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Abstract. The RNA velocity provides a new avenue to study the stemness and lin-
eage of cells in the development in scRNA-seq data analysis. Some promising exten-
sions of it are proposed and the community is experiencing a fast developing period.
However, in this stage, it is of prime importance to revisit the whole process of RNA
velocity analysis from the mathematical point of view, which will help to understand
the rationale and drawbacks of different proposals. The current paper is devoted to
this purpose. We present a thorough mathematical study on the RNA velocity model
from dynamics to downstream data analysis. We derived the analytical solution of
the RNA velocity model from both deterministic and stochastic point of view. We
presented the parameter inference framework based on the maximum likelihood esti-
mate. We also derived the continuum limit of different downstream analysis methods,
which provides insights on the construction of transition probability matrix, root and
ending-cells identification, and the development routes finding. The overall analysis
aims at providing a mathematical basis for more advanced design and development
of RNA velocity type methods in the future.

AMS subject classifications: 60J28, 62P10, 92B15
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) is a rapid maturing technique, which makes
the elaborate study of biological processes in the single cell resolution possible [50, 58].
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The rich and diverse scRNA-seq datasets are revealing to us the mysteries of stem cell
differentiation [54], heterogeneity in multicellular organisms [25], cancer cell dissection
[8,37,64], drug discovery [22,59], etc. Every year, a swarm of analysis tools are produced
by researchers all over the world [42, 62]. Some popular choices include the clustering
tools [6, 28], trajectory inference tools [21, 40, 42, 47, 51, 53], and energy landscape tools
[26, 44, 46, 63], etc.

The characterization of stemness and lineage of the cells is a fundamental question
in developmental biology. Although some practical indices, such as the signalling en-
tropy and Markov chain entropy [47, 51], etc., are proposed to quantify the stemness of
different cells in the scRNA-seq data analysis, they are more or less heuristic in nature.
Recently, another promising method, the RNA velocity [29], was proposed to address this
issue based upon the fact that the nascent (unspliced) and mature (spliced) mRNA can
be distinguished in common single-cell RNA-seq protocols, such as SMART-seq2 [38],
Drop-seq [32] and 10X genomics [66]. Thus, the relative abundance of unspliced and
spliced mRNA are utilized to infer the velocity of each cell in the spliced mRNA abun-
dance space, and predict the tendency of transition from one cell to another according
to the RNA velocity model [29]. Improved methods in kinetic modeling, parameter in-
ference and downstream analysis have been subsequently proposed [3, 41], showing the
potential of RNA velocity to quantify the stemness of cells in a rational way.

Despite the fruitful results and promising applications of RNA velocity, it is of prime
importance to understand the rationale underlying the algorithm design, as well as the
subtle differences between different proposals from mathematical point of view. For in-
stance, when constructing the cell-cell stochastic transition probability matrix from RNA
velocity, La Mano et al. [29] and Qiu et al. [41] used the correlation scheme in the velocity
kernel, while the cosine scheme was proposed in [3]. In the recent version of dynamo
package [39], a scheme with local kernels [4] of diffusion was also utilized. In spite of
their intuitive plausibility, the theoretical implications of different kernels demands fur-
ther investigation. In addition, a tracking strategy of root and ending cells has been
applied based on forward and backward diffusions [3, 29], whose theoretical basis re-
mains to be established. Resolution of these puzzles based on a formal mathematical
study will not only shed light on these theoretical problems, but also lead to a deeper
comprehension of the RNA velocity and inspire further rational design of more delicate
RNA velocity models. The current paper is devoted to this purpose.

In this work, we will present a thorough mathematical study on the whole process
of RNA velocity model from kinetic model derivation, parameter inference algorithm to
the downstream dynamical analysis. Our analysis will contribute insights toward sev-
eral fundamental questions regarding RNA velocity and relevant downstream analysis,
including:

• How to derive the deterministic and stochastic kinetic models of RNA velocity, and
find analytical solutions?

• How to build the maximum likelihood estimator (MLE) of the parameters, built on
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the exact solution of stochastic RNA velocity model?

• How can the discrete cellular transition dynamics inferred from RNA velocity be
rigorously associated the continuous dynamical system model in cell-fate decision?

• What is the essential difference between the choice of correlation, cosine or inner-
product scheme in the velocity kernel for the cellular transition matrix?

• What is the implication to replace the Gaussian scheme with k-nearest neighbor
(kNN) scheme in the diffusion kernel?

• Why is the backward and forward diffusion strategy effective in detecting root and
ending cells of development?

• How to rationally construct developmental trajectories based on RNA velocity with
mathematical theory, beyond illustrating arrows and streamlines in the reduced
dimension space?

We will focus on the formal mathematical analysis in the current paper and leave detailed
computational comparisons and improvements in the continued publication [30]. To the
best knowledge of the authors, this is the first attempt on studying the mathematics of
RNA velocity in a complete manner. We hope it will provide a mathematical basis for
further development of RNA velocity type methods in the future.

The rest of the paper is organized as follows. In Section 2, we show the mathematical
derivations of both deterministic and stochastic kinetic models of RNA velocity, and de-
rive the associated analytical solutions. In Section 3 we will revisit the existing algorithms
to infer parameters in RNA velocity models, and present a novel maximum likelihood es-
timation of parameters originated from the exact solution of stochastic models. In Section
4 we focus on the dynamical system analysis based on RNA velocity, deriving the con-
tinuum limit of discrete transition probabilities with various kernels, demonstrating the
mathematical rationale for the existing strategy of root/ending cells detection, and pro-
viding a new method to construct development trajectories with RNA velocity through
the well-established transition path theory. Finally we give the conclusion and discus-
sions in Section 5. Some analysis details, such as the almost sure type convergence order
of the kNN radius, are left in the Appendix.

2 Models of RNA velocity

The key point of the RNA velocity model of single cells is that one can identify the abun-
dance of the nascent (unspliced) and mature (spliced) mRNA from the single-cell RNA-
seq data, which provides the information on the time-dependent evolution rate of the
mRNA abundance by incorporating appropriate dynamical models.

Denote by u and s the abundance of the unspliced and spliced mRNA, respectively. In
its simplest form, the transcriptional dynamics of the mRNA velocity can be described by
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Table 1: Schematics of the dynamics for the RNA velocity model.

∅
αon/off

−−−−−−−→
Transcription

unspliced mRNA(u)
β−−−−→

Splicing
spliced mRNA(s)

γ−−−−−−→
Degradation

∅

the reaction pathways shown in Table 1 [29]. We assume the production of u is dictated
by a transcriptional induction or repression with parameter αon or αoff, respectively. The
unspliced mRNA, u, is then transformed into the spliced form with rate β, and the spliced
mRNA is eventually degradated with rate γ. We remark that the above statement must
be understood for single gene, i.e. the parameters (αon/off,β,γ) should be replaced by
(αon/off

g ,βg,γg) when we consider the dynamics for a specific gene g. But we will omit
the g-dependence of the parameters for brevity if not necessary. In the current stage, we
assume that there are no interactions among different genes.

The task in this section is to study the explicit solution and related analytical prop-
erties of the forward mRNA velocity model in both deterministic and stochastic forms,
given the dynamical parameters (αon/off,β,γ).

2.1 Deterministic model

The deterministic model of the reaction dynamics shown in Table 1 has the form (2.1)-
(2.2) by the law of mass action:

du

dt
=α(t)−βu(t), (2.1)

ds

dt
=βu(t)−γs(t), (2.2)

where t≥0, (u(t),s(t))|t=0 =(u0,s0), and

α(t)=

{
αon, t≤ ts,

αoff=0, t> ts.
(2.3)

Here ts is the switch time of the transcriptional process.

The term defined through Eq. (2.2):

v(t)=(vg(t))g =

(
dsg

dt

)

g

=
(

βgug(t)−γgsg(t)
)

g
∈R

ng (2.4)

is the RNA velocity of each cell, where g = 1 : ng in Eq. (2.4) and ng is the number of
considered genes in the RNA-seq data. Note that the velocity v only depends on the state
(u,s), but not the absolute magnitude of t, given the rate parameters, since the considered
system is autonomous.
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Explicit solution. We will study the cases β 6=γ and β=γ, respectively.

Case 1: β 6=γ. The analytical solution to (2.1)-(2.2) in the on stage with rate αon=α is

u(t)=u0e−βt+
α

β
(1−e−βt), (2.5)

s(t)= s0e−γt+
α

γ
(1−e−γt)+

α−βu0

γ−β
(e−γt−e−βt) (2.6)

for t≤ ts. Usually, we suppose (u0,s0)=(0,0), then we have

u(t)=
α

β
(1−e−βt), (2.7)

s(t)=
α

γ
(1−e−γt)+

α

γ−β
(e−γt−e−βt) (2.8)

for t≤ ts. Define the switch state by

(us,ss) :=(u(ts),s(ts)).

Then in the off stage, we have the solution

u(t)=use
−β(t−ts), (2.9)

s(t)= sse−γ(t−ts)− βus

γ−β
(e−γ(t−ts)−e−β(t−ts)) (2.10)

for t> ts. It is straightforward that u(t),s(t)>0 for any finite t>0.

Case 2: β=γ. The analytical solution to (2.1)-(2.2) in the on stage is

u(t)=u0e−βt+
α

β
(1−e−βt), (2.11)

s(t)= s0e−βt+
α

β
(1−e−βt)−(α−βu0)te

−βt (2.12)

for t≤ ts. When (u0,s0)=(0,0), we have

u(t)=
α

β
(1−e−βt), (2.13)

s(t)=
α

β
(1−e−βt)−αte−βt (2.14)

for t≤ ts. And in the off stage

u(t)=use
−β(t−ts), (2.15)

s(t)= sse−β(t−ts)+usβ(t−ts)e
−β(t−ts) (2.16)

for t> ts. It is straightforward to note that the solution (2.11)-(2.12) is indeed the limit of
the solution (2.5)-(2.6) as γ→β.
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Steady State. The steady state in the on stage is (u∗,s∗)=α/(β,γ), and the steady state
in the off stage is simply (u∗,s∗)=(0,0).

Scale Invariance. It is important to note that the system (2.1)-(2.2) has the following
scale invariance property, i.e. if we define the parameter θ=(θr,ts), where the rates θr =
(α,β,γ), then the solution satisfies

(u(t;θr,ts),s(t;θr ,ts))=(u(κt;θr/κ,κts),s(κt;θr/κ,κts)) (2.17)

for any scaling parameter κ > 0. This scale invariance indicates the degeneracy of the
inference problem. That is, to ensure the well-posedness of the inference on parameter θ,
we should fix the time scale of the system. For example, one can consider the dynamics
(2.1)-(2.2) within a fixed period [0,T], where tmax = T. We remark that the choice of the
degree of freedom does affect the magnitude of RNA velocity (2.4) up to a multiplicative
constant.

2.2 Stochastic model

In the stochastic model, the system state (u(t),s(t))∈N
2 is a stochastic process and we

are interested in the evolution of its probability mass function denoted by

Pmn(t) :=Prob
{
(u(t),s(t))=(m,n)∈N

2
}

. (2.18)

The stochastic model of the reaction dynamics shown in Table 1 is given by the following
chemical master equation (CME) [19]

∂tPmn=αon/off(Pm−1,n−Pmn)+β[(m+1)Pm+1,n−1−mPmn]

+γ[(n+1)Pm,n+1−nPmn] (2.19)

with initial condition Pmn(0)=p0
mn. In the on or off stage, the production rate of u, αon/off,

will be set as αon=α or αoff=0, respectively. We will study the analytical solution of (2.19)
in different cases.

Scale Invariance. Similar to the deterministic case, the solution Pmn(t) has the scale
invariance property

Pmn(t;θr,ts)=Pmn(κt;θr/κ,κts) (2.20)

for any scaling parameter κ>0.

2.2.1 On stage with zero initial value

In the on stage, i.e. t≤ ts, we have the CME

∂tPmn=α(Pm−1,n−Pmn)+β[(m+1)Pm+1,n−1−mPmn]

+γ[(n+1)Pm,n+1−nPmn]. (2.21)



T. Li, J. Shi, Y. Wu and P. Zhou / CSIAM Trans. Appl. Math., 2 (2021), pp. 1-55 7

We will first study the case (u(0),s(0))=(0,0), i.e. with initial distribution Pmn(0)=δm0δn0,
where

δij =

{
1 if i= j,

0 otherwise

is the Kronecker’s delta-function. The general cases are left in Section 2.2.3. Since the
rate functions are all linear in m and n, we will employ the idea of moment generating
function to solve (2.21) [45].

Theorem 2.1 (Analytical Distribution in the On Stage). With initial distribution Pmn(0)=
δm0δn0, the solution of Eq. (2.21) is

Pon
mn|00(t)=

am(t)bn(t)

m!n!
e−a(t)−b(t), (m,n)∈N

2, (2.22)

where

a(t)=
α

β
(1−e−βt), (2.23)

b(t)=





α

γ
(1−e−γt)+

α

γ−β
(e−γt−e−βt), β 6=γ,

α

β
(1−e−βt)−αte−βt, β=γ,

(2.24)

and the notation Pon
mn|00

(t) stands for the transition probability from state (0,0) to (m,n).

Proof. Consider the moment generating function F(y,z,t) = ∑m,n ymznPm,n(t). Then we
have

∂tF=α(yF−F)+β(z∂y F−y∂yF)+γ(∂zF−z∂zF) (2.25)

with initial condition F0(y,z) =∑m,nymznPmn(0). Under the zero initial value condition
on (u(t),s(t)), we have F0=1.

Introduce the change of variable

u=y−1, v= z−1, F̃(u,v,t)=F(u+1,v+1,t)=F(y,z,t).

Then from (2.25) we get

∂v F̃+
β

γ

(u

v
−1
)

∂u F̃+
1

γv
∂t F̃=

αu

γv
F̃. (2.26)

By the method of characteristics, we introduce the auxiliary variable r:

dv

dr
=1,

dt

dr
=

1

γv
,

du

dr
=

β

γ

(u

v
−1
)

,
dF̃

dr
=

αu

γv
F̃ (2.27)
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with initial condition (u,v,t, F̃)|r=0=(u0,v0,0, F̃0), where F̃0=F0(u0+1,v0+1).

Case 1: β 6=γ. Solving (2.27), we get v=r+v0, dv=dr, t=γ−1 lnv/v0, and correspondingly

v=v0eγt. (2.28)

For u, we obtain

du

dv
=

βu

γv
− β

γ
, which induces u=

(
u0−

βv0

β−γ

)(
v

v0

) β
γ

+
β

β−γ
v. (2.29)

Define a0 :=u0−(β−γ)−1βv0, we get

dF̃

dv
=

αu

γv
F̃=

α

γ

(
a0v

− β
γ

0 v
β
γ−1+

β

β−γ

)
F̃,

thus

ln
F̃

F̃0
=

α

β
a0

(
v

v0

) β
γ

+
αβ

γ(β−γ)
(v−v0)−

α

β
a0. (2.30)

With initial distribution Pm,n(0)= δm0δn0, we have F̃0 = 1. Combining Eqs. (2.28), (2.29),
(2.30) and the definition of a0, we get

F̃(u,v,t)=exp

{
α

β
(1−e−βt)u+

αβv

β−γ

[
1

γ
(1−e−γt)− 1

β
(1−e−βt)

]}
. (2.31)

After suitable manipulation, we obtain

F(y,z,t)= eya(t) ·ezb(t) ·e−a(t)−b(t), (2.32)

where a(t) and b(t) are defined in (2.23) and (2.24) when β 6=γ, respectively.

Case 2: β=γ. We can show that (2.29) will be replaced by

du

dv
=

u

v
−1, thus u=v

(
u0

v0
−ln

v

v0

)
. (2.33)

After suitable derivations, we get

F̃(u,v,t)=exp

{
α

β
(1−e−βt)(u+v)−αtve−βt

}
, (2.34)

and finally we have the same formula (2.32), while a(t) and b(t) are defined in (2.23) and
(2.24) when β=γ, respectively.

Therefore,

Pm,n(t)=
1

m!n!

∂m+n

∂ym∂zn
F
∣∣∣
(y,z)=(0,0)

=
am(t)bn(t)

m!n!
e−a(t)−b(t).

In summary, u(t) and s(t) are independently Poisson distributed with mean a(t) and
b(t), respectively.
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Remark 2.1. It is not surprising to observe that the mean a(t),b(t) are exactly the abun-
dance of u and s in Eqs. (2.7)-(2.8) or (2.13)-(2.14) in the deterministic model, which is
well-known due to the linearity of the rates. However, Theorem 2.1 further states that u
and s are independently Poisson distributed, which is not a straightforward result.

Invariant Distribution. It is obvious that the invariant distribution of (u,s) in this case
is independent Poisson with parameters (u∗,s∗).

2.2.2 Off stage with general initial data

We will study the off stage case in this section. Now we have αoff=0 and the CME is

∂tPmn=β[(m+1)Pm+1,n−1−mPmn]+γ[(n+1)Pm,n+1−nPmn]. (2.35)

We first consider the case with initial value (u(0),s(0))=(M,N).

Theorem 2.2 (Analytical Distribution in the Off Stage). Define

p1(t)= e−βt, (2.36)

p2(t)=





β

β−γ

e−γt−e−βt

1−e−βt
, β 6=γ,

βt
e−βt

1−e−βt
, β=γ,

(2.37)

p3(t)= e−γt, (2.38)

and qi(t)=1−pi(t) correspondingly. We have pi(t),qi(t)∈ [0,1] for i=1,2,3. Then, with initial
distribution Pmn(0)=δmMδnN, the solution of Eq. (2.35) has the form

Poff
mn|MN(t)=Poff

m|M(t)·Poff
n|mN(t)=Bm(M,p1)·Cn(M−m,p2,N,p3), (2.39)

where m≤M, n≤N+M−m,

Bm(M,p1)=

(
M

m

)
pm

1 (t)(1−p1(t))
M−m (2.40)

is the probability of the binomial distribution B(M,p1(t)), and

Cn(M−m,p2,N,p3)=
n

∑
k=0

Bk(M−m,p2)Bn−k(N,p3) (2.41)

is the probability of the sum of two independent binomials B(M−m,p2(t)) and B(N,p3(t)). We
take the convention that Bk(M−m,p2)=0 if k>M−m.
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Proof. First let us show that p2(t)∈ [0,1]. When β 6=γ, we have

p2(t)=
f ((β−γ)t)

f (βt)
, where f (x)=

ex−1

x
.

We have f ′(x)=(ex(x−1)+1)/x2 ≥0 since g(0)=0, and g′(x)>0 for x>0 and g′(x)<0
for x<0, where g(x):=ex(x−1)+1. The case β=γ is trivial by observing that the function
x/(ex−1)∈ [0,1] for x≥0.

Next we derive the distribution Pmn. Similar to the proof of Theorem 2.1, for moment
generating function F(y,z,t)=∑m,n ymznPm,n(t), we have

∂tF=β(z∂yF−y∂yF)+γ(∂zF−z∂zF).

Similarly define

u=y−1, v= z−1, F̃(u,v,t)=F(u+1,v+1,t)=F(y,z,t),

we obtain

∂v F̃+
β

γ

(u

v
−1
)

∂u F̃+
1

γv
∂t F̃=0.

Introduce the parameter r, we get by the method of characteristics

dv

dr
=1,

dt

dr
=

1

γv
,

du

dr
=

β

γ

(u

v
−1
)

,
dF̃

dr
=0. (2.42)

Case 1: β 6=γ. Similar derivation shows

v0= e−γtv, u0= e−βt

(
u− β

β−γ
v

)
+

β

β−γ
e−γtv.

We obtain

F̃(u,v,t)= F̃0=(u0+1)M(v0+1)N

=

[
e−βt

(
u− β

β−γ
v

)
+

β

β−γ
e−γtv+1

]M[
e−γtv+1

]N
.

After suitable manipulations, we get

F(y,z,t)=
(

p1(t)y+q1(t)·(p2(t)z+q2(t))
)M(

p3(t)z+q3(t)
)N

=
M

∑
k=0

(
M

k

)
pk

1(t)y
kqM−k

1 (t)·(p2(t)z+q2(t))
M−k(p3(t)z+q3(t))

N , (2.43)
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which exactly has the probabilistic interpretation as shown in Eqs. (2.40)-(2.41).

Case 2: β=γ. We can show that

v0= e−γtv, u0= e−βtu+βte−βtv

in this case. Substitute into F̃ = (u0+1)M(v0+1)N , we get the same equation (2.43) but
with the pi(t) in the β=γ case.

Remark 2.2. In the off stage, the unspliced mRNA u obeys the binomial distribution.
Given u(t) =m, the conditional distribution of the spliced mRNA s is characterized by
the sum of two independent binomial random variables. Intuitively, s is comprised of
two parts: the new spliced mRNA counts generated from u and the non-degradated
spliced mRNA counts from the initial state. It is also natural to observe that the mean of
(u(t),s(t)) is (Mp1(t),Mq1(t)p2(t)+Np3(t)), which is essentially (2.9)-(2.10).

Corollary 2.1. When the initial distribution Pmn(0)= p0
mn, the solution of Eq. (2.35) is

Poff
mn(t)= ∑

k≥m,l≥n

Poff
mn|kl(t)p0

kl (2.44)

for (m,n)∈N
2.

Invariant Distribution. It is straightforward that the invariant distribution in the off
stage is simply Pmn(∞)=δm0δn0 as t→∞.

2.2.3 On stage with general initial data

Corollary 2.2. When the initial distribution Pmn(0)=δmm0δnn0 , the solution of Eq. (2.21) is

Pon
mn|m0n0

(t)=
m

∑
k=0

n

∑
l=0

Pon
kl|00(t)Poff

m−k,n−l|m0n0
(t), (2.45)

which is the convolution of the distributions Pon
mn|00

(t) and Poff
mn|m0n0

(t). We adopt the convention

that Poff
mn|m0n0

(t)=0 if m>m0 or n>n0.

Proof. To check the result, we only need to note that F̃0 in (2.30) will be replaced by (u0+
1)m0(v0+1)n0 . Thus

F(y,z,t)=Fon(y,z,t)Foff(y,z,t),

where Fon(y,z,t) and Foff(y,z,t) are defined as in (2.32) and (2.43), respectively. This nat-
urally yields to the transition probability (2.45).

Remark 2.3. The above result leads to a recipe to directly generate samples from
Pon

mn|m0n0
(t):

(u(t),v(t))=(X1,Y1)+(X2,Y2+Y3),

where X1,Y1,X2,Y3 are independent random variables with X1 ∼P(a(t)), Y1 ∼P(b(t)),
X2∼B(m0,p1(t)), Y3∼B(n0,p3(t)), and Y2|X2∼B(m0−X2,p2(t)).
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Corollary 2.3. When the initial distribution Pmn(0)= p0
mn, the solution of Eq. (2.21) is

Pon
mn(t)= ∑

k,l∈N

Pon
mn|kl(t)p0

kl , (m,n)∈N
2. (2.46)

3 Inference of RNA velocity

In this section, we will study the inverse problem: the inference of the parameters in the
RNA velocity model from the data. We will mainly revisit the proposals pursued in [3,29]
and briefly mention our new approach [60], which utilizes the full stochastic model to do
the inference.

3.1 Steady state model

The steady state model was first considered in [29]. In this model, one assumes that the
on stage lasts sufficiently long so the state of the system is close to the steady state of the
dynamical system (2.1)-(2.2). Therefore, the upper-right corner points in the (u,s)-plot
can be approximated as steady states. In the steady state, we have

ds

dt
=βu(t)−γs(t)=0,

which means that the mRNA synthesis and degradation are in balance. This balance
condition in the steady state can be utilized to approximate the ratio of degradation and
splicing rates via least squares fitting as

ν∗=
(

γ

β

)∗
=argmin

ν
β2‖u−νs‖2=

uTs

‖s‖2
, (3.1)

where u,s are vectors with components corresponding to the cells in the upper-right cor-
ner points in the (u,s)-plot for each gene. If further assuming that β=1 across all genes
in [29] via scale invariance argument, the RNA velocity is then estimated as

v=(vg)g, vg =ug−ν∗g sg.

Though original, simple and successful, the above steady state model and the treatment
with β=1 for all genes are not good enough assumptions in many cases. In fact, setting
the splicing rates β= 1 for all genes is actually wrong according to the scale invariance
property of the system, which only permits one degree of freedom to be adjusted. These
drawbacks call for more robust and accurate estimation methods for the RNA velocity.

3.2 EM algorithm for the transient models

In this subsection, we will revisit and study the parameter inference using EM algorithm
for transient models. The most related references on this aspect are [3, 60]. To ensure the
computational feasibility, we also employ suitable approximations, which will be stated
in corresponding places below.
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3.2.1 Basic framework of EM

Given the observed data X=(xcg)c=1:nc;g=1:ng , where xcg =(ucg,scg) for cell c and gene g,
we want to maximize the log-likelihood

L(θ;X)= lnP(X|θ)= ln
nc

∏
c=1

ng

∏
g=1

P(xcg|θg)

=
nc

∑
c=1

ng

∑
g=1

lnP(xcg|θg) :=
nc

∑
c=1

ng

∑
g=1

l(θg;xcg). (3.2)

Note that the abundance xcg depends on time tcg and the switch state xs,cg =(us,cg,ss,cg),
which are not observables, we indeed encounter a hidden variable problem. It is natural
to utilize the EM algorithm to do the inference.

Let us introduce the latent variable hcg =(tcg,xs,cg) for c= 1 : nc, g= 1 : ng, where t is
the latent time and xs is the latent switch state. Then the log-likelihood function can be
written as

l(θg;xcg)= lnP(xcg|θg)=lnP(xcg,hcg|θg)−lnP(hcg|xcg;θg)

:=l0(θg;xcg,hcg)+l1(θg;hcg|xcg). (3.3)

Similarly denote the sum of l0(θg;xcg,hcg) and l1(θg;hcg|xcg) with respect to c,g as L0(θ;X,h)
and L1(θ;h|X), respectively. Then

L(θ;X)= L0(θ;X,h)+L1(θ;h|X).

Taking conditional expectation with respect to the distribution of h|X given parameter θ′,
we get

L(θ;X)=Eh|X,θ′ [L0(θ;X,h)]+Eh|X,θ′ [L1(θ;h|X)]

:=Q(θ|θ′)+R(θ|θ′),

where

R(θ|θ′)=−
∫

P(h|X;θ′)lnP(h|X;θ)dh.

The above formulation is the basis of the well-known EM algorithm [11], which can be
stated as below.
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Algorithm 1 EM Algorithm for the RNA Velocity Model.

1. Start with an initial guess for parameter θ(0). Set j=0.

2. Expectation Step: at the (j+1)th step, compute

Q(θ|θ(j))=Eh|X,θ(j)(L0(θ;X,h))

as a function of θ.

3. Maximization Step: determine the new estimate θ(j+1) as the maximizer of Q(θ|θ(j))
over θ.

4. Iterate Steps 2 and 3 until convergence.

It is a classical result that the EM iterations never decreases the log-likelihood L(θ;X).
In fact, if θ maximizes Q(θ|θ′), we have

L(θ;X)−L(θ′;X)=
(
Q(θ|θ′)−Q(θ′|θ′)

)
+
(

R(θ|θ′)−R(θ′|θ′)
)
≥0

since R(θ|θ′)−R(θ′|θ′)=DKL(P(h|X;θ′)||P(h|X;θ))≥0 by the non-negativity of Kullback-
Leibler divergence [10]. This feature guarantees the local convergence of EM iterations.

3.2.2 EM for the deterministic model

For the deterministic RNA velocity model, the latent variable h can be reduced to t since
the switch state xs=x(ts;θ) is uniquely determined. So we will replace h with t in (3.3) in
the deterministic setup. If we assume the observation noise is Gaussian with mean 0 and
variance σ2 for all cells and genes, and the sampling time tcg is uniformly distributed in
a fixed period [0,T], we have

P(xcg,tcg|θg)=P(xcg|tcg;θg)·P(tcg|θg)

=
1

2πσ2
exp

(
−|xcg−x(tcg;θg)|2

2σ2

)
· 1

T
, (3.4)

where x(tcg;θg) is the solution of (2.1)-(2.2) at time tcg with parameter θg. Then

l0(θg;xcg,tcg)= lnP(xcg,tcg|θg)∝−
∣∣xcg−x(tcg;θg)

∣∣2 ,

and

P(tcg|xcg;θg)=
P(xcg,tcg|θg)

P(xcg|θg)
∝ exp

(
−|xcg−x(tcg;θg)|2

2σ2

)
, (3.5)
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where P(xcg|θg) is ignored for its independence with tcg. So we obtain

L0(θ;X,t)∝−‖X−X(t;θ)‖2,

P(t|X;θ)∝ exp

(
−‖X−X(t;θ)‖2

2σ2

)
,

where X(t,θ) :=(x(tcg;θg))c=1:nc;g=1:ng .
According to EM Algorithm, we have

θ(j+1)=argmax
θ

∫ T

0
L0(θ;X,t)·P(t|X,θ(j))dt

=argmin
θ

∫ T

0
‖X−X(t;θ)‖2 exp

(
−‖X−X(t;θ(j))‖2

2σ2

)
dt. (3.6)

In the small noise limit regime, i.e. σ→0, by Laplace asymptotics [2], we get

θ(j+1)=argmin
θ

‖X−X(t(j);θ)‖2, (3.7)

while
t(j)=argmin

t

‖X−X(t;θ(j))‖2. (3.8)

It forms an iteration between the parameter θ and the latent time t. Below we discuss
more detailed procedure in (3.7)-(3.8).

Update of t. Two different models can be utilized in the update step (3.8), which we
term the independent-t model and uniform-t model below. The two different choices lead
to different computational complexity. We further assume that the switch time ts =
(ts,g)g=1:ng is only gene dependent throughout the transient model estimations.

Independent-t model. In this model, we permit the time tcg for different g to be different,
i.e. for a specific cell c, (tcg)g=1:ng are independent. So we can estimate tcg for each c and
g separately.

The fact, that the estimation of (tcg)c=1:nc for different g can be separated, tells that we
only need to consider a fixed g. Given θg and (xcg)1:nc , to estimate the optimal (tcg)1:nc ,
we classify the state of cell c into the on state if tcg ≤ ts,g or off state otherwise. Define the
objective function

d(tcg;xcg,θg)= |xcg−x(tcg;θg)|2, (3.9)

which has only two piecewise smooth parts determined by ts,g. We first compute the

optimal ton
cg and toff

cg by assuming the cell c is in on or off stage, respectively with

ton
cg =argmin

tcg≤ts,g

d(tcg;xcg,θg), toff
cg =argmin

tcg≥ts,g

d(tcg;xcg,θg).
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This optimization is feasible since we know the analytical form of x(tcg;θg). The optimal
estimation of tcg is then obtained by

tcg=

{
ton
cg , if d(ton

cg ;xcg,θg)<d(toff
cg ;xcg,θg),

toff
cg , otherwise.

The computational complexity in this setup is O(2ng) in terms of the analytical function
evaluations of x(t;θ).

Uniform-t model. In this model, we require that the time tcg for different genes are consis-
tent, i.e. tcg = tc for g=1 : ng. This setup is more reasonable in reality, however, it brings
difficulty into the optimization.

In the uniform-t model, the objective functions (3.9) are no longer separated for dif-
ferent genes. Instead, we should consider the minimization of

d(tc;xc,θ)=∑
g

|xcg−x(tc;θg)|2, (3.10)

which generally has ng+1 piecewise smooth parts determined by (ts,g)g=1:ng
. We can first

sort the switch time ts like
ts,g1

≤ ts,g2 ≤···≤ ts,gng
,

and next compute tk
c by minimizing (3.10) in each subinterval [ts,gk

,ts,gk+1
) for k=0,1,··· ,ng

with ts,g0 = 0 and ts,gng+1
= T. Finally we can obtain an optimal tc which minimizes the

objective functions d(tk
c ;xc,θ).

The computational complexity in this setup is O(ng(ng+1)) compared with the inde-
pendent t model.

Update of θ. For different genes g1 and g2, the update of θg1
and θg2 are independent

according to (3.7). So we fix g and consider θg = (αg,βg,γg,ts,g). There is no difference
on the update of θg with independent-t model or uniform-t model because of the inde-
pendence. We will only use the independent-t model formulation for illustration in the
following text.

Define the objective function

d(θg;xg,tg)=∑
c

∣∣xcg−x(tcg;θg)
∣∣2 . (3.11)

The minimization of (3.11) can be performed in different ways. One possible approach
is to do the optimization with respect to the rates (αg,βg,γg) and the switch time ts,g

alternatively, due to the non-smoothness induced by ts,g. Another approach is to reduce
(3.11) into a new function of rates only

d̃(αg,βg,γg)=min
ts,g

d(θg;xg,tg),
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and then optimize d̃ directly. In any case, the objective function is a sum of nc terms with
non-smoothness induced by ts,g. The optimization is not easy and usually stuck in the
local minimum with local convergence methods.

Remark 3.1. We remark here that the choice of P(tcg|θg) = 1/T can be altered, e.g. the
uniform distribution along the curve (u(t),s(t))t∈[0,T] or other proposals, However, this
will increase the computational complexity. When other choices of the observation noise
are taken, the relative scales of the noise on different genes/cells still remain in the norm
‖·‖ in (3.7)-(3.8) even if we consider the zero noise limit regime.

The above EM algorithm with independent-t model in the zero noise limit regime is
utilized in [3].

3.2.3 EM for the stochastic model

It is natural to consider the inference of the stochastic RNA velocity model. In the stochas-
tic setup, the randomness of the switch state xs should be incorporated into the full likeli-
hood. Similarly assume that the observation noise is Gaussian with mean 0 and variance
σ2 for all cells and genes, and the uniform distribution on the sampling time tcg in a fixed
period [0,T]. We have

P(xcg,hcg|θg)=P(xcg|hcg;θg)P(xs,cg|θg)P(tcg|θg),

where

P(tcg|θg)=
1

T
, P(xs,cg|θg)=Pon

xs,cg|0(ts,g;θg),

P(xcg|hcg;θg)=∑
y

Py(tcg;θg)
1

2πσ2
exp

(
−|y−xcg|2

2σ2

)
,

and

Py(tcg;θg)=





Pon
y|0(tcg;θg), tcg ≤ ts,g,

Poff
y|xs,cg

(tcg;θg), tcg > ts,g.
(3.12)

In the zero noise limit σ→0, we get

l0(xcg,hcg|θg)∝ lnP[xcg](tcg;θg)+lnPon
xs,cg|0(ts,g;θg)

in the leading order, where [x] is the Gaussian nearest integer function. So we have

L0(X,h|θ)=∑
c,g

l0(xcg,hcg|θg)

and correspondingly

θ(j+1)=argmax
θ

Eh|X,θ(j)L0(X,h|θ).

The optimization of the above formulation is not trivial. We leave further algorithmic
constructions and practical applications to our continued publication [60].
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4 Dynamical analysis based on RNA velocity

After estimating the rates θr =(αg,βg,γg)g for each gene, one can then compute the RNA
velocity vc ∈R

ng for each cell c=1 : nc via (2.4). One key component of the downstream
analysis is to identify the source (stem cell) and sinks (differentiated cells) in the develop-
mental process based on the obtained RNA velocities. We will discuss the related math-
ematics behind different proposals and give the rationale for this step. The continuum
limit for various velocity kernels and the route-finding algorithm based on transition
path theory will also be discussed.

4.1 Dynamical system view of cell-fate development

Given a single cell, let x(t)∈R
ng denote its gene expression profile (more generally, its

state in cell-fate development) at time t. The evolution of x(t) can be described by a
dynamical system model using the ordinary differential equation (ODE)

dx

dt
= f (x), (4.1)

where the vector field f :Rng →R
ng is determined by the gene regulatory kinetics.

Since the gene expression process is subject to both extrinsic and intrinsic noise [49],
it is also common to model the cell-fate transition dynamics with stochastic ordinary
differential equations (SDE)

dxt= f (xt)dt+σ(xt)dwt, (4.2)

where wt ∈R
k denotes the standard Wiener process, representing the noise from k reac-

tion channels or fluctuating sources, and the matrix σ ∈R
ng×k corresponds to the noise

strength. The model is well-known as the chemical Langevin equation [20] with the ap-
propriate coupling of f and σ.

As noted in [41], the RNA velocity for single cells can be incorporated in such dy-
namical system viewpoint to study the underlying cell-fate dynamics. Currently, there
are two lines of approaches to define the dynamical system utilizing RNA velocity in
existing literatures:

1. The continuous dynamics approach [41]. In this approach, one fits a vector field f̂ (s)
defined on the continuous space, such that f̂ (si)≈ vi for each single cell, where vi

are the estimated RNA velocities. Based on the inferred vector field f̂ , one can
investigate the long-term dynamical properties of (4.1) or (4.2) to model the cell-
fate development. The relevant important concepts include:

• Meta-stable states of cell fates development [23], corresponding to the attrac-
tors x∗ of (4.1) such that f̂ (x∗)=0.
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• Energy landscape of cell fates development [67], which is the realization of
Waddington’s metaphor [55]. Given the stochastic dynamics (4.2), among the
different proposals for constructing energy landscape, one popular choice is
the potential landscape [56] defined as follows. Note that evolution of prob-
ability density p(x,t) in (4.2) can be described by the Fokker-Planck equation
∂t p(x,t) =L∗p, where L∗ denotes the conjugate operator of the infinitesimal
generator L of SDE (4.2) such that

Lu := f̂ ·∇xu+
1

2
D :∇2

xu, L∗u :=−∇x ·( f̂ u)+
1

2
∇2

x : (Du),

where D(x) = σσT and A : B denotes ∑i,j AijBij. The steady-state probability
distribution pss(x) satisfies L∗pss=0, and the potential landscape of the system
can be defined as φ(x)=−lnpss(x).

2. The discrete dynamics approach [3, 29]. With this popular proposal, one utilizes
the RNA velocity vi to construct a Markov Chain defined on individual cells, with
transition probabilities P(si,sj) satisfying ∑

nc
j=1 P(si,sj)=1. Ideally, the constructed

Markov Chain should approximate the continuous dynamics (4.1) or (4.2) in dis-
crete sense. Typical applications of such discrete dynamics include calculating the
steady-state distribution of the system, and detecting roots and ending cells during
development.

A fundamental theoretical question regarding the two approaches, which is also of
noticeable mathematical interest, lies in the consistency issue between the two proposals.
To be more specific, could the constructed discrete dynamics (with transition probabil-
ities defined on individual data points) converge into the correct continuous dynamical
systems, under appropriate limit regimes? In the next subsection, we will conduct a rig-
orous analysis on the different continuum limits of Markov chain dynamics, which are
constructed with various choices of velocity kernels in defining transition probabilities.

4.2 Defining transition probabilities among cells

Let S=(sij)i=1:nc;j=1:ng
∈R

nc×ng be the gene expression matrix of the spliced mRNA. We
also denote

S=(s1,s2,··· ,snc)
T,

where si∈R
ng for i=1:nc. For ease of notation, we also use d=ng for short in the following

analysis.

To define the transition probability among different cells, one should take into account
the randomness introduced by the unknown facts and the directed transition associated
with the RNA velocity [3,29]. The transition between two cells usually involves drift and
diffusion. For the diffusion part, we consider the following two different diffusion kernels:
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• Gaussian kernel

dǫ(si,sj)=h

(
‖si−sj‖2

ǫ

)
, (4.3)

• kNN (k-Nearest Neighbor) kernel

dn(si,sj)= I

(
‖si−sj‖2

ǫnr2
n(si)

)
. (4.4)

Here h(·) in (4.3) is a function with exponential decay, say h(x)∼exp(−x) as x→∞, I(·)
in (4.4) is an indicator function with I(r)=1 for |r|≤1 and 0 otherwise, and

√
ǫnrn(si) is

the location-dependent distance to the knth nearest neighbor of si given n sample points
(n=nc in the above setup).

The kNN kernel can be reformulated as similar form in (4.3). Following [52], we have
the kNN density estimate

qn(x)=
kn/n

Vd ·(
√

ǫnrn(x))d
, (4.5)

where Vd is the volume of the d-dimensional unit ball and qn(x) will uniformly converge
to the true sampling density q(x) under mild conditions on kn and q [12]. It is natural to
choose

ǫn =

(
kn

nVd

) 2
d

→0, as n→∞,

and Theorems A.1 and A.2 in Appendix show that rn(x)
a.s.−→ r(x)+o(

√
ǫn), where r(x)=

(q(x))−1/d. So we can still denote the kNN kernel as

dǫ(si,sj)= I

(
‖si−sj‖2

ǫr2
ǫ(si)

)
, (4.6)

where ǫ=ǫn →0 and rǫ(x)= r(x)+o(
√

ǫ).
For the drift part, we will call it the velocity kernel. Bearing in mind the intuition that

cell i is expected to have high probability of transition towards cell j, when the corre-
sponding change in gene expression δij = sj−si matches the predicted change according
to the velocity vector vi, we consider the following three schemes of velocity kernels:

• Cosine scheme
v(si,sj)= g

(
cos〈δij,vi〉

)
, (4.7)

• Correlation scheme
v(si,sj)= g

(
corr(δij,vi)

)
, (4.8)

• Inner-Product scheme
v(si,sj)= g(δT

ijvi), (4.9)
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where 〈x,y〉 and corr(x,y) are the angle and the Pearson coefficient between the vectors
x and y respectively, and g(x) is a bounded, positive, and non-decreasing function. The
overall transition kernel is then defined by

kǫ(si,sj)=dǫ(si,sj)·v(si,sj).

In what follows, we will analyze the continuum limit of the transition kernel kǫ for Gaus-
sian diffusion kernel combined with different velocity kernels in Sections 4.2.1-4.2.3, and
the analysis for kNN kernel in Section 4.2.4.

Remark 4.1. We remark that the diffusion kernel does not necessarily bring the diffusion
in the final continuum limit of the RNA velocity models as we will see. The use of the
name “diffusion” here only respects the convention that it will introduce diffusion type
limit in the convergence analysis of graph Laplacians [52].

4.2.1 Continuum limit of cosine scheme

The transition probability matrix Pǫ=(pij)i,j=1:nc
among cells through the Gaussian-cosine

scheme is defined by

pij =
kǫ(si,sj)

∑
nc
j=1kǫ(si,sj)

, (4.10)

which was utilized in [3].
To study the continuum limit of Pǫ when the number of samples goes to infinity, we

first study the operator Gǫ defined by

Gǫ f (x)=
1

ǫ
d
2

∫

Rd
kǫ(x,y) f (y)dy. (4.11)

We have the following lemma.

Lemma 4.1. The operator Gǫ for Gaussian-cosine scheme has the expansion

Gǫ f (x)=
1

ǫ
d
2

∫
kǫ(x,y) f (y)dy

=m0 f (x)+
√

ǫm1A f (x)+o(
√

ǫ),

where

m0 :=Gǫ1=
1

ǫ
d
2

∫
kǫ(x,y)dy

=Cd

∫ ∞

0
rd−1h(r2)dr

∫ π

−π
|sinθ|d−2g(cosθ)dθ, (4.12)

m1 :=Cd

∫ ∞

0
rdh(r2)dr

∫ π

−π
cosθ|sinθ|d−2g(cosθ)dθ, (4.13)
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and

A f (x)=‖∇ f (x)‖cos〈v(x),∇ f (x)〉= v̂(x)·∇ f (x), v̂(x) :=
v

‖v‖ .

Here, d>1, Cd=Sd/
∫ π
−π |sinθ|d−2dθ and Sd is the surface area of the d-dimensional unit sphere.

Proof. Let us assume v(x) = ‖v‖(1,0,··· ,0)T without loss of generality. The derived re-
sult can be transformed back to the original variables by substituting (1,0,··· ,0) with the
vector v(x)/‖v‖.

For simplicity, we first consider the case d=2. Define the polar coordinates

{
y1= x1+rcosθ,

y2= x2+rsinθ,

where θ is the angle between y−x and v(x). Then we obtain

Gǫ f (x) =
1

ǫ

∫ ∞

0

∫ π

−π
rh

(
r2

ǫ

)
g(cosθ) f (r,θ)dθdr

r→√
ǫr

=
1

ǫ

∫ ∞

0

∫ π

−π

√
ǫrh(r2)g(cosθ) f (

√
ǫr,θ)dθd

√
ǫr

=
∫ ∞

0
rh(r2)

∫ π

−π
g(cosθ) f (

√
ǫr,θ)dθdr

=
∫ ∞

ǫγ− 1
2

+
∫ ǫγ− 1

2

0

(
rh(r2)

∫ π

−π
g(cosθ) f (

√
ǫr,θ)dθ

)
dr

:= Q1+Q2, (4.14)

where 0<γ< 1
2 . We have

Q1=
∫ ∞

ǫγ− 1
2

rh(r2)
∫ π

−π
g(cosθ) f (

√
ǫr,θ)dθdr

≤Cexp(−ǫ2γ−1)= o(
√

ǫ),

where C depends on ‖ f‖∞ and ‖g‖∞ and we utilized the exponential decay of h(·) and

the inequality
∫ ∞

a xe−x2
dx≤ 1

2 e−a2
for a>0.

For the integral in Q2, by Taylor expansion

f (
√

ǫr,θ)= f (0,θ)+
√

ǫr
∂ f

∂r

∣∣∣
(0,θ)

+o(
√

ǫ),
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we get

Q2=
∫ ǫγ− 1

2

0
rh(r2)

∫ π

−π
g(cosθ) f (

√
ǫr,θ)dθdr

=
∫ ǫγ− 1

2

0
rh(r2)

∫ π

−π
g(cosθ)

(
f (0,θ)+

√
ǫr

∂ f

∂r

∣∣∣
(0,θ)

)
dθdr+o(

√
ǫ)

=
∫ ∞

0
rh(r2)

∫ π

−π
g(cosθ)

(
f (0,θ)+

√
ǫr

∂ f

∂r

∣∣∣
(0,θ)

)
dθdr+o(

√
ǫ)

=m0 f (x)+
√

ǫ
∫ ∞

0
r2h(r2)

∫ π

−π
g(cosθ)

∂ f

∂r

∣∣∣
(0,θ)

dθdr+o(
√

ǫ),

where the extension from the integral domain [0,ǫγ− 1
2 ] to [0,∞) will only introduce an

exponentially small term by similar argument in estimating Q1.
For the O(

√
ǫ) term, note the relation

∂ f

∂r
=

∂ f

∂x1
cosθ+

∂ f

∂x2
sinθ

between polar and Euclidean coordinates, we get

∫ π

−π
g(cosθ)

∂ f

∂r

∣∣∣
(0,θ)

dθ

=
∫ π

−π
g(cosθ)

(
∂ f

∂x1

∣∣∣
x
cosθ+

∂ f

∂x2

∣∣∣
x
sinθ

)
dθ

=‖∇ f (x)‖cos〈v(x),∇ f (x)〉
∫ π

−π
g(cosθ)cosθdθ. (4.15)

This finishes the proof of the case d=2.
In high dimensions, the derivation is similar. We may consider the coordinate trans-

formation from (y1,y2,··· ,yd) to (r,θ,z2,··· ,zd−2) defined by





y1= x1+rcosθ,

y2= x2+rsinθ ·z2,
...

yd−1= xd−1+rsinθ ·zd−1,

yd = xd+rsinθ ·
√

1−∑
d−1
i=2 z2

i ,

(4.16)

where r≥0, −π≤ θ≤π, ∑
d−1
i=2 z2

i ≤1. Denote

z=(z2,··· ,zd−1), zd =

(
1−

d−1

∑
i=2

z2
i

) 1
2

.
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Then the Jacobian
∂(y1,··· ,yd)

∂(r,θ,z2,··· ,zd−1)
=

(−1)d(sinθ)d−2rd−1

zd
.

Therefore, we obtain

Gǫ f (x)=
1

ǫd/2

∫ ∞

0

∫ π

−π

∫

‖z‖≤1
h

(
r2

ǫ

)
g(cosθ) f (r,θ,z)

|sinθ|d−2rd−1

zd
dzdθdr

=
∫ ∞

0
rd−1h(r2)dr

∫ π

−π
|sinθ|d−2g(cosθ)dθ

∫

‖z‖≤1

1

zd
f (
√

ǫr,θ,z)dz.

With Taylor expansion

f (
√

ǫr,θ,z)= f (0,θ,z)+
√

ǫr
∂ f

∂r

∣∣∣
(0,θ,z)

+o(
√

ǫ)

and similar techniques in estimating (4.14) by Laplace asymptotics, we get

Gǫ f (x)=m0 f (x)+
√

ǫ f1(x)+o(
√

ǫ), (4.17)

where

f1(x)=
∫ ∞

0
rdh(r2)dr

∫ π

−π
|sinθ|d−2g(cosθ)dθ

∫

‖z‖≤1

1

zd

∂ f

∂r

∣∣∣
(0,θ,z)

dz.

From the relation

∂ f

∂r

∣∣∣
(0,θ,z)

=
d

∑
i=1

∂ f

∂yi

∂yi

∂r
=

∂ f

∂y1

∣∣∣
x
cosθ+

∂ f

∂y2

∣∣∣
x
sinθz2+···+ ∂ f

∂yd

∣∣∣
x
sinθzd

and noting the integral of odd functions with respect to θ vanishes, we can simplify the
O(

√
ǫ) term as

f1(x)=
∫ ∞

0
rdh(r2)dr

∫ π

−π
Cd|sinθ|d−2cosθg(cosθ)dθ · ∂ f

∂y1

∣∣∣
x

=m1A f (x),

where we used the result
∫
‖z‖≤1z−1

d dz=Cd.

Given the sample probability density q(x), then the weighted graph Laplacian has the
form

pǫ(x,y)=
kǫ(x,y)

dǫ(x)
, dǫ(x)=

∫
kǫ(x,y)q(y)dy. (4.18)

Define the operator

Pǫ f (x)=
∫

pǫ(x,y) f (y)q(y)dy

and the generator

Lǫ =
Pǫ− I√

ǫ
.
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Theorem 4.1 (Continuum Limit of the Gaussian-Cosine Scheme). For the Gaussian-Cosine
scheme, we have the limit infinitesimal generator

lim
ǫ→0+

Lǫ f =L f :=
m1

m0
v̂(x)·∇ f (x), v̂(x) :=

v

‖v‖ .

Proof. According to Lemma 4.1, we have

Pǫ f (x)=
∫

pǫ(x,y) f (y)q(y)dy

=

∫
kǫ(x,y) f (y)q(y)dy∫

kǫ(x,y)q(y)dy
=

Gǫ( f q)(x)

Gǫq(x)

=
m0 f (x)q(x)+

√
ǫm1v̂(x)·∇( f q)(x)+o(

√
ǫ)

m0q(x)+
√

ǫm1v̂(x)·∇q(x)+o(
√

ǫ)

= f (x)+
√

ǫ
m1

m0
v̂(x)·∇ f (x)+o(

√
ǫ).

Then the theorem follows obviously.

Remark 4.2. Theorem 4.1 implies that in the continuum limit, if m1 6=0 (it holds for general
g(·)), then the Markov semigroup defined by Pǫ corresponds to the ODE dynamics

dx

dt
= v̂(x). (4.19)

In this setup, the source and sink states defined by tracing the integral curves of (4.19)
will be the same as those obtained by solving

dx

dt
=v(x), (4.20)

since the change of the magnitude of the velocity in (4.20) does not affect the shape of the
integral curves but a reparameterization. However, the transition rule defined by (4.10) is
not effective on analyzing the landscape and transition behavior among the pluripotent
and differentiated cells, which will be addressed in the inner-product scheme.

Remark 4.3. The implementation in [3] actually centers both δij and vi. So the cosine
kernel considered in their paper is equivalent to the correlation kernel below but not the
cosine kernel considered here.

4.2.2 Continuum limit of correlation scheme

The correlation scheme has been utilized in [29, 41]. We have similar expansion to the
operator Gǫ for Gaussian-Correlation scheme.
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Lemma 4.2. The operator Gǫ for Gaussian-Correlation scheme has the expansion

Gǫ f (x)=
1

ǫ
d
2

∫
kǫ(x,y) f (y)dy

=m0 f (x)+
√

ǫm1A f (x)+o(
√

ǫ),

where

m0 :=Gǫ1=
1

ǫ
d
2

∫
kǫ(x,y)dy

=





Cd−1

∫

R

∫ ∞

0
rd−2h(r2+µ2)drdµ

∫ π

−π
|sinθ|d−3g(cosθ)dθ, d>2,

∫

R

∫ ∞

0
h(r2+µ2)[g(1)+g(−1)]drdµ, d=2,

m1 :=





Cd−1

∫

R

∫ ∞

0
rd−1h(r2+µ2)drdµ

∫ π

−π
cosθ|sinθ|d−3g(cosθ)dθ, d>2,

∫

R

∫ ∞

0
rh(r2+µ2)[g(1)−g(−1)]drdµ, d=2,

and

A f (x)= P̂1v(x)·∇ f (x), P̂1v :=
P1v

‖P1v‖ .

Proof. Define projection operator

Pnx :=(I−n̂⊗n̂)·x,

where n is the normal vector and n̂=n/‖n‖. Then the correlation between vectors x and
y is

corr(x,y) :=cos〈P1x,P1y〉,

where 1 = (1,··· ,1)T. It is not difficult to find that the correlation between x and y is
invariant with respect to the rotations in the hyperplane which is normal to 1. With this
observation, we utilize a new coordinate system which maps

1√
d

1 7→1d =(0,··· ,0,1)T,
P1v

‖P1v‖ 7→ (1,0,··· ,0)T.

The derived result can be transformed back to the original variable like Lemma 4.1 in a
straightforward way.

In this new coordinate system, the analysis of correlation scheme is similar to the
cosine scheme for its first d−1 components. Then we may consider the coordinate trans-
formation below from (y1,y2,··· ,yd) to (r,µ,θ,z2,··· ,zd−2) when d > 2 (the case d = 2 is
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easier and not necessary to do the coordinate transformation since the correlation will be
±1 in this case): 




y1= x1+rcosθ,

y2= x2+rsinθ ·z2,
...

yd−2= xd−2+rsinθ ·zd−2,

yd−1= xd−1+rsinθ ·
√

1−∑
d−2
i=2 z2

i ,

yd = xd+µ,

where r≥0, µ∈R, −π≤ θ≤π, ∑
d−2
i=2 z2

i ≤1. Denote

z=(z2,··· ,zd−2), zd−1=

(
1−

d−2

∑
i=2

z2
i

) 1
2

.

Then the Jacobian

∂(y1,··· ,yd)

∂(r,µ,θ,z2,··· ,zd−2)
=

(−1)d−1(sinθ)d−3rd−2

zd−1
.

Therefore, we obtain

Gǫ f (x)=
1

ǫd/2

∫

R

∫ ∞

0

∫ π

−π

∫

‖z‖≤1
h

(
r2+µ2

ǫ

)
g(cosθ) f (r,µ,θ,z)

· |sinθ|d−3rd−2

zd−1
dzdθdrdµ

=
∫ ∞

0
rd−2h(r2+µ2)drdµ

∫ π

−π
|sinθ|d−3g(cosθ)dθ

·
∫

‖z‖≤1

1

zd−1
f (
√

ǫr,
√

ǫµ,θ,z)dz.

With Taylor expansion

f (
√

ǫr,
√

ǫµ,θ,z)= f (0,0,θ,z)+
√

ǫr
∂ f

∂r

∣∣∣
(0,0,θ,z)

+
√

ǫµ
∂ f

∂µ

∣∣∣
(0,0,θ,z)

+o(
√

ǫ)

and similar techniques in estimating (4.14) by Laplace asymptotics, we get

Gǫ f (x)=m0 f (x)+
√

ǫ f1(x)+o(
√

ǫ), (4.21)

where

f1(x)=
∫

R

∫ ∞

0
rd−1h(r2+µ2)drdµ

∫ π

−π
|sinθ|d−3g(cosθ)dθ

·
∫

‖z‖≤1

1

zd−1

∂ f

∂r

∣∣∣
(0,0,θ,z)

dz.
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Here we have ignored the odd function with respect to µ, then according to the chain rule

∂ f

∂r

∣∣∣
(0,0,θ,z)

=
d

∑
i=1

∂ f

∂yi

∂yi

∂r
,

and noting the integral of odd functions with respect to θ vanishes, we can simplify the
O(

√
ǫ) term as

f1(x)=
∫

R

∫ ∞

0
rd−1h(r2+µ2)drdµ

∫ π

−π
Cd−1cosθ|sinθ|d−3g(cosθ)dθ · ∂ f

∂y1

∣∣∣
x

=m1A f (x).

The proof is done.

Then, similar to Theorem 4.1, we get the generator L.

Theorem 4.2 (Continuum Limit of the Gaussian-Correlation Scheme). For the Gaussian-
correlation scheme, we have the limit infinitesimal generator

lim
ǫ→0+

Lǫ f =L f :=
m1

m0
P̂1v(x)·∇ f (x).

Remark 4.4. Theorem 4.2 implies that in the continuum limit of correlation scheme, if
m1 6=0, the Markov semigroup defined by Pǫ corresponds to the ODE dynamics

dx

dt
= P̂1v(x). (4.22)

This means the effective velocity of the correlation scheme is

ṽ(x)=(I−1·1T)·v(x)

which will introduce bias into the final result in the identification of root and ending cells.
We speculate that the correlation scheme has the possibility to give undesired result in
the sense that it is not exactly respect to the inferred velocity.

4.2.3 Continuum limit of inner-product scheme

The inner-product scheme is constructed similar to diffusion map [9]. Related idea and
methodology has been utilized to analyze the scRNA-seq data analysis [46, 57, 68].

Given the sample probability density q(x), we define a new kernel

k
(α)
ǫ (x,y)=

kǫ(x,y)

qα
ǫ(x)qα

ǫ (y)
, qǫ(x)=

∫
kǫ(x,y)q(y)dy. (4.23)

Then we apply the weighted graph Laplacian normalization to this kernel by

pǫ,α(x,y)=
k
(α)
ǫ (x,y)

d
(α)
ǫ (x)

, d
(α)
ǫ (x)=

∫
k
(α)
ǫ (x,y)q(y)dy. (4.24)
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The application of the above construction to the RNA velocity data is straightforward by
replacing the density q(x) with the empirical data distribution of the cell states, i.e.

q(x)=
1

nc

nc

∑
j=1

δ(x−sj).

To study the continuum limit in space and time, we define the operator

Pǫ,α f (x)=
∫

pǫ,α(x,y) f (y)q(y)dy

and the generator

Lǫ,α=
Pǫ,α− I

ǫ
.

First let us define Gǫ as in (4.11). We have the following lemma.

Lemma 4.3. The operator Gǫ for Gaussian-Inner-product scheme has the expansion

Gǫ f (x)=
1

ǫ
d
2

∫
kǫ(x,y) f (y)dy

=m0g(0) f (x)+ǫ
m2

2
A f (x)+o(ǫ),

where the moments

m0 :=
∫

h(‖y‖2)dy, m2 :=
1

d

∫
‖y‖2h(‖y‖2)dy

and
A f (x)=‖v(x)‖2g′′(0) f (x)+2g′(0)v(x)T∇ f (x)+g(0)∆ f (x).

Proof. The key idea is to utilize the Laplace asymptotics similar as in estimating (4.14).
With inner-product scheme, we have

kǫ(x,y)=h

(‖x−y‖2

ǫ

)
g((y−x)Tv(x)).

Make the decomposition

Gǫ f (x)=
1

ǫ
d
2

∫

‖x−y‖>ǫγ
+

1

ǫ
d
2

∫

‖x−y‖≤ǫγ
kǫ(x,y) f (y)dy

:=Q1+Q2,

where 0<γ< 1
2 . Let y= x+

√
ǫz. The term

Q1=
∫

‖z‖>ǫγ− 1
2

h(‖z‖2)g(
√

ǫv(x)Tz) f (x+
√

ǫz)dz

≤Cǫ
1
2−γexp(−ǫ2γ−1)= o(ǫ)
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where C depends on ‖ f‖∞ and ‖g‖∞ , and we utilized the exponential decay of h(·) and

the inequality
∫ ∞

a
e−x2

dx≤ (2a)−1e−a2
for a>0.

For the integrand in Q2, we have

g(
√

ǫvTz) f (x+
√

ǫz)= g(0) f (x)+
√

ǫP1+ǫP2+o(ǫ)

by Taylor expansion, where

P1=zT
(

g′(0) f (x)v+g(0)∇ f (x)
)

,

P2=
1

2
Tr
(

zzT ·
(

2g′(0)∇ f (x)vT+g′′(0) f (x)vvT+g(0)∇2 f (x)
))

.

Here Tr(·) is the matrix trace operation.
By the rotation symmetry of ‖z‖2 and the fact that the integral of an odd function is

zero, we obtain

Q2=
∫

‖z‖≤ǫγ− 1
2

(
h(‖z‖2)g(0) f (x)+

1

2d
ǫh(‖z‖2)‖z‖2A f (x)

)
dz+o(ǫ)

=
∫ (

h(‖z‖2)g(0) f (x)+
1

2d
ǫh(‖z‖2)‖z‖2A f (x)

)
dz+o(ǫ)

=m0g(0) f (x)+ǫ
m2

2
A f (x)+o(ǫ),

where the extension of the integral domain from ‖z‖≤ǫγ− 1
2 to the whole space will only

introduce an o(ǫ) term by similar argument in estimating Q1.

Theorem 4.3 (Continuum Limit of the Gaussian-Inner-product Scheme). For the Gaussian-
inner-product scheme, we have the limit infinitesimal generator

lim
ǫ→0+

Lǫ,α f =Lα f :=
m2

m0

(
1

2
∆ f +

(
(1−α)

∇q

q
+

g′(0)
g(0)

v

)
·∇ f

)
. (4.25)

Proof. First note that pǫ,α in (4.24) is invariant under any multiplicative scaling applied to

k
(α)
ǫ . So we can assume in what follows that the normalization ǫd/2 is implicitly contained

in kǫ(x,y), which will not affect the final result.
According to Lemma 4.3, we have the asymptotics

qǫ(x)=m0g(0)q(x)+ǫ
m2

2
Aq(x)+o(ǫ)

for qǫ defined in (4.23). Correspondingly,

q−α
ǫ (x)=(m0g(0)q(x))−α(1+ǫBq(x)+o(ǫ)), Bq(x)=− αm2

2m0g(0)q(x)
Aq(x).

Define

G(α)
ǫ φ(x)=

∫
k
(α)
ǫ (x,y)φ(y)q(y)dy.
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Then

G(α)
ǫ φ(x)=q−α

ǫ

∫
kǫ(x,y)φ(y)q−α

ǫ (y)q(y)dy

=q−α
ǫ

∫
kǫ(x,y)φ(y)

q1−α(y)

(m0g(0))α
(1+ǫBq(y)+o(ǫ))dy

=q−α
ǫ (x)φ(x)(m0g(0)q(x))1−α(1+ǫBq(x)+o(ǫ))

+ǫq−α
ǫ (x)

m2

2
(m0g(0))−αA(φ(x)q1−α(x))+o(ǫ). (4.26)

So we obtain

Pǫ,α f (x)=
∫

pǫ,α(x,y) f (y)q(y)dy=
G(α)

ǫ f (x)

G(α)
ǫ 1(x)

= f (x)+
ǫm2

2m0g(0)q1−α(x)

(
A( f (x)q1−α(x))− f (x)Aq1−α(x)

)
+o(ǫ)

= f (x)+ǫLα f (x)+o(ǫ). (4.27)

Finally we get

lim
ǫ→0+

Lǫ,α f (x)= lim
ǫ→0+

1

ǫ
(Pǫ,α f (x)− f (x))=Lα f (x).

The proof is done.

Corollary 4.1. If we choose h(·),g(·) such that m2=2, m0=1 and g′(0)= 1
2 g(0), then

Lα f (x)=

(
v(x)+2(1−α)

∇q

q

)
·∇ f (x)+∆ f (x),

which is the generator of the stochastic differential equations (SDEs)

dx(t)=

(
v(x)+2(1−α)

∇q

q
(x)

)
dt+

√
2dw(t), (4.28)

where w(t) is the standard Brownian motion with mean 0 and covariance function
E(w(t)w(s))=min(t,s). In general case, similar SDE holds with suitable constants m0,m2,g(0)
and g′(0).

Define the data potential
V(x)=−logq(x).

Then the SDEs (4.28) becomes

dx(t)=(v(x)−2(1−α)∇V(x))dt+
√

2dw(t),

where the drift term is composed of the gradient part −∇V(x) from the scRNA-seq sampling
distribution, and the non-gradient part from the RNA velocity v(x). Specifically, if we choose
α= 1, then the transition probability will not depend on the data potential V(x) in the infinite
samples limit. This structure opens the way of studying the non-equilibrium steady state and
landscape theory for cell developments with scRNA-seq experimental data [18, 46, 57, 65, 67, 68].
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Remark 4.5. In [4], the authors proposed a class of local kernels to approximate the
SDE (4.2), which is consistent with our analysis of the inner-product scheme. Note

that one typical choice of local kernel is exp(− ||x−y−ǫv(x)||2
2ǫ ) = exp(− ||x−y||2

2ǫ )exp(−(y−
x)Tv(x))exp(− 1

2 ǫ||v(x)||2), whose difference with kǫ(x,y) in inner-product scheme is up
to O(ǫ) in g(·), incurring no difference in the limit of infinitesimal generator.

Remark 4.6. In [29], the transition probabilities among cells were constructed through
averaging a RNA velocity-based dynamics and a diffusion-based dynamics. For instance,
we consider the transition matrix Pω

ǫ,α =ωP i
ǫ,α+(1−ω)P d

ǫ,α, where P i
ǫ,α is the transition

probability matrix from inner-product kernel, P d
ǫ,α from pure diffusion kernel and 0 <

ω<1 is the weight of averaging. Next we provide an understanding of Pω
ǫ,α based on the

decomposition of SDE (4.2) into the equilibrium and non-equilibrium parts [1, 56, 61, 67].

For simplicity, let us assume that the ground-truth dynamics underlying cell-fate de-
velopment is dx(t) = v(x)dt+

√
2dw(t) and the distribution of all data points approxi-

mates its steady-state distribution pss(x), which can be guaranteed by the ergodicity of
dynamics. With the defined potential landscape φ=−lnpss, the velocity term can be de-
composed [56] as v(x)=−∇φ(x)+ℓ(x),ℓ(x)= Jss(x)/pss(x), where Jss=vpss−∇pss is the
steady-state probability flux satisfying ∇· Jss =0. In terms of the statistical physics inter-
pretation [18], the gradient term ∇φ can be viewed as the equilibrium part of velocity,
and the curl-like term ℓ(x) is the non-equilibrium part.

With the assumptions above, we apply our results in Corollary 4.1 to the infinitesimal
generator of averaging dynamics defined by Pω

ǫ,α, and conclude that its continuum limit
has the form

dx(t)= [−(ω+2(1−α))∇φ(x)+ωℓ(x)]dt+
√

2dw(t),

and the relative proportion of non-equilibrium part ω/(ω+2(1−α)) is an increasing
function of ω if 0< α< 1. Therefore the introduction of weight ω can be understood as
tuning the relative weight of equilibrium and non-equilibrium parts of the RNA velocity.

4.2.4 Implications of kNN kernels

Sometimes people prefer kNN diffusion kernel with less computational effort due to the
sparsity of transition matrix. For example, [3] used kNN-cosine kernel and [41] used
kNN-correlation kernel. We will show that for kNN diffusion kernel, the conclusions
above still hold with slight difference.

Lemma 4.4. Suppose q(x)> 0 everywhere. Let r(x) = (q(x))−1/d be the location-dependent
bandwidth function. The operator Gǫ for kNN-cosine scheme has the expansion

Gǫ f (x)=
1

ǫ
d
2

∫
kǫ(x,y) f (y)dy

=m0(x) f (x)+
√

ǫm1(x)A f (x)+o(
√

ǫ),
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where

m0(x) :=Gǫ1=
1

ǫ
d
2

∫
kǫ(x,y)dy

=Cd

∫ r(x)

0
rd−1dr

∫ π

−π
|sinθ|d−2g(cosθ)dθ, (4.29)

m1(x) :=Cd

∫ r(x)

0
rddr

∫ π

−π
cosθ|sinθ|d−2g(cosθ)dθ, (4.30)

and
A f (x)=‖∇ f (x)‖cos〈v(x),∇ f (x)〉= v̂(x)·∇ f (x), v̂(x) :=

v

‖v‖ ,

i.e. we just replace constants m0,m1 in Lemma 4.1 with functions m0(x),m1(x).

Proof. The proof is similar to Lemma 4.1. We only use the case d=2 as an example. Now
we have

Gǫ f (x)=
∫ rǫ(x)

0
r
∫ π

−π
g(cosθ) f (

√
ǫr,θ)dθdr

=
∫ rǫ(x)

0
r
∫ π

−π
g(cosθ)

(
f (0,θ)+

√
ǫr

∂ f

∂r

∣∣∣
(0,θ)

)
dθdr+o(

√
ǫ)

=
∫ r(x)

0
r
∫ π

−π
g(cosθ)

(
f (0,θ)+

√
ǫr

∂ f

∂r

∣∣∣
(0,θ)

)
dθdr+o(

√
ǫ)

=m0(x) f (x)+
√

ǫm1(x)A f (x)+o(
√

ǫ),

where we utilized the result rǫ(x)
a.s.−→ r(x)+o(

√
ǫ) based on the Theorem A.2 in the Ap-

pendix.

Now we can derive the limit infinitesimal generator.

Theorem 4.4 (Continuum Limit of the kNN-Cosine Scheme). For the kNN-cosine scheme,
we have the limit infinitesimal generator

lim
ǫ→0+

Lǫ f =L f :=
m1(x)

m0(x)
v̂(x)·∇ f (x)= c·r(x)v̂(x)·∇ f (x),

where c is a constant only related to g(·) and dimension d.

The results for kNN-correlation scheme is similar.

Remark 4.7. Based upon similar argument in Remark 4.2, the kNN-cosine scheme will
give the same root and ending cells produced by Eq. (4.20) in the large n limit. The case
with q(x)=0 is beyond our analysis framework. The kNN-inner-product scheme needs
more delicate order analysis on the convergence of rǫ(x) to r(x), which is considered in
the Appendix.
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Remark 4.8. In [29], the authors combined Gaussian diffusion kernel with kNN kernel,
i.e.

dǫ(si,sj)= I

(
‖si−sj‖2

ǫr2
ǫ(si)

)
h

(
‖si−sj‖2

ǫ

)
.

The overall analysis is similar. We only need to replace m0(x) in (4.29) with

m0(x)=Cd

∫ r(x)

0
rd−1h(r2)dr

∫ π

−π
|sinθ|d−2g(cosθ)dθ

by inserting h(r2) in the integral of r. The change of m1(x) is similar. The final limit
infinitesimal generator is still

L f (x)=
m1(x)

m0(x)
v̂(x)·∇ f (x).

4.3 Finding root and ending cells

The root-and-ending cells finding algorithm has been proposed in [3,29]. The aim of this
section is to study its rationale through the continuum limit perspective.

From the derived continuum limits in Theorems 4.1 and 4.3, it is natural to identify the
ending cells, i.e. the final differentiated cells, by selecting states with nonzero probability
(or higher than a threshold in practice), from the invariant distribution π of the transition
probability matrix Pǫ=(pǫ

ij)i,j=1:nc
:

πT=πTPǫ.

In the limit case as studied in Theorem 4.1, these ending cells corresponding to the ab-
sorbing states of the ODE flow map

dx

dt
=v(x). (4.31)

In this case, the limit ODE flow map is not irreducible, thus the invariant distributions
are not unique in general. We should start from different, or random initial distributions
at the beginning.

The identification of root cells, usually the stem cells, is more subtle. One first defines
the backward transition probability matrix P̃ǫ =( p̃ǫ

ij)i,j=1:nc
by

p̃ǫ
ij =

pǫ
ji

∑k pǫ
ki

, (4.32)

which is the row-normalization of PT
ǫ ; then identify the root cells by selecting states with

probability above a threshold in the invariant distribution π̃ of P̃ǫ.
To motivate the intuition of the above proposal, let us first study the continuous time

limit of P̃ǫ in the discrete states setup.
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Theorem 4.5. If A is the generator of a finite state Markov chain with transition probability
matrix Pǫ. Then, the generator of the backward transition probability matrix P̃ǫ is

Ã=AT−diag(AT ·1). (4.33)

Proof. By definition, we have

Aij= lim
ǫ→0+

1

ǫ
(pǫ

ij−δij), i.e. pǫ
ij =δij+ǫAij+o(ǫ),

where δij is the Kronecker’s delta function. So we get

Ãij= lim
ǫ→0+

1

ǫ
( p̃ǫ

ij−δij)= lim
ǫ→0+

1

ǫ

(
pǫ

ji

∑k pǫ
ki

−δij

)

= lim
ǫ→0+

1

ǫ

(
ǫAji+δji

∑k(ǫAki+δki)
−δij

)

= lim
ǫ→0+

1

ǫ

ǫAji+δji−δij ∑k(ǫAki+δki)

∑k(ǫAki+δki)

=Aji−δij∑
k

Aki.

The theorem follows obviously.

Next, we consider the similar limit in continuous states case.

Theorem 4.6 (Continuum Limit of the Backward Process). For transition kernel pǫ(x,y)
and operator Pǫ f (x)=

∫
pǫ(x,y) f (y)dy, define the corresponding backward counterparts

p̃ǫ(x,y)=
pǫ(y,x)∫
pǫ(y,x)dy

, P̃ǫ f (x)=
∫

p̃ǫ(x,y) f (y)dy.

Then if L is the limit infinitesimal generator of Pǫ which satisfies

L f = lim
ǫ→0+

1

ǫ
(Pǫ f − f ),

we have the infinitesimal generator of P̃ǫ

L̃ f = lim
ǫ→0+

1

ǫ
(P̃ǫ f − f )=L∗ f − fL∗1, (4.34)

where L∗ is the conjugate operator of L, i.e. (L f ,g)=( f ,L∗g).
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Proof. Consider the operator

P∗
ǫ g(x)=

∫
pǫ(y,x)g(y)dy.

It is straightforward that P∗
ǫ is the conjugate of Pǫ, i.e. (Pǫ f ,g)=( f ,P∗

ǫ g), and we have

( f ,L∗g)=(L f ,g)= lim
ǫ→0+

1

ǫ
(Pǫ f − f ,g)= lim

ǫ→0+

1

ǫ
( f ,P∗

ǫ g−g).

This implies

L∗g= lim
ǫ→0+

1

ǫ
(P∗

ǫ g−g) , P∗
ǫ g= g+ǫL∗g+o(ǫ).

Besides, it is obvious that

P̃ǫ f (x)=
P∗

ǫ f (x)

P∗
ǫ 1(x)

.

So we have

L̃ f (x)= lim
ǫ→0+

1

ǫ

(
P̃ǫ f (x)− f (x)

)

= lim
ǫ→0+

1

ǫ

(P∗
ǫ f (x)

P∗
ǫ 1(x)

− f (x)

)

= lim
ǫ→0+

1

ǫ

(
ǫL∗ f (x)+ f (x)+o(ǫ)

ǫL∗1(x)+1+o(ǫ)
− f (x)

)

= lim
ǫ→0+

1

ǫ

(
ǫL∗ f (x)−ǫ f (x)L∗1+o(ǫ)

ǫL∗1(x)+1+o(ǫ)

)

=L∗ f (x)− f (x)L∗1(x).

The proof is done.

Now we apply Theorem 4.6 to two most relevant cases.

• ODE case: L f (x)=v(x)·∇ f (x).

In this case, we have

L̃ f (x)=L∗ f (x)− f (x)L∗1(x)=−v(x)·∇ f (x).

This corresponds to the ODE

dx

dt
=−v(x),

which is exactly the reversed time dynamics of (4.31).
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• SDE case: L f (x)=v·∇ f (x)+∆ f (x).

In this case, we have

L̃ f (x)=L∗ f (x)− f (x)L∗1(x)=−v(x)·∇ f (x)+∆ f (x).

This corresponds to the SDEs

dx(t)=−v(x)dt+
√

2dw(t).

To apply the theorem to the scRNA-seq data with transition rules (4.10) and (4.24), we
need to take into account the data distribution q(x). Define

Pq,ǫ f (x)=
Pǫ( f q)(x)

Pǫq(x)
=

∫
pǫ(x,y) f (y)q(y)dy∫

pǫ(x,y)q(y)dy
.

It is not difficult to show that

Lq f (x)= lim
ǫ→0+

1

ǫ

(
Pq,ǫ f (x)− f (x)

)
=

L( f q)(x)− f (x)Lq(x)

q(x)
.

Correspondingly, for

P̃q,ǫ f (x)=
P̃ǫ( f q)(x)

P̃ǫq(x)
,

we have

L̃q f (x)= lim
ǫ→0+

1

ǫ

(
P̃q,ǫ f (x)− f (x)

)
=

L̃( f q)(x)− f (x)L̃q(x)

q(x)

=
L∗( f q)(x)− f (x)L∗q(x)

q(x)
, (4.35)

where we utilized the conclusion in Theorem 4.6.
From Theorem 4.1 we know that for the cosine scheme with Gaussian diffusion ker-

nel, L f =v̂·∇ f for appropriate h(·) and g(·). Then its conjugate operator L∗ f =−∇·(v̂ f ).
Therefore, we have

L̃q f =−v̂·∇ f =−L f .

Similarly, for correlation scheme, from Theorem 4.2 we also have

L̃q f =−L f .

For the inner-product scheme, from Lemma 4.3 we know that

L f =
m2

2m0g(0)
A f =

m2

2m0g(0)

(
g′′(0)‖v‖2 f +2g′(0)v ·∇ f +g(0)∆ f

)
.
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Then its conjugate operator is

L∗ f =
m2

2m0g(0)
A∗ f =

m2

2m0g(0)

(
g′′(0)‖v‖2 f −2g′(0)∇·(v f )+g(0)∆ f

)
.

Similar to Theorem 4.3, simply replacing A with its conjugate A∗ in the proof, we can
show that

L̃α f =
m2

2m0
∆ f +

m2

m0

(
(1−α)

∇q

q
− g′(0)

g(0)
v

)
·∇ f ,

which is similar as the operator Lα (4.25) except reversing the direction of velocity v.
Overall, the above derivations show that for all of cosine, correlation and inner-

product schemes, if we replace the transition kernel with its backward form, their contin-
uum limit will follow the ODE or SDE dynamics, by reversing the direction of the RNA
velocity v. Similar results also hold for kNN-cosine or kNN-correlation (or Gaussian-
kNN-cosine/correlation) schemes with similar derivations. This gives the rationale of
the identification of root and ending cells through backward and forward transition rules,
respectively.

4.4 Finding development routes: Transition path theory

With the root and ending cells detected by RNA velocity, the next question is to ask how
the cell state evolves along the development trajectories that connect the starting and
target cell fates. Unlike the conventional picture of trajectory inference (such as pseudo-
times), the dynamics revealed by RNA velocity might be more complex, because of local
fluctuations, rotations and oscillations, as well as multiple sources and sinks along the
trajectory. Except for calculating the most probable transition paths in the continuous
set-up [41], the majority of existing tools opt to visualize the trajectories with local ve-
locity arrows or connecting streamlines in the reduced-dimensional space, where a more
quantified and global description of development path is needed.

We reason that the transition path theory [16] might be a good candidate, which has
been established for general Markov process such as diffusion [15], jump [35] and Markov
chains [36], and yielded fruitful applications in molecular dynamics and chemical reac-
tions [5, 34]. Our proposed method to find development routes can be understood as a
discrete, data-driven version of the continuous approach described by [41]. Below we
only focus on the theoretical aspect of our proposal, whose algorithmic details will be
discussed in the continued work [30]. We will mainly follow [34] for the illustration of
the transition path theory, and ignore most proofs of the theorems which can be referred
to [34] for details.

4.4.1 Coarse-graining of transition dynamics

The rapid growth of scRNA-seq data size poses computational challenges to the down-
stream analysis. Therefore we propose an optional step here to first coarse-grain the tran-
sition dynamics on the scale of clusters instead of single-cells to reduce the computational
complexity.
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Definition 4.1 (Coarse-graining of Markov Chain). Given an ergodic, microscopic Markov
chain {xt} on the state space S with transition probability matrix P= {p(x,y)} and a partition
S =∪K

k=1Sk, the coarse-graining of {xt} is defined as a Markov chain {Xt} on the state space
{Sk}K

k=1 with transition probability matrix

Tij = lim
N→∞

N

∑
t=1

1{xt∈Si,xt+1∈Sj}

N

∑
t=1

1{xt∈Si}

, (4.36)

where the limit is taken in the almost sure sense, and 1{·} is the indicator function with 1{exp}=1
if the logical variable exp=TRUE, and 0 otherwise.

We remark that the naive upscaling of the microscopic Markov chain {xt} by consid-
ering the induced transition Xt on the coarse-grained space at each step is not valid since
Xt defined in this way is not necessarily Markovian. This is related to the well-known
lumpability concept in Markov chain theory [14, 27]. Here we take alternative viewpoint
by defining the coarse-grained chain through the time average limit instead of the single
step transition.

The partition of the state space can be achieved by the clustering of cells, or by the
simultaneous reduction of multi-scale dynamics [14, 68]. The coarse-grained transition
probability matrix can be indeed calculated analytically instead of through numerical
simulations:

Proposition 4.1. The coarse-grained transition probability matrix defined by (4.36) can be ex-
pressed as

Tij =

∑
x∈Si

∑
y∈Sj

π(x)p(x,y)

∑
x∈Si

π(x)
.

Proof. Consider the stochastic process yt = (xt,xt+1), which is indeed a Markov chain
with stationary distribution π̃(x,y)=π(x)p(x,y). Then from the ergodic theorem for yt

we have

lim
N→∞

1

N

N

∑
t=1

1{xt∈Si,xt+1∈Sj}= lim
N→∞

1

N

N

∑
t=1

1{yt∈(Si,Sj)}= ∑
x∈Si

∑
y∈Sj

π(x)p(x,y),

and for xt we have

lim
N→∞

1

N

N

∑
t=1

1{xt∈Si}= ∑
x∈Si

π(x).

The proof is done.
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It is also straightforward to verify that the coarse-grained Markov chain Xt with {Tij}
has the stationary distribution µ with µi =∑x∈Si

π(x).
For simplicity of notations to present the transition path, below we take the index of

{Xt} as integer set Z, where t=0 corresponds to the interested time point, and the minus
time points represent the trajectories prior to X0. With this setup, X is stationary and Xt

obeys the invariant distribution always.

4.4.2 Defining transition paths and their probabilities/fluxes

From the forward and backward transition approach described in Section 4.3, we are able
to identify the sets of root and ending clusters, and denote them as committor starting
set A and target set B, respectively. Note that both A and B may contain several states,
corresponding to the complex dynamics of multiple root or ending states and various
connecting trajectories. One advantage of transition path theory indeed lies in the quan-
tification of such dynamics.

To begin with the derivation of transition path theory, we first define the core concepts
of in-transition times and transition paths as follows.

Definition 4.2 (In-Transition Times). For a given path {Xt}, the in-transition times from set
A to B are defined as the union of sets

T =
⋃

n∈Z

{t∈Z| tA
n ≤ t≤ tB

n},

where tA
n and tB

n are the nth exit and entrance time of set A and B respectively such that

XtA
n
∈A, XtB

n
∈B, Xt ∈ (A∪B)c for tA

n < t< tB
n .

Definition 4.3 (Transition Paths). For a given path {Xt}, the nth transition path from A to B
is

Pn={Xk| tA
n ≤ k≤ tB

n}.

The set of all transition paths is defined as P=
⋃

n∈Z{Pn}.

We are interested in quantifying the probability distribution of transition paths en-
semble, which is defined as:

Definition 4.4 (Probability of Transition Paths). The probability of observing transition path
at state i is defined as

mAB
i := lim

N→∞

1

2N+1

N

∑
t=−N

1{Xt=i}1{t∈T }. (4.37)

Intuitively, mAB
i describes the likelihood that the cell is on a transition path from A to

B and bypassing state Si. To compute mAB
i , we need the notion of committor functions

and their associated first entrance/last exit time.
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Definition 4.5 (First Entrance and Last Exit Time). Given the path {Xt} of stationary process
X, the first entrance time τ+

A into set A, and the last exit time τ−
A from set A are defined as

τ+
A := inf{t>0 : Xt∈A},

τ−
A := inf{t>0 : XR

t ∈A}.

where XR
t :=X−t is the path of time-reversed process of Xt, and XR

t has the transition probability

matrix TR
ij =

µ jTji

µi
.

Definition 4.6 (Committor Function). The forward and backward committor functions are
defined as

q+i :=Pi(τ
+
B <τ+

A ), q−i :=P
R
i (τ

−
B >τ−

A ).

Here Pi denotes the probability of the forward process X conditioned on X0= i and P
R
i the proba-

bility of the reversed process XR conditioned on XR
0 = i.

From the definition, we can also interpret q+i as the probability that the cell starting
from cluster Si first enters set B rather than set A, and q−i the probability that the cell
arriving at cluster Si came last from set A instead of B. The committor functions provide
a natural soft clustering of the states by measuring the affinities with starting set A or
target set B.

To compute the committor functions, we can derive the linear equations they satisfy.

Proposition 4.2. The committor functions solve the following discrete Dirichlet problems




∑
k

Tikq+k =q+i , i 6∈A∪B,

q+i =0, i∈A,

q+i =1, i∈B.





∑
k

TR
ik q−k =q−i , i 6∈A∪B,

q−i =1, i∈A,

q−i =0, i∈B.

Proof. Define the Markov chain XA
t with absorbing set A through the transition probabil-

ity

TA
ij =





Tij, i 6∈A,

1, i= j∈A,

0, i∈A, i 6= j

and the hitting time τA
B := inf{t>0: XA

t ∈B} of XA
t into set B. Then we have q+i =Pi(τ

+
B <

τ+
A )=Pi(τ

A
B <+∞). From the Markov property of XA

t , for i∈ (A∪B)c we have

Pi(τ
A
B <+∞)=∑

k

P(τA
B <+∞|X1= k)Pi(X1= k),
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which yields the equation for q+i , since P(τA
B =m|X0 = k)=P(τA

B =m+1|X1 = k) for k∈
(A∪B)c. The equation for q−i is similar. The validation of remaining boundary conditions
are straightforward from the definition of committor function.

With committor functions, we have the following representation of transition paths
probability.

Proposition 4.3. The probability of transition paths defined in (4.37) can be expressed as

mAB
i =µiq

−
i q+i .

The intuition of the above expression is clear. To observe the transition paths at state
i, we pick it with the stationary distribution µi, and require that the path last exit from set
A and first enter the set B. This happens with the probability q−i and q+i , respectively.

Remark 4.9. The proportion ρAB of the time that a cell spends on the transition paths
from A to B has the form

ρAB = lim
N→∞

1

2N+1

N

∑
t=−N

1{t∈T }=
K

∑
i=1

µiq
−
i q+i .

Similarly, we can define the probability flux of transition paths, which is important to
the detection of development routes discussed below.

Definition 4.7 (Probability Flux of Transition Paths).

f AB
ij := lim

N→∞

1

N

N

∑
t=1

(
1{Xt=i,Xt+1=j} ·∑

n

1{tA
n ≤t<t+1≤tB

n}
)

.

Roughly it tells the proportion of cells that are on a transition path from A to B and
moving directly from Si to Sj. We can also write fij in terms of committor functions,
which also serves as the numerical strategy for computation.

Proposition 4.4. The probability flux of transition paths can be expressed as

f AB
ij =µiTijq

−
i q+j .

4.4.3 Finding development routes via transition paths flux

Trajectory inference aims to indicate how the state of cells evolve in a step-wise way. We
therefore define the concept of development routes to illustrate this physical picture.

Definition 4.8 (Development Route). A development route ωdr =(i0,i1,. . .,in) from set A to
B is a path connecting A and B without self-interactions (loops) such that

i0∈A, in ∈B, ij ∈ (A∪B)c and ij 6= ik, for 0≤ j 6= k≤n.
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To quantify development routes of Markov chain Xt, we need to eliminate the effect
of detours along transition paths, and therefore define the notion of effective current (or
net flux) based on the probability flux of transition paths.

Definition 4.9. The effective current of transition paths from state i to j during the transition
from set A to B is defined as

f+ij =max{ f AB
ij − f AB

ji ,0}.

With the effective current, we can specify the capacity of each development route.

Definition 4.10 (Capacity and Bottleneck). Given the development route ωdr =(i0,i1,··· ,in)
from set A to B, its capacity is defined as

c(ωdr)= min
0≤k≤n−1

f+ik ik+1
,

and the bottleneck is defined as the corresponding edge with minimal effective current.

The underlying intuition of the definition can be indeed understood by an analogy
with the stream in water pipes or traffic on the freeways. The capacity of water pipes or
freeways, is limited by the narrowest point where the minimal amount of water stream
or traffic can pass through. Similarly, the transition of cell state from A to B is constrained
by the bottleneck on the development route.

For all the possible development routes, we can calculate their capacity and consider
routes with larger capacity, which corresponds to the more dominant trajectories dur-
ing the transition. The ranking of all development routes capacity can be done effectively
using an iterative edge-removing strategy [35]. We leave the details of algorithmic imple-
mentation of transition path theory to find development routes based on RNA velocity
in our continued work [60].

5 Conclusion

The introduction of RNA velocity allows the prediction of future states in single-cell
RNA sequence (scRNA-seq) data and yields fruitful results to reveal the dynamics of
actual development process [48], while several theoretical issues regarding the models
and analysis of RNA velocity remain to be elucidated. In this paper, we have proposed a
mathematical framework to investigate the modeling, inference and downstream analy-
sis aspects of RNA velocity.

Here we presented both the deterministic and stochastic models of RNA velocity, and
derived the analytical solutions for both models. Particularly, we provided the expression
for the exact probability distribution at any time in stochastic model. With the introduced
models and analytical solutions, we then revisited the algorithms to infer parameters in
RNA velocity model, and proposed an EM algorithm for the newly-derived complete
stochastic model through maximum likelihood estimation.
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Next, we dedicated to the theoretical issues on downstream analysis, particularly fo-
cusing on recovering the dynamical system models from RNA velocity. We derived the
continuum limits of various constructed cell-cell transition dynamics from RNA velocity,
which depended on the choice of velocity kernels (cosine, correlation or inner-product)
and diffusion kernels (Gaussian or kNN). Our analysis revealed that while the cosine
scheme in velocity kernel uncovers the streamlines in the deterministic ODE dynamics
of RNA velocity model, the inner-product scheme corresponds to the stochastic dynam-
ics described by SDE, which can incorporate the transitions among meta-stable states.
Meanwhile the correlation scheme is associated with the deterministic dynamics with al-
tered velocity that might be potentially unwanted. Through the delicate analysis on kNN
kernel, we also proved that the choice of kNN over Gaussian in the diffusion kernel did
not affect the overall continuum limit except for the pre-factors.

Based on our analysis, we then validated the rationale to find root and ending cells
of previously proposed “forward and backward diffusion” strategy [29], from the con-
tinuous dynamical system aspects. It is shown that the difference between forward and
backward transitions in the continuum limit only lies in the reversal of velocity direction.
Finally, we proposed a method to infer the development routes from RNA velocity-based
transition rules, which was specialized to cope with the complex dynamics of multiple
root/ending states and various connecting path. We demonstrated the derivation of the
method from transition path theory for Markov process.

Compared with previous stochastic models of RNA velocity that focused on moment
equations of the chemical master equation [3, 41], the analysis of our proposed stochas-
tic model featured for the derivation of an exact solution for the probability evolution.
Such probability expression is especially useful to derive most-likelihood estimators of
parameters for the stochastic model.

Currently, there exist two major streams of research to infer and analyze the under-
lying dynamics of scRNA-seq data. The first class of data-driven approaches, which are
well represented by pseudo-time inference methods [21,40,53] for snapshot data, seek to
construct development trajectories from the intrinsic manifold representation of data. On
the other hand, the second class of model-based approaches as exemplified by SCUBA [33],
Pseudo-dynamics [17] and Waddington-OT [43], aim to connect the probability distribu-
tion of single-cell data with a continuous dynamical system model, and are widely ap-
plied in the analysis of time-series sequencing data. Weinreb et al. [57] have shown theo-
retically that the fundamental limitations of snapshot data make the data-driven methods
incapable of revealing the complex, non-equilibrium dynamics accurately. Meanwhile
the model-based proposals may encounter difficulties in solving the high-dimensional
Fokker-Planck equations numerically and infer the large amount of parameters in the
model. Here we provide the mathematical justifications that the discrete cell-cell transi-
tion dynamics constructed from RNA velocity, even for snapshot data, can indeed con-
verge into the continuous dynamical system model (not necessarily equilibrium) via the
large sample limit, and we also propose the method to dissect the complex trajectories
of such dynamics with solid theoretical guarantee in the well-established transition path
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theory.
In the future, we anticipate that the RNA velocity model can be further improved

by taking the genetic interactions into account [13], and customizing for the time-series
scRNA-seq data. Overall, our mathematical analysis of RNA velocity in this paper pro-
vides the starting point to develop further models and methods in a more rational and
consistent way.
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Appendix: The kNN radius estimate

In this Appendix, we will prove a useful kNN radius estimate as n→∞, which is sum-
marized in Theorems A.1 and A.2. Although some classical results have been obtained in
the literature concerning the consistency of the kNN density estimate [12,31], the asymp-
totic expansion of the kNN radius is seldom discussed. Our analysis is more direct and
independent of the result considered in [52]. It is not sharp, but enough for our contin-
uum limit analysis of RNA velocity kernels. We leave further delicate order estimate as
a future work.

Consider a random vector X with smooth density function q(x). Given n data points,
we can estimate the density function at x through kNN approach

qn(x)=
kn/n

VdRd
n(x)

,

where Vd is the volume of the d-dimensional unit sphere, Rn(x) is the kNN radius defined
as the distance to the knth nearest neighbor of x. Without loss of generality, we set x=0

and denote Rn =Rn(0). By definition, Rn obeys the order statistics with density

pkn
(r)=

n!

(n−kn)!(kn−1)!
p(r)Fkn−1(r)(1−F(r))n−kn ,

where p(r) is the density of the radius R=‖X‖:

p(r)=
∫

‖x‖=r
q(x)dSx, r≥0 (A.1)

and F is its distribution function F(y)=
∫ y

0 p(r)dr.
Below we will first estimate the expectation of Rn to achieve an intuition about its

scale. We assume q(0)>0 all through the analysis.
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Lemma A.1. Under the condition kn →∞, kn/n→0 and the assumption

E‖X‖=
∫ ∞

0
rp(r)dr=

∫ 1

0
F−1(u)du<∞,

we have

R̄n =ERn = c
− 1

d

d

(
kn

n

) 1
d

[
1+O

(
kn

n

)
+O

(
kn

n

) 2
d

+O(k−1
n )

]
, (A.2)

where cd=Vdq(0).

Proof. For any 0<ǫ≤1, define

Iǫ(n)=
∫ ǫ

0
F−1(u)ukn−1(1−u)n−kndu, I(n)= I1(n).

Then we have

I(n)− Iǫ(n)=
∫ 1

ǫ
F−1(u)ukn−1(1−u)n−kndu

≤
∫ 1

ǫ
F−1(u)(1−ǫ)n−kn du

≤ (1−ǫ)n−knE‖X‖=O(ηn
ǫ ),

where ηǫ is a generic constant belongs to (0,1), which can be taken as ηǫ =(1−ǫ)
1
2 in the

current step as long as kn ≤n/2.

Now let us consider Iǫ(n). We need to estimate the order of F−1(u) when u is small.
For small δ>0, we have

F(δ)=
∫

‖x‖≤δ
q(0)+xT∇q(0)+

1

2
xT∇2q(0)x+O(‖x‖3)dx

=δdVdq(0)+
Vd∆q(0)

2(d+2)
δd+2+O(δd+3)

=δd(cd+adδ2+O(δ3))=δd(cd+O(δ2)). (A.3)

Denote G(u) = F−1(u), then G(δd(cd+O(δ2))) = δ. Let u = δd(cd+O(δ2)). We get δ =
O(u1/d), and

G(u)=δ=

(
u

cd+O(δ2)

) 1
d

=

(
u

cd

) 1
d
(

1− O(δ2)

cd+O(δ2)

) 1
d

=

(
u

cd

) 1
d

(1+O(δ2))=

(
u

cd

) 1
d

+O(u
3
d ).
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Therefore we obtain

Iǫ(n)=
∫ ǫ

0
G(u)ukn−1(1−u)n−kndu

=
∫ ǫ

0

((
u

cd

) 1
d

+O(u
3
d )

)
ukn−1(1−u)n−kndu

=
∫ 1

0

((
u

cd

) 1
d

+O(u
3
d )

)
ukn−1(1−u)n−kndu+O(ηn

ǫ )

= c
− 1

d

d B(kn+
1

d
,n−kn+1)+O

(
B
(

kn+
3

d
,n−kn+1

))
+O(ηn

ǫ ),

where B(x,y)=
∫ 1

0 tx−1(1−t)y−1dt is the beta function. Utilizing the asymptotics

B(x,y)=

√
2πxx− 1

2 yy− 1
2

(x+y)x+y− 1
2

(
1+O(x−1)+O(y−1)

)
, x,y≫1,

we obtain

B
(

kn+
1

d
,n−kn+1

)
=Ω

(
1√
kn

(
kn

en

)kn+
1
d

)
≫O(ηn

ǫ ),

B
(

kn+
3

d
,n−kn+1

)
∼
(

kn

n

) 2
d

B(kn+
1

d
,n−kn+1)≫O(ηn

ǫ ),

where Ω(·) is the asymptotic lower bound function and we have used the condition
kn/n→0. Therefore, we get

I(n)= c
− 1

d

d B(kn+
1

d
,n−kn+1)

(
1+O

(
kn

n

) 2
d

)
. (A.4)

Then the expected radius

R̄n=ERn =
∫ ∞

0
rpkn

(r)dr

=
∫ ∞

0
r

n!

(n−kn)!(kn−1)!
p(r)Fkn−1(r)(1−F(r))n−kn dr

=Cn

∫ ∞

0
rFkn−1(r)(1−F(r))n−kn dF(r)

=Cn

∫ 1

0
G(u)ukn−1(1−u)n−kndu=Cn I(n),

where Cn = n!/(n−kn)!(kn−1)!. Using Stirling’s formula and (A.4) we obtain (A.2) im-
mediately.
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Lemma A.1 suggests that the kNN radius Rn(x) has the form Rn(x) = hnrn(x) with
the scale

hn =(kn/(nVd))
1/d→0

and the location dependent bandwidth

rn(x)=q(x)−
1
d +O(hd

n)+O(h2
n)+O(k−1

n ).

Below we first establish the convergence in leading order in almost sure sense.

Theorem A.1. If kn/n→0 and kn/lnn→∞, then

rn(x)→q(x)−
1
d almost surely.

Proof. Set x = 0 without loss of generality. According to the Borel-Cantelli lemma, we
only need to prove that for any small ǫ>0,

∑
n

P(|rn−q(0)−
1
d |>ǫ)<+∞. (A.5)

Denote c=q(0)−
1
d . We have

P(|rn−c|>ǫ)=
∫ c−ǫ

0
+
∫ ∞

c+ǫ
Cnhn p(rhn)Fkn−1(rhn)(1−F(rhn))

n−kn dr

:=P−
ǫ +P+

ǫ .

From (A.3), we have the asymptotics

Fkn−1(rhn)=
(
(rhn)

d(cd+adr2h2
n+O(r3h3

n))
)kn−1

= ckn−1
d (rhn)

d(kn−1)

(
1+

ad

cd
r2h2

n+O(r3h3
n)

)kn−1

= ckn−1
d (rhn)

d(kn−1)exp(r2o(kn)) (A.6)

and

(1−F(rhn))
n−kn =

(
1−rdhd

n(cd+adr2h2
n+O(r3h3

n))
)n−kn

=exp

(
(n−kn)ln

(
1−rdhd

n(cd+adr2h2
n+O(r3h3

n))
))

=exp

(
(n−kn)ln

(
1− rdcdkn

nVd

(
1+

ad

cd
r2h2

n+O(r3h3
n)
)))

=exp

(
− rdcdkn

Vd
+(rd+2+rd)o(kn)

)
. (A.7)
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Define g(x) = xkn−1(1−x)n−kn . Then (kn−1)/(n−1) is the unique maxima of g, and g
is increasing when 0< x< (kn−1)/(n−1) and decreasing when (kn−1)/(n−1)< x< 1.
Utilize (A.3), we can easily show that

F((c+ǫ)hn)>
kn−1

n−1
and F((c−ǫ)hn)<

kn−1

n−1

for small ǫ and big enough n. Then using (A.6) and (A.7) and Stirling’s formula, we
obtain

P+
ǫ ≤

∫ ∞

c+ǫ
Cnhn p(rhn)g

(
F((c+ǫ)hn)

)
dr

≤Cng
(

F((c+ǫ)hn)
)

=Cnckn−1
d (c+ǫ)d(kn−1)h

d(kn−1)
n exp

(
− (c+ǫ)dcdkn

Vd
+o(kn)

)

=O
(

n√
kn

exp
(

kn( f (c+ǫ)− f (c)+o(1))
))

.

where

f (r)=dlnr−q(0)rd.

The function f is increasing when r< c and decreasing when r> c.
With similar estimate for P−

ǫ , we obtain

P(|rn−c|>ǫ)=O
(

n√
kn

ηkn
ǫ

)
,

which is o(n−2) under the condition kn/lnn → ∞. Then (A.5) follows and the proof is
done.

Theorem A.2. If kn/n→0 and kn/nα→∞ for some α>2/(d+2), then for d>1, we have

rn−q(0)−
1
d

hn

a.s.−→0, i.e. rn = c+o(hn) almost surely.

Proof. Similar to Theorem A.1, now we consider

Pǫhn
=
∫ c−ǫhn

0
+
∫ ∞

c+ǫhn

Cnhn p(rhn)Fkn−1(rhn)(1−F(rhn))
n−kn dr

:=Cn,kn,d(I−ǫhn
+ I+ǫhn

),

where Cn,kn,d=Cndckn

d hdkn
n which has the asymptotics

Cn,kn,d=d(q(0)e)kn

√
kn

2π
exp

(
− k2

n

2n
+o
( k2

n

n

))
. (A.8)
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According to the proof of Theorem A.1, for any δ>0 and n big enough, we have

Pδ≪Pδ/2≤Pǫhn
.

Therefore, to estimate Pǫhn
, we only need to estimate Pǫhn

−Pδ. In what follows we will
mainly use the Laplace’s method to estimate I+ǫhn

since the estimation of I−ǫhn
is similar.

First we have

p(rhn)=Sd(rhn)
d−1q(0)+Sd(rhn)

d+1 ∆q(0)

2d
+O((rhn)

d+2)

=dcd(rhn)
d−1+

1

2
Vd∆q(0)(rhn)

d+1+O((rhn)
d+2), (A.9)

where Sd is the surface area of the d-dimensional unit sphere. Utilizing (A.6), (A.7) and
(A.9), we get

I+ǫhn
− I+δ =

∫ c+δ

c+ǫhn

rdkn−1exp

(
− rdcdkn

Vd
+ f1(r)knh2

n+ f2(r)
k2

n

n

+o(knh2
n)+o

(
k2

n

n

))
dr,

where

f1(r)=
ad

cd
r2

(
1− rdcd

Vd

)
, f2(r)=

rdcd

Vd
− r2dc2

d

2V2
d

.

We can verify that f1(c)=0 and f2(c)=1/2. By the arbitrary smallness of δ, we have

I+ǫhn
− I+δ ∼exp

(
o(knh2

n)+
(1

2
+o(1)

) k2
n

n

)∫ c+δ

c+ǫhn

1

r
exp(kn f (r))dr.

Denote

J+δ =
∫ c+δ

c+ǫhn

1

r
exp(kn f (r))dr.

For c+ǫhn < r< c+δ, there exists ξ>0 such that
∣∣∣∣ f (r)− f (c+ǫhn)−

(r−c)2−ǫ2h2
n

2
f ′′(c)

∣∣∣∣≤ ξ
(
(r−c)2−ǫ2h2

n

)
.

We have

J+δ ≥exp(kn f (c+ǫhn))

c+δ

∫ c+δ

c+ǫhn

exp

(( f ′′(c)
2

−ξ
)

kn((r−c)2−ǫ2h2
n)

)
dr

∼exp(kn f (c+ǫhn))

c+δ

∫ ∞

c+ǫhn

exp

(( f ′′(c)
2

−ξ
)

kn((r−c)2−ǫ2h2
n)

)
dr

=
hn exp(kn f (c+ǫhn))

c+δ

∫ ∞

ǫ
exp

(( f ′′(c)
2

−ξ
)

knh2
n(r

2−ǫ2)

)
dr

∼ exp(kn f (c+ǫhn))

2ǫknhn(c+δ)| f ′′(c)/2−ξ| .
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Similar upper bound can be obtained, so we obtain

J+δ =O
(

exp(kn f (c+ǫhn))

knhn

)
=O




exp
(

kn( f (c)+ f ′′(c) ǫ2

2 h2
n+o(h2

n))
)

knhn


.

Therefore,

I+ǫhn
− I+δ =O

(
1

knhn
exp

(
kn

(
f (c)+

1

2
ǫ2h2

n f ′′(c)+o(h2
n)+

(1

2
+o(1)

) kn

n

)))
.

With similar estimate for I−ǫhn
− I−δ , we get

Pǫhn
∼Pǫhn

−Pδ=Cn,kn,d

(
(I+ǫhn

− I+δ )+(I−ǫhn
− I−δ )

)

=O
(

1√
knhn

exp

(
kn

((1

2
ǫ2 f ′′(c)+o(1)

)
h2

n+o
( kn

n

))))
.

If d>1, then h2
n =O

(
( kn

n )
2
d

)
>O( kn

n ). Therefore

P(|rn−r|>ǫhn)=O
(

1√
knhn

exp
(
−ηǫknh2

n

))
.

Under the condition that kn/nα →∞ for some α> 2/(d+2), we have knh2
n/lnn→∞, so

we get the desired estimate.
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