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Abstract. The existence of an infinite sequence of sign-changing solutions are proved
for a class of quasilinear elliptic equations under suitable conditions on the quasilinear
coefficients and the nonlinearity

N
1
Z (bi]'(u)Di]‘M + ZDZbij(u)DiuDju) +f(u) =0 in Q,
ii=1
u=20 on dQ),

where Q € RY is a bounded domain with smooth boundary, and we use

ou 0%u d
= Tx{, D,‘jl/l = Vaxj, and Dzb,‘j(Z) = Eb”(z)
The main interest of this paper is for the case of bounded quasilinearity b;;. The result
is proved by an elliptic regularization method involving truncations of both u and the
gradient of u.
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1 Introduction

In this paper, we study the existence of sign-changing solutions for the following quasi-
linear elliptic equation

al 1

Z <b,‘j(u)Dl‘]‘M + Dzbij(u)DiuDju) + f(u) =0 in Q,
ij=1 2 (1.1)
u=20 on 9(),

where Q € RY is a bounded domain with smooth boundary, and we use the notations

ou o*u d

Diu = a—Xi, Diju = W’ Dzbij(z) = Eb;](Z)

We assume the following conditions on b;; and f. Denote the critical exponent by 2* =
# for N > 3 and 2* = 4o for N = 1,2.

(b1) Let b = b; € CYY(R,R) fori,j = 1,---, N, satisfy that there exist positive con-
stants b_, b, such that

b-|g* < 2@;¢@<mwﬁfmzem ¢ = (&) € RY.
ij=1

(bp) There exist constants g > 2, § > 0 such that

P < ¥ (b4() + 22Diby(2) 2,

i,j=1

g(zblf z)GiCj — 5’5’2) for ze R, ¢&eRN.

i,j=1
(b3) There exists a positive constant ¢ such that
|D.bjj(z) — Dzbjj(w)| < clz—w| for z,w € R.
(by) bjj(z) is evenin z.
(f1) Let f € C(R,R) satisfy that there exist constants ¢ > 0 and r € (2, 2*) such that

1f(z)| <c(1+|z|"7Y) for z€R.
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(f2) There exists a positive constant ¢ such that
1
§Zf(Z) —F(z) > —c for z € R,

where F(z) = [; f(t)dt.

- f(z) _ . f(z)
(f3) lg%? =0, |Z|li>m_~_Oo - = +o0.

(fa) f(z)isoddin z.

For simplicity of notations we use the same c to denote some constants in the above
conditions.

We are looking for weak solutions for Eq. (1.1), namely a function u € H}(Q) N L®(Q)
satisfying

N
1
/Q < ‘.Zl bij(M)DiMDj(p + EDZbij(u)DiuDjuq)> dx
ij=

:/Qf(u)q)dx for ¢ € Cy°(Q)). (1.2)

For semilinear case, this is in the setting of the classical superlinear problems that goes
back to the celebrated paper of Ambrosetti and Rabinowitz [1] (see also the book [24])
in which infinitely many solutions were obtained using the symmetric mountain pass
theorem. Later a sequence of sign-changing solutions were assured to exist in the set-
ting [4,13].

The following is the main result of this paper which establish the above mentioned
results for the case of bounded quasilinearity.

Theorem 1.1. Assume (by)-(bs), (f1)-(fa). Then Eq. (1.1) has infinitely many sign-changing
solutions.

Formally the problem has a variational structure, given by the functional

-1},

The functional I is continuous, but not differentiable on H}(Q2). Historically there have
been several approaches developed for handling this type of non-smooth variational
problems. The critical point theory for nonsmooth functionals has been established,
see [2,3,8,10,11,15]. The authors of the present paper developed a new approach in [16,
17,20, 21], by introducing a p-Laplacian perturbation. The theory in the above papers
were used in [16] to treat the existence of an infinite sequence of sign-changing solutions

N
Y bij(u)DjuDju dx —/ F(u)dx for u € H}(Q).

ij=1 Q
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for a problem similar to Eq. (1.1) but having a quasilinear term b;; of power growth in
u. For some technical reasons, the p- Laplacian perturbation approach does not work
well for the case we consider here, namely the quasilinear term b;; is bounded. The exis-
tence of a nontrivial solution for (1.1) was given in [2,8]. The question on the existence
of sign-changing solutions in particular on whether there exist an infinite sequence of
sign-changing solutions in this case was left open in [8,16].

In this paper we will use a different approach which was used in [22] where localized
solutions for semiclasscial Schrodinger type equations were considered. We outline the
approach here first. Instead of introducing a p-Laplacian perturbation, we truncate the
quadratic form 2%:1 bij(u)DiuDju. Under suitable truncations, up to some level sets
controlled by the truncation, the resulting problem share critical points with the original
problem. More precisely, let u > 0 be a parameter and define a family of functionals

1 ) 1 N
Li(u) :EU/Q|VL£| dx + E/th( ) /Sij(u)DiuDju>dx

ij=1
—/F@ﬂn u e Hy(Q), (1.3)
O
where o > 0 is fixed satisfying
0 < o < min {35, ;b} , (1.4)

h, is a smooth function such that h,(t) = t for t < % and h,(t) = 0 for t > %, with

T > 1being setas T = 2¢° +1 (see Section 2 for details), and B;j(z) = b;j(z) — 06
i,j=1,---,N.

We will verify that I, is a C!-functional on H}(Q)) and satisfies the Palais-Smale con-
dition. The corresponding Euler-Lagrange equation for I, is

ijr

O‘/Q Vquodx—%/Q h;( i\]: ﬁij(u)DiuD]-u> % (,Bij(H)DiMngD

i,j=1 ij=1

+ %Dzbij(z)DiuDju qo) dx
= [ fygax (15)

for ¢ € Hé (Q)). Now assume u is a solution of (1.5) (that is a critical point of (1.3)). Since
the modification of the functional involves point-wisely the first order partial derivatives
we will need some C!-apriori estimates on the critical points of I, under energy bounds.
If u € C'(Q) and satisfies

N
Y Bij(u)DiuDju < :l for x € Q, (1.6)
ij=1
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then u will be a solution of the original equation (1.1). Note that no limit process y — 0
is needed for the existence of critical point of the original problem. By taking smaller y
we obtain more solutions of the original problem. This is the main idea of the approach.
In order to obtain sign-changing critical points of the functional I, we shall apply the
method of invariant sets for descending flow, as developed in [6,18,19]. The idea of
using invariant sets for descending flow for studying sign-changing solutions goes back
to some earlier work for semilinear elliptic boundary value problems, such as in [5,7,9,23]
for the existence of sign-changing solutions and [4, 13] for an infinite sequence of sign-
changing solutions.

Throughout the paper, ¢ denotes various positive constants, ¢, denotes constants de-
pending on . The paper is organized as follows. In Lemma 2.1 we define the truncation
function k. In Lemma 2.2 and Lemma 2.3 we prove the functional [, is a Cl-functional
on H}(Q) and satisfies the Palais-Smale condition. Lemma 2.4 to Lemma 2.8 and Propo-
sition 2.1 are devoted to constructing critical values of the functional I, by the method
of invariant sets for descending flow. In Proposition 2.2 we prove the regularity result as
the gradient estimate (1.6), which completes the proof of Theorem 1.1 consequently.

2 Proof of Theorem 1.1

We start with giving the definition of the function /, used in the truncation for the func-
tional I to get ;.

Lemma 2.1. Given ¢ > 0 there exists a smooth function h € C*([0,00), [0,00)) such that
(1) h(t) =tfort <1.

(2) W(t) =1fort <1, H(t) =0fort > T, = 2e: +1; I'(t) € [0,1], K (t) is decreasing in
t, hence h(t) > th'(t).

(3) |W'(t)|t <e.

Proof. Choose a smooth function ¢ € C*(RR, [0,1]) such that ¢(t) = 1for2 < t < et =
Te— 1, ¢(t) =0fort <1ort> T,. We have

T—1 _
e [0 [Tt 1
R ¢ 2 t

2 €

Now define

o

LY )dT.

|-

=1—
9(t) i
Then0 < g(t) <1,q(t) =1fort <1;4(t) = 0fort > T,; q(t) is decreasing in t and

< e.

<=

7Ol = 2,9(0) <

Now h(t) = fot g(t)dT is the desired function. O
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In the future we choose and fix ¢ and T := T, in the definition of & above such that
E=—. (2.1)
Let 1
hy(t) = ﬁh(yt), te€[0,00), wue(0,1].
We have
(1) hy(t) = tfort < £, 0 < hy(t) < 1.

(2) hy,(t) =W (ut) € [0,1], hy(t) = 1fort < %, hy,(t) =0 for t > L hy, is decreasing,
hence h,(t) > thy,(t).
@) [my(B)[t = |1 (pt)|pt < e.
Lemma 2.2. The functional I, is differentiable and
(DI (u), @)
— [ Vuvgds+ [ 3 By(u)DuD, )
i,j=1
N
- Y (Bij(u)DiuDjg + EDZ,BZ-]-(M)DiuD]-uq)) dx — /Qf(u)q)dx for ¢ € HY(Q).
ij=1

Proof. Let H, be the truncated quadratic term in I,

Hy(u):;/ﬂhy Z:BU DuDu)dx.

The other two terms in I, are “harmless” to the smoothness. We compute the Gateaux
derivative of H,. The Gateaux derivative of H at u in the direction ¢ is defined as

(DG Hy (1), 9) = Tim < (Hiy(u + tg) — Hy(w))

t—0*

Denote u; = u+t¢p, t € [0,1]. Then
1
1 (Hu(u +tg) — H(u))

td 1, &
:/Q t dtz V(Z th DMtDMt>d

N

N
1
—/ dx = / h/ Z (1) Dius D; ut) E (ﬁij(ut)DiutDj(p+EDZﬁij(ut)DiutDjutq)) dt.
ij=

ij=1
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Since
N 1
Z Bij(us) DjusDjuy > (b — U)|Vut|2 > zb_\Vutlz,
ij=1
we have
2 T,
( Z:BZJ Up DutDut) =0 for fb Vil > —
i,j=1 V
Hence
1 rt ) N N 1
t/O hy( Z ,Bij(ut)DilxltDjut> Z (;Bij(ut)Di”tDj§9+EDZ,Bij(Mt)DiutDjut§0>dt
ij=1 ij=1
<cu(|Vol +o]).

By Lebesgue’s dominated convergence theorem we have

(DcH, (1), 9) = lim %(H,,(u 1 tg) — H,(u))

t—0t

N N 1
- /Qh;( .Zl [Bij(u)DiuDju> Y. (ﬁij(u)DiuDj(p+ EDzﬁij(u)DiuDju(p) dx,
ij=

ij=1

(DHy(u), ¢) < ¢y /Q(!Vf/)! +lpDdx <culloll, ¢ € Hy().

The Gateaux derivative DgH,, (1) is a bounded linear functional on Hj(Q). Moreover
DgH, (u) continuously depends on u and there exists a positive constant ¢, such that

IDH, (1) — DHy(0)|] < cullu — 0| for u,v € Hj(Q). (2.2)
In fact denoting wy = tu + (1 — t)v, t € [0,1] for ¢ € H}(Q)), we have
(DcHy (1) — DgHy (), ¢)

N
:/()h%(Z ,31']'( )D;uD, u)( Z [31] DuD](p+ Dzﬁl]( )DiuDjuqo) dx

i,j=1 i,j=1

/ ( Z Bij(v) DivD; v)( Z Bij(v)D; UD](P+ Dz,BU( )Diijz)q)) dx

ij=1 i,j=1

_/ dx/ dt I/l/ Z ,Bz] wy Dth Z{)t)( Z 51] wt DZUtD](P—F DZ,Bl](wt)D wD; ZUKP)}

ij=1 ij=1
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—/ dx/ h’ Z Bij(wt) Diw:D; wt) Z (,Bij(wt)Di(u_v)D]'(P

ij=1 i,j=1

+ D, Bij(w;) (u — v) Djw; D + D, Bij(wi) Di(u — v)Djwt(p) dt
N
1
+/ dx/ h/ Zl 'BZ] w)Djw;D; wt) ‘ZliDithjww)dtDzﬁij(wQ
ij ij=

+ /de /01 hZ(i,jZ_:1 ,Bij(wt)Dithjwt> ( i 2Bij(wt) Di(u — v) Djwy

+ Dzﬁi]'(wf)(u - U)Dithjwt> : ( Z ,Bz] wt D Wt ]§0+ Dzﬁz](wt)D wD; wtq))d
i,j=1

<cy [ (IV(u=0)| + u—o]) (IVg| + |¢])dx
<cullu—o .

In the above we have used the fact that
\dtDZ,Bi]-(wt)| < cldwy| < clu — | |dt],

h;,( i ,Bij(m)Diijwt> = h;f( i ,Bij(wt)Dithjwt)

ij=1 ij=1
T,

1
=0 for ~b_|Vuw|* >
2 "

Since the Gateaux derivative DgH, (1) is a bounded linear functional on H}(Q)) and
continuously depends on u, Hy(u) is Frechet differentiable and the Frechet derivative
DH,(u) = DgH,(u). Finally

(DL(u), ¢)

:a/ VuVedx+ (DH, (1), ¢ /f Yo dx
Q
N

— [ VuVed / A 1) DiuD;
O'/Q uvVedx+ q ; iU u)
N
: 'Zl (ﬁij(u)DiuDj(p + EDZ,B,-]-(u)DiuDjugo) dx — /Qf(u)q)dx
i,j=

for ¢ € H}(Q)). O

Lemma 2.3. I, satisfies the Palais-Smale condition.
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Proof. We have

L (u) — <DIP( u), u)
_(r_ 1t /]Vu|2dx+/ Z’Bl] DuDu) fh’<z,31] DuDu)

i,j=1 i,j=1

Z (:Bl]( )+1uDz,5ij( ))D uDu dx+/ —uf(u)— (u)) dx

Lj=

Sz / |Vu|2dx+/ Iy Z Bij(u) DiuD;j u) (Z Bij(u)DiuD; u)

ij=1

( Zﬁl] DMDM+(q(U (5)—(7 ]Vu] dx+/ u))dx

ij=1
1 1

z<2—q>a/ﬂwdx+;/om<%ﬁﬂuw@—h@(m-fwww

i,j=1 i,j=1

Z Bij(u)DiuD; u}dx—c

i,j=1

1 1 ’
>(= - = —c. 2.
_(2 q)a/Q|Vu| dx —c¢ (2.3)
In the above we have used the fact that

0<;5, W) >0, ;zf(z)—F(z)z—c and Iy (t) > th,(¢).

Let {u,} C H}(Q) be a Palais-Smale sequence of I,. By (2.3), uy, is bounded in Hj(Q).
Assume u, — uin H}(Q), uy, — uin L5(Q)(1 < s < 2%), uy(x) — u(x) ae. x € Q. We
have

0(1) =(DI,(uy) — DI, (un), tty — ti)
ZU/Q IV (1t — 112 dx + (DH,, (1) — DHy (tt), 1ty — th)

— [ (Flot) = Flatm)) 1t = ) i

:a/Q IV (1t — 1) |2 dx + (DH,, (1) — DHy (tt), 1ty — 1) + 0(1). 2.4)

We estimate the term (DH,,(u,) — DHy (), iy — ty;). Assume u,v € Hé(Q). Denote
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=tu+ (1—1t)v, t € [0,1]. We have

(DH,(u) — DHy(v), u — v)

= /Q h;{( i ,Bij(u)DiuDju> i (ﬁ,'j(u)DiuD]'(u —0)+ %Dzﬁij(u)DiuDju(u - v)) dx

/ ( Z Bij(v) DivD; U) i (:51] )DivDj(u —v) + 1D 2Bij(v) DivD;o(u —U)) dx

ij=1
N

_/ dx/ dt Z Bij(w) Djw; Dj wt> ) (,Bij(wt)Dithj(u—v)

ij=1 i,j=1

1
+ szﬁl] wy) Diw; Djw; (u — v))}
N

_/ dx/ h’ 2 (w;) Dyw;D; wt) % (/31] w)Di(u — v)Dj(u — v)
ii=1

i,j=1

J=
+ 2D, Bij(wi) Diwy (u — v) Dj(u — v)) dt

1 N 1
+ /de/o h;( Z 5ij(wt)Dithjwt> Z EDithjwt(u — v)d; D, ij(wy)

N

+/ dx/ 2h” 51] w;) Djw;D; wt)< E (Bij(ws) Djw;Dj(u — v)
+ szﬁij(wt)Dith‘wt(u - v))) dt

Z—CV/ (|V(u—v)—|—]u—v])|u—v|dx+/dx/ h" Zﬁlf ththwt>

i,j=1

2 Bij(wt) DiwDjwy - Z Bij(wt) Di(u — v)Dj(u — v)dt

ij=1 i,j=1
Z—Cy/ (\V(u—v)—i—]u—v])|u—v\dx—2€b+/ IV (u —0)|*dx
o) o)
>~ [ (u-v)Pdx~3eby [ [V(u—0)Pdx 25
> —c; [ (w—0Pdx—3¢by [ |V(u—0)Pdx 25)

Here ¢ is from (2.1) so that eb, = ¢. It follows (2.4), (2.5) that
0(1) 20|ty — > = Beb [ — wm||* — € |ty — |72y +0(1)

1
> 50 lltn =+ 0(1),

uy is a Cauchy sequence, hence a convergent sequence in H} (Q). [
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From the proof of Lemma 2.2 and Lemma 2.3 (see (2.2), (2.5)), we have the following
lemma, which is useful in our proofs later.

Lemma 2.4. There exist positive constants c, and c,, such that

(1) |DHy(u) — DHy(0)|| < cullu — o]

g *
(2) (DH,(u) — DHy(v), u —v) > —EHM —||> — ¢ |u — v|%2(0)'

We construct multiple solutions of the approximate problem (1.5), in particular mul-
tiple sign-changing solutions by the method of invariant sets for descending flow. The
abstract framework is established in [16, 18, 19, 23] generalizing the classical mountain
pass theorems without the setting of invariant sets [1,24].

Proposition 2.1. Let X be a Banach space, f be an even Cl-functional on X and satisfy the
Palais-Smale condition. Let P, Q be open convex subsets of X, Q = —P, W =PUQ, W # @.
Assume there exists an odd map A : X — X satisfying

(A1) Given co, by > 0 there exists b = b(co, bo) such that if || Df(x)|| > bo, | f(x)| < co then

(Df(x),x — Ax) > b||x — Ax|| > 0.

(Az) A(OP) C P, A(0Q) C Q.

Let E be a finite-dimensional subspace of X and B be a ball in E centered at the origin. Define

c=inf sup f(u),
(perueq)(B)\W

I'={¢|¢ € C(B,X), gpisodd, ¢|yp = Id}.
Assume

(C) ¢> 0> sup f(x).
x€oB

Then c is a critical value of f and
K ={x|]x € X\ W, Df(x) =0, f(x) =c} #@.

In the following we verify that I, satisfies all the assumptions of Proposition 2.1 for
a suitable operator A and subsets P, Q and B. In Lemma 2.2 and Lemma 2.3 we have
proved that I, is a C'-functional on H}(Q2) and satisfies the Palais-Smale condition. Now
we define the operator A and the subsets P, Q and verify the assumptions (A1), (A2).
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Definition 2.1. Given u € H}(Q)), define v = Au € H}(Q) by the following equation
(D]u(v), ) :U/Q VoVedx + (DHy(v), ¢) +c), /Q v dx

:/Qf(u)qodx—kc;/ﬂu(pdx for ¢ € Hy(Q), (2.6)

where c,, is the positive constant which appears in Lemma 2.4 and

Ju(v) = ;0’/0 Vo> dx + H,(v) + %clﬁ /sz dx.
Without loss of generality we assume
(f(z) +cpz)z>0 for z€ R
Lemma 2.5. The operator A is well-defined and continuous.

Proof. By Lemma 2.4 we have for v,7 € H}(Q)

(DJu(v) = DJu(v),0 =)
=0l[v = |* + (DHy(v) — DHy(9),0 = 0) + ¢ |0 — vl q

_ o _ 1 _
>allo 7|2 - S0 -] > Sollo -] 27)

DJ,(v) is a strongly monotone operator, hence given u € H}(Q), Eq. (2.6) has a unique
solution v = Au € H}(Q). Moreover assume u, % € H}(Q), v = Au, © = Ali, then

20llo ~ 3l < (DJu(v) ~ DJu(0),0 ~ )

:/Q ( () —f(a))(v—a)dx+c;/0(u—a)(v—a)dx

<|f(u) = f@)| () v =Dl ) + plu = Ul q)lv — Ol

<eu (1f(0) = £l ey + 4 =Tl 2y ) llo = 3,
where % + % = 1. Hence

lo 3| <c, (yf(u) — F@) |y + —mLz(Q)) 0 as@W—u in HI(Q).
We complete the proof. O
Lemma 2.6. There exists a constant c,, such that
IDL ()| < cpllu — Au.

Moreover ,
(DI, (u),u — Au) > Ea”u — Aul].

Consequently the assumption (Aq) holds.
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Proof. Assume u € H}(Q)), v = Au. By the definition of the operator 4,

U/Q VoVedx + (DHyu(v), ¢) + ¢, /quo dx
:/Qf(u)(pdx—l—c;;/ﬂuqodx for ¢ € H)(Q).
We have
(DI,(u), @) = (7/ VuVedx+ (DH,(u / f(u)pdx
:0’/0 V(u—0v)Vedx+ (DHu(u) — DHy(v), @) + ¢, /Q(u —v)pdx.
By Lemma 2.4, we have

ID1y(u)|| < ollu— vl + |[DHy(u) = DHy(0) || + cullu — || < culju —ol|,
(DI,(u),u —v) = o|lu—o|* + (DH,(u) — DHy(v),u —v) +c;|u — v|%2(0)

1
> oflu—o||* = 3eb [lu — o[ = Soflu—o|*

Thus, we complete the proof. O

We define the open convex sets P and Q, and verify the assumption (A;) of Proposi-
tion 2.1.

Definition 2.2. Define the open convex sets P and Q as
P =P, = {u|u € Hy(Q), oS|u—[},q + cilu- ] <1/} Q=—

where uy. = max{=u,0}, c;, is the constant in Lemma 2.4, S = S, (Q) is the Sobolev constant
for the embedding H} (Q)) < L¥(Q), v > 0 is a small constant.

Lemma 2.7. There exists a positive constant vy such that for v < vy, it holds that A(dP) C P,
A(0Q) C Q.

Proof. Assume u € 0Q, v = Au. By the definitions

a*S|u+]U +cj |“+‘L2 =12 (2.8a)
U/QVvVgodx—i— (DH,(v), ¢) —l—c;j/ovqodx
:/ f(u)(pdx—kc;/ updx for ¢ € H}(Q). (2.8b)
0 0

Choose ¢ = v as test function in (2.8b). Since

(DHy(v),v+) = (DHy(v4),04) = 0,
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the left hand side of (2.8b)
LHS 20/ Vo, [Pdx+c;, /Qvi dx
>0—S|v+|U + Cy‘v-i-‘[] (29)
For any T > 0, by the assumptions (f1), (f3), there exists ¢ > 0 such that
|f(2)| < Tlz| 4+ celz| 1
The right hand side of (2.8b),
RHS :/ f(u)vsdx +c, / uvy dx
0 o)
S/ flup)og dx—f—c;j/ u vy dx
0 o)
< /Q(Tqu + e’y Moy dx + ¢, /Q u vy dx

< (IO + el 173 ) i Lyl |y + il [y o+l
2 ﬂ
1-2 v 2
< (w0 er(F5) ) lneluialo i + cilis il
1

§§05|”+|L’ v+ ) + itz )lv+ iz ), (2.10)

provided we choose T and vg such that

1 N7 1
-7 < 0 <= <
7| 408 and CT(US) <2 oS, v<uy
By (2.9) and (2.10), for 0 < v < vp we have
1
Slot [ ) + Eplo+ T2 < 20’S’M+|Lr ) enlur [Ty <V
hence v = Au € Q and A(0Q) C Q. Similarly A(0oP) C P. O

We apply the abstract theorem (Proposition 2.1) to define a sequence of critical values
of the functional I, and estimate the bound of the critical values.

Definition 2.3. Let 0 < Ay < Ay < --- be the eigenvalues of the Laplacian operator —A in
H{(Q) N H?(Q), ey, e, - -, be the corresponding eigenfunctions. Denote

El = Span{elreZ/' o /el}/ Bl = {I/l| uc El/ HuH S Rl}/
where R; > 0 satisfies that I,,(u) < I(u) < 0 for u € E;, ||u|| > R;. Define

c=1inf sup L, (u), 1=23,---,
Pl ucq(B)W

I, = {¢|¢ € C(B), Hy(Q)), ¢ isodd, ¢|ap, = Id}.
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Lemma 2.8. Thereexist 0 < a; < B;,1 =2,3,-- -, such that
a <c(p) <P, 1=23,---, and wa;— +oo as | — +oo.
Proof. Since Id € I';, we have

i) < sup Iy(u) < sup 1(u) == .
BA\W E

By the condition (f;), we can choose T > 0 such that
1 1 1
L(1) 250—/0 IVul?dx — /Q (5 + ~eclul”) dx

210/ |Vul?dx — 1CT/ |u|"dx := L(u).
4 Jo r o Ja
Define -
— 1 e 2 _ r >
M {u‘u € Hy(Q)), 2 /Q |Vu|*dx CT/Q |u|"dx > O}.
By choosing R; large enough, we can assume
0BNM=0Q.
By Lemma 4.5 [16] for vy sufficiently small it holds that
(p(B)\W)NOMNEL, #@ for g€}, 1=23,---. (2.11)

Hence
c(p)=inf sup I,(u)> inf I, (u)> inf  L(u).

Pl e g8 \W u€dMNE;-, u€oMNE;:,
We claim that there exist positive constants T and ¢, independent of u and [ such that

c(u)> inf  L(u)>cAfl:=0a, [1=23,---. (2.12)
u€dMNE;,

Choose p € (r,2*),t € (0,1) such that 1 =  + %. For u € 9M N Ej-,, we have

g 2 _ r 2 2t / P %(1_0
Z/Q\Vu\ dx —cT/Q]u\ dxgcT(/Qu dx) ( Q]u] dx)
Lt L(1-t)
SCT<AI_}1/Q|VL¢|2dx)2 -(cp/Q|Vu]2dx)2

:c;\jf(/o |Vu|2dx>£,

/ |Vul?dx > c)\ﬁt,
0

hence

1 1 2 Lot
— - — — > r—2 i
L(u) ( 2r>a/ |Vu|*dx A

Thus, we complete the proof. O
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We are in a position to prove Theorem 1.1. To do it, we need the following regularity
result for solutions of the quasilinear elliptic equation (2.13), the proof of which will be
given in Appendix.

Proposition 2.2. Let u € H}(Q), DI, (u) = 0and I,(u) < L. Then there exist K > 0, y €
(0,1), depending on L only, such that
[ullcrr @) < K- (2.13)

Proof of Theorem 1.1. Given an integer [ > 2, by Proposition 2.1 there exist u; (1) € H}(Q),
u € (0,1] such that u;(u) is sign-changing, DI, (u;(#)) = 0, &y < I, (u;(p)) < Bi. By
Proposition 2.2 there exist k; = k; (1) > 0,71 = 711(B1) € (0,1) such that [[u; ()| 1 @) <
k. Choose y; such that b k? < 2%1 Denote u; = u;(y;), then

N

1 _

Y~ Bij(ur)DiwyDjuy < by ki < -— for x € Q,
=1 2

)=
N JR—
h;( )3 .Bij(”l)Diuszuz) =1 for x € Q.
=1

u is a sign-changing solution of the original equation (1.1), and I(u;) = I, (u;) = ¢;(p;) >
a; — o0 as | — +o00. We obtain infinitely many sign-changing solutions of Eq. (1.1) O

Remark 2.1. Without the assumptions (bs), (f1), we have the following theorem of three
nontrivial solutions, which is reminiscent of the well known result for semilinear elliptic
equations such as in [7,9,23,25].

Theorem 2.1. Assume (by)-(b3), (f1)-(f3). Then Eq. (1.1) has at least three nontrivial solutions,
one is positive, one is negative and the third is sign-changing.

Again we apply the method of invariant sets of the descending flow, see [6,18,19]. We
leave the detail of proof to the interested readers.

Appendix
Proposition A.1. Assume u € H}(Q), DI, (u) = 0 and I,,(u) < L. Then there exist K > 0,
v € (0,1), depending on L only, such that
lullcrr@ < K- (A1)
First we apply Moser’s iteration to obtain the L*-bound.

Lemma A.1. Assume u € H}(Q), DI,(u) = 0 and I,(u) < L. Then there exists M > 0,
depending on L only, such that
|u[ro(q) < M.
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Proof. First we note that u satisfies the equation

U/QVqu)dx—kAh;(iilﬁij(u)DiuDju) i (,Bij(M)DiMD]'gO

ij=1
+ %Dzﬁi]-(u)DiuDjuqo) dx
= [ fgdx (A2)

for ¢ € H{(Q). Given T > 0. Let u” be the truncated function: u’ = w if [u| < T;
ul = £Tif +u > T. Assume s > 1, take ¢ = |u’|*~2u as test function in (A.2). Notice
that

N N
1
/Qh;l( Z ﬁij(u)DiuD]-u> Z (ﬁij(u)DiuDj(;)+ §Dzﬁij(u)DiuD]-ugo>dx >0,
ij=1 ij=1

we have

(T/QVqu)de/Qf(u)q)dx. (A3)

Choose p = % if N >3 p e (r,4) if N = 1,2. By the Sobolev embedding theorem
and (2.3) in Lemma 2.3,
[ulrrq) < cllull < c(L).

Denote d = 2+§_r, d > 1. Assume

/ |u|5p'5 dx < +oo.
Q
Let T — oo in (A.3), we obtain

(25 — 1)0/ V2|2 dx < / ()] || dx. (A4

o) Q
The left hand side of (A.4),
2
LHS > E/ ]V!u\s’lu‘zdx > E(/ |u|F dx) " (A5)
s JO S Q

The right hand side of (A.4),

RHS §/ c(T+ [u|" ) u|* tdx < C(l —|—/ lu" =2 jul? dx)
o) o)

<e(1+ ([ urar)” ( [l e ax)
Sc(l—i— (/Q\u]s”'%dx) p)

gcmax{l, (/Q]u\s”% dx)Z;}. (A.6)

2+4p—r

")
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By (A.5) and (A.6), we have

1
max {1, (/Q \u|5pdx) Sp} < (cs) 2> max / |u|* a dx
Starting from sy = d > 1, by iteration we obtain
[ulr) < e(1+ [ulir(q)) < e+ [lull) < C(L).
Thus, we complete the proof. O

Proof of Proposition A.1. We write down the quasilinear equation (1.1) in the divergence
form

{ Q(u) = divA,(u, Vu) + Bu(u, Vu) =0 in Q, ©)

u=20 on 0Q),

where Ay (z,p) = (A} (2, p))l 2 €R, p=(p;) € RN and

A;(Z/m:UPi—Fh;l(Zlﬁl] pp]) Zlﬁl] )pj, i=1,---,N,
1] 1]

Bu(z,p) =~ ( 2151] 2)pivy) ElD Bij(2)pip; + f(2)-
i,j i,j
Denote

i

i 0A}
ad = Tp] _0'51] —|—]’l‘u(ljz:1 ,Bz] plp]);Bl]( )

N
+2h”(2ﬁl] plP])Zﬁz; PzZﬁz; 2)pj,

ij=1 =1 =

~.

fori,j =1,---,N. We verify the structure conditions satisfied by the quasilinear equa-
tion (Q) by use of the assumptions (B), (F) and the property of the truncated function /,,.

(1) |Au(z,p)] §a|pr+\( L i) ) | <olpl+ (s —)lpl = bylpl.
2 N N 2
(02) p- Aulzp) = olpP+1( X Byl@piny) X P = olpP

() ¥ a2, p)Ei;

ij=1
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—oiP+1( 3 o) X A+ 26 3 pi@nn) (L pileIn)

1]1 ij=1 1]1 i,j=1

hl/( Z:BZJ Pll?])’ Zﬁlj )pipj - Zﬁl} )GiG;

ij=1

ZOMF—2wAQZZ§UEF for § = (&) € RN

>0l¢)]* —

(ay) Forz,w € R, denote y; = tz+ (1 — t)w, t € (0,1]. Then

Al (z,p) = A (w, p)|

— /01 i ( i Bij(y)pip;) i Bii(vpi |

< /0 h, ( Z ,BZJ PZP]) Z DZ:Bl] yt)P](Z_ dt‘
ij=1
]/ i ( Z Bipipi) Z D:pij(y1)pipj(z Zﬁq yop;at|
i,j=1
<clpl|z —wl.

(b) On the other hand, we have

[Bulz p)| <

i (3 Bi@pn) X Deby(Glpipy| +17(2)

i,j=1 i,j=1
<clplP+AM) < AM)(1+|p*) for zeR, |z <M,
where A(M) is an increasing function from R* to R™.

Assume u € H}(Q), DI,(u) = 0, I,(u) < L. By Lemma A.1, there exists M = M(L)
such that |u|j~) < M. The quasilinear equation (Q) satisfies the natural structure
conditions for elliptic equation. All the assumptions of Corollary 1.5, Theorem 1.7 of [14]
(see also [12]) are fulfilled. Therefore there exist K > 0, v € (0,1) depending only on M,
A such that

H“Hcln(ﬁ) <K

We complete the proof. O
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