
∥∥2
]
+exp

{
2C∗C0T

}M−1

∑
i=n

C5∆t
1−C∗∆t

E
[∥∥ρi

u
∥∥2

1

]
+C2exp

{
2C∗C0T

}M−1

∑
i=n

∆tE
[∥∥ρi

u
∥∥2

1

]
+exp

{
2C∗C0T

}M−1

∑
i=n

C6∆t
1−C∗∆t

(
E
[∥∥ρi

u
∥∥2
]

+C3exp
{

2C∗C0T
}M−1

∑
i=n

∆tE
[∥∥ρi

v
∥∥2
]
+E

[∥∥ρi
v
∥∥2
])

+exp
{

2C∗C0T
}M−1

∑
i=n

2C0(1+γ∆t)E
[∥∥Ri

u
∥∥2
]

γ(1−C∗∆t)∆t

+exp
{

2C∗C0T
}M−1

∑
i=n

∆tE
[∥∥Ri

v
∥∥2
]

γ(1−C∗∆t)(∆tn)2 .

Then the desired inequality (4.11) follows by noticing the boundedness of the involved
constants.

By using the Itô–Taylor expansion and the properties of the Wiener process, we have
the following lemma, whose proof is quite similar to those certain lemmas in [14, 29, 31].

Lemma 4.1. Suppose f and uT are sufficiently smooth functions, let Rn
u and Rn

v be the truncation
errors defined in (4.5) and (4.7), respectively. Then, it holds that∥∥Rn

u
∥∥≤C(∆t)2 and

∥∥Rn
v
∥∥≤C(∆t)2. (4.26)

The above lemma, together with the stability theorem leads to the following error
estimate for the fully discrete scheme (4.8a)-(4.8b).

Theorem 4.2. Suppose that the conditions in Theorem 2.6 and Lemma 4.1 hold, then for any
0≤n≤M−1, we have

E
[∥∥en

u
∥∥2
]
+

M−1

∑
i=1

∆tnE
[∥∥ei

u
∥∥2

1

]
+

M−1

∑
i=1

∆tnE
[∥∥ei

v
∥∥2
]
≤C

(
h2+(∆t)2

)
. (4.27)

Proof. By Lemma 3.1 and the estimate 3.9, together with Theorem 4.1 and Lemma 4.1, the
desired result follows.

Remark 4.1. The above error analysis for Theorem 3.1 and Theorem 4.2 can be extended
immediately to finite elements of higher order, i.e., the finite element space Sh consists of
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piecewise polynomials of degree r−1, where r≥2 is an integer. In addition, suppose that
the solution of (2.3) satisfies the following regularity

(u,v)∈
(

L2(Ω;C([0,T];Ḣr−1)
)
∩L2
F ((0,T);Ḣr)

)
×L2
F ((0,T);Ḣr−1).

Then, we can obtain the following estimates

E

[
sup

t∈[0,T]
‖eu(t)‖2

]
+E

[∫ T

0
‖eu(t)‖2

1 dt
]
+E

[∫ T

0
‖ev(t)‖2 dt

]
≤Ch2(r−1), (4.28a)

E
[
‖en

u‖2]+∆t
M−1

∑
i=1

E
[
‖ei

u‖2
1

]
+∆t

M−1

∑
i=1

E
[
‖ei

v‖2
]
≤C

(
h2(r−1)+(∆t)2). (4.28b)

5 Conclusions

We proposed a spatial finite element semi-discrete scheme and a spatio-temporal full
discrete scheme for solving nonlinear backward stochastic partial differential equations.
In these schemes, finite element methods in the physical space and the implicit Euler
method in time domain were used, respectively. We rigorously analyzed the errors of the
schemes and obtained error estimates with convergence rates. In our future work, we
shall investigate computational issues of the schemes for BSPDEs, and study other high
accurate time discretization methods for BSPDEs.
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tions in Hölder spaces, Ann. Probab., 44 (2016), pp. 360–398.

[23] T. TANG, W. ZHAO, AND T. ZHOU, Deferred correction methods for forward backward stochastic
differential equations, Numer. Math. Theor. Meth. Appl., 10 (2017), pp. 222–242.

[24] G. TESSITORE, Existence, uniqueness and space regularity of the adapted solutions of a backward
SPDE, Stochastic Anal. Appl., 14 (1996), pp. 461–486.
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