
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 3, No. 6, pp. 649-662

DOI: 10.4208/aamm.11-m1111
December 2011

A Priori and a Posteriori Error Analysis of the
Discontinuous Galerkin Methods for
Reissner-Mindlin Plates

Jun Hu1 and Yunqing Huang2,∗

1 LMAM and School of Mathematical Sciences, Peking University,
Beijing 100871, China
2 Hunan Key Laboratory for Computation and Simulation in Science
and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China

Received 18 January 2011; Accepted (in revised version) 21 June 2011

Available online 31 October 2011

Abstract. In this paper, we apply an a posteriori error control theory that we de-
velop in a very recent paper to three families of the discontinuous Galerkin meth-
ods for the Reissner-Mindlin plate problem. We derive robust a posteriori error
estimators for them and prove their reliability and efficiency.
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1 Introduction

This paper will consider a posteriori error analysis of finite element methods for the
Reissner-Mindlin plate problem: given g∈L2(Ω) find

(w, ϕ) ∈ W × Θ := H1
0(Ω)× H1

0(Ω)2,

with
a(ϕ, ψ) + (γ,∇v − ψ)L2(Ω) = (g, v)L2(Ω), for all (v, ψ) ∈ W × Θ, (1.1)

and the shear force
γ = λt−2(∇w − ϕ). (1.2)

Here and throughout this paper, t denotes the plate thickness, λ=Ek/2(1 + ν) the
shear modulus, E the Young modulus, ν the Poisson ratio, and κ the shear correction
factor. Given ϕ∈Θ, the linear Green strain ε(ϕ)=1/2[∇ϕ +∇ϕT] is the symmetric
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part of gradient field ∇ϕ. For all 2 × 2 symmetric matrices the linear operator C is
defined by

Cτ :=
E

12(1 − ν2)

[
(1 − ν)τ + ν tr(τ)I

]
.

The bilinear form a(·, ·) models the linear elastic energy defined as

a(ϕ, ψ) = (Cε(ϕ), ε(ψ))L2(Ω), for any ϕ, ψ ∈ Θ, (1.3)

which gives rise to the norm

∥ψ∥2
C := a(ψ, ψ), for any ψ ∈ Θ, (1.4)

while ∥ · ∥Ch denotes the broken version with the piecewise defined operator εh taking
the place of ε, and (·, ·)L2(Ω) the L2 scalar product.

This plate theory has become a popular plate bending model in the engineering
community due to its simplicity and effectiveness. However, a direct finite element
approximation usually yields poor numerical results, i.e., they are too small com-
pared with the continuous solutions. Such a phenomenon is usually referred to as
shear locking. To weaken or even overcome the locking, many methods have been pro-
posed, most of them can be regarded as reduction integration methods. Very recently,
three class of the discontinuous Galerkin methods are used to discretize the Reissner-
Mindlin plate problems [1, 2]. The aim of this paper is to provide a robust a prior and
a posteriori error analysis for these methods.

2 Notation and preliminary results

We use the standard differential operators:

∇r =
( ∂r

∂x
,

∂r
∂y

)
, curl p =

(∂p
∂y

,−∂p
∂x

)
.

Given any 2D vector function
ψ = (ψ1, ψ2),

its divergence reads

div ψ =
∂ψ1

∂x
+

∂ψ2

∂y
.

With the differential operator

rot ψ =
∂ψ2

∂x
− ∂ψ1

∂y
,

for a vector function ψ=(ψ1, ψ2), the space H0(rot, Ω) is defined as

H0(rot, Ω) :=
{

v ∈ L2(Ω)2, rot v ∈ L2(Ω) and v · τ = 0 on ∂Ω
}

,
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with the unit tangential vector τ of the boundary ∂Ω and the endowed norm ∥v∥H(rot,Ω).
The dual space for H0(rot, Ω) reads

H−1(div, Ω) :=
{

v ∈ H−1(Ω)2, div v ∈ H−1(Ω)
}

,

with the norm ∥v∥H−1(div,Ω).
Suppose that the closure Ω is covered exactly by a regular triangulation Th of Ω

into (closed) triangles or quadrilaterals in 2D or other unions of simplices, that is

Ω = ∪Th and |K1 ∩ K2| = 0, for K1, K2 ∈ Th, with K1 ̸= K2, (2.1)

where | · | denotes the volume (as well as the length of an edge and the modulus of a
vector etc, when there is no real risk of confusion). Let E denote the set of all edges in
Th with E(Ω) the set of interior edges, and N (Ω) the set of interior nodes. E(K) is the
set of edges of the element K, and hK is the diameter of the element K∈Th. Also, we
denote by ωK the element patch defined as

ωK :=
{

T ∈ Th : T̄ ∩ K̄ ̸= ∅
}

,

and by ωE the union of elements having in common the edge E. Given any edge
E∈E(Ω) with length hE=|E| we assign one fixed unit normal

νE := (ν1, ν2),

and tangential vector
τE := (−ν2, ν1).

For E on the boundary we choose νE=ν the unit outward normal to Ω. Once νE and
τE have been fixed on E, in relation to νE one defines the elements K−∈Th and K+∈Th,
with

E = K+ ∩ K− and ωE = K+ ∪ K−.

Given E∈E(Ω) and some Rd-valued function v defined in Ω, with d=1, 2, we denote
by

[v] := (v|K+)|E − (v|K−)|E,

the jump of v across E.
Let K̂ be a reference element. In the case of triangles

K̂ :=
{
(ξ, η) ∈ R2 : 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 − ξ

}
,

and quadrilaterals K̂ :=[−1, 1]2. The invertible linear (resp. bilinear) transformation
K̂→K is denoted by FK for any triangle (resp. quadrilateral) K∈Th with the Jacobian
matrix DFK and its determinant JK.

Let S1
0(Th) denote the lowest order conforming finite element space over Th which

reads

S1
0(Th) :=

{
v ∈ H1

0(Ω), v|K ◦ FK ∈ Q1(K̂), ∀K ∈ Th
}

.
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Given a nonnegative integer k, the space Qk(ω) consists of polynomials of total degree
at most k defined over ω in the case ω=K is a triangle whereas it denotes polynomials
of degree at most k in each variable in the case K is a quadrilateral.

With the first order conforming finite element space S1
0(Th), we consider the

Clément-type interpolation operator or any other regularized conforming finite ele-
ment approximation operator

J : H1
0(Ω) 7→ S1

0(Th),

with the properties

∥∇J φ∥L2(K) + ∥h−1
K (φ −J φ)∥L2(K) . ∥∇φ∥L2(ωK), (2.2a)

∥h−
1
2

E (φ −J φ)∥L2(E) . ∥∇φ∥L2(ωK), (2.2b)

for all K∈Th, E∈E(K), and φ∈H1
0(Ω). The existence of such operators is guaranteed,

for instance, in [4, 11, 17, 23].
The piecewise defined gradient operator is denoted by ∇h, and εh is the piecewise

counterpart of ε for elements in Θh. The broken H1 norm ∥ · ∥1,h is defined as

∥vh∥1,h :=
(

∑
K∈Th

∥vh∥2
H1(K)

) 1
2
, for all vh ∈ W + Wh.

Here and throughout this paper, Θh⊂L2(Ω)2 and Wh⊂L2(Ω) denote some finite ele-
ment spaces over some regular partition Th while Rh denotes the reduction integration
operator in the context of shear locking with values in the discrete shear force space
Γh.

We need some further notation for discontinuous Galerkin methods under consid-
eration. Define

Hk(Th) :=
{

v ∈ L2(Ω), v|K ∈ Hk(K), for any K ∈ Th
}

, k = 1, 2, (2.3a)

H2(Th) := H2(Th)× H2(Th). (2.3b)

If ψ∈H1(Th) (or possibly the vector- or tensor-valued analogue), we define the average
{ψ} on E∈E(Ω) as usual:

{ψ} =
ψ+ + ψ−

2
, (2.4)

with
ψ+ = ψ|K+ and ψ− = ψ|K− .

On the boundary E⊂∂Ω, the average {ψ} is defined simply as the trace of ψ. The
symmetric jump [ψ]S is defined as

[ψ]S = (ψ+ ⊗ ν+
E )S + (ψ− ⊗ ν−

E )S, (2.5)
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where (ψ ⊗ νE)S denotes the symmetric part of the tensor, and ν+
E (resp. ν−

E ) is the
outward unit normal to E⊂∂K+ (resp. E⊂∂K−). Given ϕh∈H2(Th) and ψh∈H2(Th),
we define the following bilinear form:

Ah(ϕh, ψh) :=
(
Cεh(ϕh), εh(ψh)

)
L2(Ω)

− ∑
E∈E

(
{Cεh(ϕh)}, [ψh]

)
L2(E)

− ∑
E∈E

(
{Cεh(ψh)}, [ϕh]

)
L2(E) + ∑

E∈E

γE

hE

(
[ϕh]S, [ψh]S

)
L2(E), (2.6)

where γE are some positive constants to ensure the stability of the discrete problem.
Let βE be some positive constant, we define the following penalty term

PW(u, v) = ∑
E∈E

βE

hE

∫
E
[u][v]ds, for any u ∈ Wh and v ∈ Wh. (2.7)

For all methods considered herein, their discrete problems read: find
(wh, ϕh, γh)∈Wh × Θh × Γh with

Ah(ϕh, ψh) + PW(wh, vh) +
(
γh, Rh(∇hvh − ψh)

)
L2(Ω)

− ∑
E∈E

∫
E
{γh} · [vh]νEds = (g, vh)L2(Ω), for any (vh, ψh) ∈ Wh × Θh, (2.8a)

(
Rh(∇hwh − ϕh), σ

)
L2(Ω)

− ∑
E∈Th

∫
E
[wh]νE · {σ}ds

− λ−1t2(γh, σ)L2(Ω) = 0, for any σ ∈ Γh. (2.8b)

We define norms

∥|ψ|∥2
Θ := ∥ψ∥2

1,h + ∑
E∈E

1
hE

∥[ψ]S∥2
L2(E), ψ ∈ H2(Th), (2.9a)

∥|v|∥2
W := ∥v∥2

1,h + ∑
E∈E

1
hE

∥[v]∥2
L2(E), v ∈ H1(Th), (2.9b)

∥|σ|∥2
Γ := ∥σ∥2

L2(Ω) + ∑
E∈E

hE∥[σ]S∥2
L2(E), σ ∈ H1(Th). (2.9c)

In a very recent paper [18], we develop an a posteriori error control theory of finite
element methods for Reissner-Mindlin plates. Given some positive function

α ∈ L∞(Ω), with ∥α∥2
L∞(Ω) <

λ

t2 ,

we define a positive function β∈L∞(Ω) satisfying

1
β2 =

λ

t2 − α2.
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We define the following norm on the space W × Θ:

|||ϕ, w|||2 := ∥ϕ∥2
C + ∥α(∇w − ϕ)∥2

L2(Ω), for any (w, ϕ) ∈ W × Θ. (2.10)

Define the following mesh dependent norm for the space Q:

∥δ∥Q := sup
0 ̸=(ψ,v)∈H1

0 (Ω)3

(∇v − ψ, δ)L2(Ω)

|||ψ, v||| + ∥βδ∥L2(Ω), for any δ ∈ Q. (2.11)

Let ah(·, ·) be the discrete bilinear form which will be specified for various finite ele-
ment methods with a suitable linear operator L (the so called linking operator). The
discrete problem reads: find (wh, ϕh)∈Wh × Θh such that

ah(ϕh, ψh) +
(
γh, Rh(∇h(vh + Lψh)− ψh)

)
L2(Ω)

= (g, vh + Lψh)L2(Ω), (2.12)

for any (vh, ψh)∈Wh × Θh. The discrete shear force γh is defined as

γh = λt−2Rh
(
∇h(wh + Lϕh)− ϕh

)
. (2.13)

Herein and throughout this paper, Rh is the reduction integration operator from
L2(Ω)2 to the discrete shear force space Γh. The role of Rh is to reduce the effect of the
shear force and then weaken or overcome the locking. Let (w̃h, ϕ̃h, γ̃′

h)∈W × Θ × Q
be some approximation to (w, ϕ, γ′) over some regular partition Th, which are unde-
termined and not necessarily discrete functions. With the residual

r̃h = β2γ̃′
h − (∇w̃h − ϕ̃h),

and the usual Clément interpolation operator J [4, 11, 17], we define the following
abstract estimators:

ηK := α−1
K hK∥div γh + g∥L2(K) + hK∥div Cεh(ϕh) + γh∥L2(K),

ηE := α−1
E h

1
2
E∥[γh] · νE∥L2(E) + h

1
2
E∥[Cεh(ϕh)] · νE∥L2(E),

µh(γh) := sup
0 ̸=(v,ψ)∈W×Θ

(
γh, (Rh − I)(∇(J v + (I −J )LJ ψ)−J ψ)

)
L2(Ω)

|||ψ, v||| ,

η̃(r̃h) := sup
0 ̸=p∈Ĥ1(Ω)

(r̃h, curlJ p)L2(Ω)

∥p∥L2(Ω) + ∥t∇p∥L2(Ω)
+

(
∑

E∈E
min

(1
t

,
hE

t2

)
∥[r̃h] · τE∥2

L2(E)

) 1
2

+
(

∑
K∈Th

min
(

1,
hK

t

)2
∥ rot r̃h∥2

L2(K)

) 1
2
+ ∥αr̃h∥L2(Ω),

η̃R :=
∥∥∥1

α
(γh − α2(∇w̃h − ϕ̃h)− γ̃′

h)
∥∥∥

L2(Ω)
,
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where αE=α|E and αK=α|K. Then we can define the abstract estimator as

η̃2
h := ∑

K∈Th

η2
K + ∑

E∈E(Ω)

η2
E + µh(γh)

2 + ∑
E∈E

h−1
E ∥[ϕh]∥

2
L2(E)

+ ∥εh(ϕh − ϕ̃h)∥
2
L2(Ω) + η̃(r̃h)

2 + η̃2
R, (2.14)

for any w̃h∈W, ϕ̃h∈Θ, and γ̃′
h∈Q. As mentioned above, L is a suitable linear operator

which will be specified for various methods. Under conditions (H1)-(H3) of [18], the
theory of [18, Theorem 3.3] states that

Theorem 2.1. There holds

|||ϕ − ϕ̃h, w − w̃h|||+ ∥γ′ − γ̃′
h∥Q . η̃h. (2.15)

3 The Arnold-Brezzi-Falk-Marini element I

Based on the regular triangular partition of Ω, this class of methods read as [1]

Wh :=
{

v ∈ H1
0(Ω), v|K ∈ Pk(K), for any K ∈ Th

}
, (3.1)

for any integer k≥2. The shear force and the rotation spaces are the Brezzi-Douglas-
Marini space of degree k − 1 which reads

Θh = Γh = BDMk−1 :=
{

σ ∈ H0(rot, Ω), σ|K ∈ (Pk−1(K))2, K ∈ Th
}

. (3.2)

Since Θh=Γh, no reduction integration is used in this family of methods, namely,
Rh=I.

3.1 The refined a priori error estimate

Let the energy norm E(ϕ − ϕh, w − wh, γ − γh) be defined as

E(ϕ − ϕh, w − wh, γ − γh)
2 =∥|ϕ − ϕh|∥

2
Θ + ∥∇w −∇wh∥2

L2(Ω) + t2∥γ − γh∥2
L2(Ω)

+ t4∥ rot(γ − γh)∥2
L2(Ω) + ∥γ − γh∥2

H−1(Ω). (3.3)

One can use the same arguments of MITC methods, for instance, [9, 20], to prove the
following Helmholtz decomposition

Lemma 3.1. For any q∈Γh, there exist unique r∈Wh, p∈Qk−2 ∩ L2
0(Ω), and α∈Γh such that

q = ∇r + α, (3.4a)
(α, σ) = (rot σ, p), ∀σ ∈ Γh, (3.4b)

here and in the sequel, the pressure space Qk−2 is defined as

Qk−2 :=
{

q ∈ L2
0(Ω), q|K ∈ Pk−2(K), for any K ∈ Th

}
. (3.5)
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Lemma 3.2. It holds that

∥q∥L2(Ω) . sup
0 ̸=θ∈Θh

(rot θ, q)L2(Ω)

∥|θ|∥Θ
, for any q ∈ Qk−2. (3.6)

Proof. We define the interpolation operator ΠΘ : Θ → Θh by∫
E
(θ− ΠΘθ) · tqds = 0, for any q ∈ Pk−1(E),∫

K
(θ− ΠΘθ) · qdx = 0, for any q ∈ RTk−3(K),

where RTk−3(K) is the usual Raviart-Thomas space of the index k − 3. Given any
q∈Pk−2(K), it follows from the definition of the operator ΠΘ that(

rot(θ− ΠΘθ), q
)

L2(K) = ∑
E⊂∂K

∫
E
(θ− ΠΘθ) · tqds +

∫
K
(θ− ΠΘθ) · curlqdx

=0. (3.7)

Moreover, we have

∥θ− ΠΘθ∥L2(K) . hK∥∇θ∥L2(K), ∥ΠΘθ∥H1(K) . ∥θ∥H1(K), (3.8a)

∥[ΠΘθ]S∥L2(E) = ∥[ΠΘθ− θ]S∥L2(E) . h−
1
2

E ∥ΠΘθ− θ∥L2(ωE)
+ h

1
2
E∥∇h(ΠΘθ− θ)∥L2(ωE)

. h
1
2
E∥∇θ∥L2(ωE)

. (3.8b)

A summary of (3.7) and (3.8) completes the proof. �
Applying the discrete Helmholtz decomposition presented in Lemma 3.1 and the

discrete inf-sup condition in (3.6), one can follow the same line of the MITC methods,
for instance, [9,20], to show the optimal convergence in the energy norm defined as in
(3.3):

Theorem 3.1. Let (ϕ, w, γ) and (ϕh, wh, γh) be the solutions to the problems (1.1) and (2.8)
with the discrete spaces in (3.1) and (3.2). Then,

E(ϕ − ϕh, w − wh, γ − γh) .hk−1(|ϕ|Hk(Ω) + |w|Hk(Ω) + t|γ|Hk−1(Ω)

+ t2| rot γ|Hk−1(Ω) + |γ|Hk−2(Ω)

)
. (3.9)

Remark 3.1. Compared to the error estimates in [1], the energy norm analyzed herein
contains two more terms t4∥ rot(γ − γh)∥2

L2(Ω)
and ∥γ − γh∥2

H−1(Ω)
.

3.2 The a posteriori error analysis

This subsection considers the a posteriori error analysis for this family of discontinu-
ous Galerkin methods. Define the a posteriori error estimator

η2
h := ∑

K∈Th

η2
K + ∑

E∈E(Ω)

η2
E + ∑

E∈E
h−1

E ∥[ϕh]S∥
2
L2(E), (3.10)
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with the factors ηK and ηE defined as

ηK =
√

t2 + h2
KhK∥div γh + g∥L2(K) + hK∥div Cεh(ϕh) + γh∥L2(K), (3.11a)

ηE =
√

t2 + h2
Eh

1
2
E∥[γh] · νE∥L2(E) + h

1
2
E∥[Cεh(ϕh)] · νE∥L2(E). (3.11b)

Since γh⊂H0(rot, Ω) and Wh⊂H1
0(Ω) and the conditions (H1)-(H3) of [18] hold for this

class of discontinuous Galerkin methods, similar arguments of [18, Section 5] prove
that

ηh − osc(g) . E(ϕ − ϕh, w − wh, γ − γh) . ηh, (3.12)

with the oscillation osc(g) defined as

osc(g)2 := ∑
K∈Th

(t2 + h2
K)h

2
K∥g − gK∥2

L2(K), (3.13)

here gK denotes the projection of g onto Pℓ(K) with some nonnegative integer ℓ.

4 The Arnold-Brezzi-Falk-Marini element II

This is a family of triangular elements where all variables are approximated by com-
pletely discontinuous polynomials [1]. The displacement, the rotation, and the shear
force spaces read, respectively,

Wh :=
{

v ∈ L2(Ω), v|K ∈ Pk(K), for any K ∈ Th
}

, (4.1a)

Θh :=
{

ψ ∈ (L2(Ω))2, ψ|K ∈ (Pk−1(K))2, for any K ∈ Th
}

, (4.1b)

Γh :=
{

ψ ∈ (L2(Ω))2, ψ|K ∈ (Pk−1(K))2, for any K ∈ Th
}

, (4.1c)

for some integer k≥2. Again, no reduction integration is used in these methods,
namely, Rh=I. Defining a lifting operator P : H1(Th) → Γh by the equation

(P(v), δ) = ∑
E∈E

∫
E
[v]νE · {δ}ds, for any δ ∈ Γh. (4.2)

Then the discrete shear force γh reads

γh = λt−2(∇hwh − ϕh −P(wh)
)
. (4.3)

Let the energy norm of the error be defined as

E(ϕ − ϕh, w − wh, γ − γh)
2

=∥|ϕ − ϕh|∥
2
Θ + ∥|w − wh|∥2

W + t2∥γ − γh∥2
L2(Ω) + ∥γ − γh∥2

H−1(div,Ω). (4.4)

Since the conditions (H1)-(H3) of [18] hold for this class of methods, we will use the
theory established in [18, Theorem 3.3]. We choose α as a global constant independent
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of the meshsize and the plate thickness. To control the nonconformity, we let w̃h∈W,
and ϕ̃h∈Θ be arbitrary. Finally, we take

γ̃′
h = γ′

h = β−2(∇hwh − ϕh −P(wh)). (4.5)

Now we bound the terms of the abstract estimator η̃h in [18, Theorem 3.3]. It follows
from the aforementioned choices that the volume and edge terms ηK and ηE can be
expressed as

ηK = hK∥div γh + g∥L2(K) + hK∥div Cεh(ϕh) + γh∥L2(K), (4.6a)

ηE = h
1
2
E∥[γh] · νE∥L2(E) + h

1
2
E∥[Cεh(ϕh)] · νE∥L2(E). (4.6b)

Since Rh=I, we get µh(γh)=0

η̃R =
∥∥∥1

α
(γh − α2(∇w̃h − ϕ̃h)− γ̃′

h)
∥∥∥

L2(Ω)

.∥∇h(wh − w̃h)− ϕh + ϕ̃h −P(wh)∥L2(Ω). (4.7)

Lemma 4.1. With the residual

r̃h = ∇hwh − ϕh −P(wh)− (∇w̃h − ϕ̃h),

it holds that

η̃(r̃h) .
(

∑
K∈Th

min
( 1

h2
K

,
1
t2

)
∥ϕh − ϕ̃h∥

2
L2(K)

) 1
2

+
(

∑
E∈E

min
(1

t
,

hE

t2

)
∥[∇hwh − ϕh −P(wh)] · τE∥2

L2(E)

) 1
2

+
(

∑
K∈Th

min
(

1,
hK

t

)2
∥ rot(ϕh + P(wh)− ϕ̃h)∥

2
L2(K)

) 1
2

+ ∥∇hwh − ϕh −P(wh)− (∇w̃h − ϕ̃h)∥L2(Ω). (4.8)

Proof. By the definition of the residual r̃h, we have

(r̃h, curlJ p)L2(Ω) =
(
∇hwh − ϕh −P(wh)− (∇w̃h − ϕ̃h), curlJ p

)
L2(Ω)

. (4.9)

Integrating by parts and applying the definition of P(wh) leads to(
∇hwh −P(wh), curlJ p

)
L2(Ω)

= 0. (4.10)

This and the inverse estimate together with

∥p −J p∥L2(K) . min
(
∥p∥L2(ωK), hK∥∇p∥L2(ωK)

)
,
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yield

sup
0 ̸=p∈Ĥ1(Ω)

(r̃h, curlJ p)L2(Ω)

∥p∥L2(Ω) + ∥t∇p∥L2(Ω)
.

(
∑

K∈Th

min
( 1

h2
K

,
1
t2

)
∥ϕh − ϕ̃h∥

2
L2(K)

) 1
2
. (4.11)

The other terms can be easily bounded. �
Define the a posteriori error estimator

η2
h = ∑

K∈Th

η2
K + ∑

E∈E(Ω)

η2
E + ∑

E∈E
h−1

E
(
∥[wh]∥2

L2(E) + ∥[ϕh]∥
2
L2(E)

)
+ ∑

E∈E
min

(1
t

,
hE

t2

)
∥[∇hwh − ϕh −P(wh)] · τE∥2

L2(E)

+ ∑
K∈Th

min
(

1,
hK

t

)2
∥ rotP(wh)∥2

L2(K). (4.12)

Theorem 4.1 (The reliability of the estimator). There holds that

E(ϕ − ϕh, w − wh, γ − γh) . ηh. (4.13)

Proof. Given any w̃h∈W and ϕ̃h∈Θ, we define

η̃h(ϕh) =∥εh(ϕh − ϕ̃h)∥L2(Ω) +
(

∑
K∈Th

min
(

1,
hK

t

)2
∥ rot(ϕh − ϕ̃h)∥

2
L2(K)

) 1
2

+
(

∑
K∈Th

min
( 1

h2
K

,
1
t2

)
∥ϕh − ϕ̃h∥

2
L2(K)

) 1
2
. (4.14)

It follows from [18, Theorem 3.3] and the estimates (4.6)-(4.8) that

|||ϕ − ϕ̃h, w − w̃h|||+ ∥γ′ − γ̃′
h∥Q . η̃h . ηh + ∥∇h(wh − w̃h)∥L2(Ω) + η̃h(ϕh), (4.15)

herein we use the fact that

∥P(wh)∥2
L2(Ω) . ∑

E∈E
h−1

E ∥[wh]∥2
L2(E).

Then the triangle inequality leads to

|||ϕ − ϕh, w − wh|||h + ∥γ′ − γ̃′
h∥Q . ηh + ∥∇h(wh − w̃h)∥L2(Ω) + η̃h(ϕh). (4.16)

The terms ∑E∈E h−1
E ∥[wh]∥2

L2(E) and ∑E∈E h−1
E ∥[ϕh]∥2

L2(E) are already contained in the
estimator. An application of [18, Lemma 2.1] ends the proof. �

Now we define
osc(g)2 := ∑

K∈Th

h2
K∥g − gK∥2

L2(K), (4.17)

here gK denotes the projection of g onto Pℓ(K) with some nonnegative integer ℓ. Then
we have the the following efficiency for the estimator:
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Theorem 4.2. It holds that

ηh . E(ϕ − ϕh, w − wh, γ − γh) + osc(g). (4.18)

Proof. The efficiency for the first two and the sixth terms can be verified by a similar
argument in [18, Theorem 4.5], and the efficiency of the fourth and the fifth terms is
straightforward. We only need to consider the seventh term. Given K∈Th with the
center M, let BK be the usual element bubble function with BK(M)=1. Define

ρK = BK rotP(wh),

we come to

∥ rotP(wh)∥2
L2(K) . (rotP(wh), ρK)L2(K)

=(rot(P(wh)−∇hwh + ϕh +∇w − ϕ), ρK)L2(K) − (rot(ϕh − ϕ), ρK)L2(K)

.t2∥γh − γ∥L2(K)∥ curl ρK∥L2(K) + ∥ rot(ϕh − ϕ)∥L2(K)∥ρK∥L2(K). (4.19)

Applying the inverse estimate, this gives

min
(

1,
hK

t

)
∥ rotP(wh)∥L2(K) . t∥γh − γ∥L2(K) + ∥ rot(ϕh − ϕ)∥L2(K), (4.20)

which completes the proof. �

5 The Arnold-Brezzi-Marini element

This section uses the notation of the previous section. In this family of triangular
elements, the displacement space Wh and the shear force space Γh are the same as those
defined in the previous section, what difference is the rotation space, which reads [2]

Θh := Wh × Wh. (5.1)

The reduction integration operator Rh is the L2 projection operator from L2(Ω)2 onto
Γh.

Let the lifting operator P be defined as in (4.2). The discrete shear force reads

γh = λt−2Rh
(
∇hwh − ϕh −P(wh)

)
. (5.2)

To establish the robust a posteriori error analysis, we need to specify the choices in [18,
Theorem 3.3]: we choose α as a global constant independent of the meshsize and the
plate thickness, let w̃h∈W and ϕ̃h∈Θ be arbitrary, and take

γ̃′
h = γ′

h = β−2Rh
(
∇hwh − ϕh −P(wh)

)
. (5.3)
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Define the estimator as

η2
h = ∑

K∈Th

η2
K + ∑

E∈E(Ω)

η2
E + ∑

E∈E
h−1

E
(
∥[wh]∥2

L2(E) + ∥[ϕh]∥
2
L2(E)

)
+ ∑

E∈E
min

(1
t

,
hE

t2

)
∥[Rh(∇hwh − ϕh −P(wh))] · τE∥2

L2(E)

+ ∑
K∈Th

min
(

1,
hK
t

)2(
∥ rotP(wh)∥2

L2(K) + ∥ rot(Rh − I)(∇hwh − ϕh −P(wh)
)
∥2

L2(K)

)
+ ∥(Rh − I)

(
∇hwh − ϕh −P(wh)

)
∥2

L2(Ω). (5.4)

A similar procedure of the previous section proves:

Theorem 5.1. The energy norm of the error and the estimator ηh are equivalent in the sense

ηh − osc(g) . E(ϕ − ϕh, w − wh, γ − γh) . ηh, (5.5)

with the energy norm from (4.4) and the oscillation osc(g) of (4.17).
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[3] L. BEIRÃO DA VEIGA, C. CHINOSI, C. LOVADINA AND R. STENBERG, A-priori and a
posteriori error analysis for the Falk-Tu family of Reissner-Mindlin plate elements, BIT, 48 (2008),
pp. 189–213.

[4] C. BERNARDI AND V. GIRAULT, A local regularisation operator for triangular and quadrilat-
eral finite elements, SIAM J. Numer. Anal., 35 (1998), pp. 1893–1916.

[5] D. BRAESS, Finite Elements, Cambridge University Press, 1997.
[6] S. C. BRENNER, Korn’s inequalities for piecewise H1 vector fields, Math. Comput., 73 (2004),

pp. 1067–1087.
[7] S. C. BRENNER AND L. R. SCOTT, The Mathematical Theory of Finite Element Methods,

Springer Verlag, 2nd Edition, 2002.
[8] F. BREZZI AND M. FORTIN, Mixed and Hybrid Finite Element Methods, Springer, Berlin,

1991.
[9] F. BREZZI, M. FORTIN AND R. STENBERG, Error analysis of mixed-interpolated elements for

Reissner-Mindlin plate, Math. Models Methods Appl. Sci., 1 (1991), pp. 125–151.



662 J. Hu and Y. Q. Huang / Adv. Appl. Math. Mech., 3 (2011), pp. 649-662

[10] F. BREZZI AND L. D. MARINI, A nonconforming element for the Reissner-Mindlin plate, Com-
put. Struct., 81 (2003), pp. 515–522.

[11] C. CARSTENSEN, Quasi-interpolation and a posteriori error analysis in finite element methods,
M2AN, 33 (1999), pp. 1187–1202.

[12] C. CARSTENSEN, Residual-based a posteriori error estimate for a nonconforming Reissner-
Mindlin plate finite element, SIAM J. Numer. Anal., 39 (2002), pp. 2034–2044.

[13] C. CARSTENSEN AND J. HU, A unifying theory of a posteriori error control for nonconforming
finite element methods, Numer. Math., 107 (2007), pp. 473–502.

[14] C. CARSTENSEN AND J. HU, A posteriori error estimators for conforming MITC elements for
Reissner-Mindlin plates, Math. Comput., 77 (2008), pp. 611–632.
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