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Eigenvalues of Fourth-order Singular
Sturm-Liouville Boundary Value Problems∗

Lina Zhou1,†, Weihua Jiang2 and Qiaoluan Li1

Abstract In this paper, by using Krasnoselskii’s fixed-point theorem, some
sufficient conditions of existence of positive solutions for the following fourth-
order nonlinear Sturm-Liouville eigenvalue problem:

1
p(t)

(p(t)u′′′)′(t) + λf(t, u) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,

αu′′(0)− β limt→0+ p(t)u′′′(t) = 0,

γu′′(1) + δ limt→1− p(t)u′′′(t) = 0,

are established, where α, β, γ, δ ≥ 0, and βγ + αγ + αδ > 0. The function p
may be singular at t = 0 or 1, and f satisfies Carathéodory condition.

Keywords Sturm-Liouville problems, Eigenvalue, Krasnoselskii’s fixed-point
theorem.

MSC(2010) 34B15, 34B25.

1. Introduction

In this paper, we will study the existence of positive solutions for the following
fourth-order nonlinear Sturm-Liouville eigenvalue problem:

1
p(t) (p(t)u

′′′)′(t) + λf(t, u) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,

αu′′(0)− β limt→0+ p(t)u′′′(t) = 0,

γu′′(1) + δ limt→1− p(t)u′′′(t) = 0,

(1.1)

where λ > 0 is a parameter, α, β, γ, δ ≥ 0 are some constants satisfying βγ + αγ +

αδ > 0, p ∈ C1((0, 1), (0,+∞)) satisfying
∫ 1

0
ds
p(s) < +∞, and f : [0, 1]× R+ → R+

satisfies Carathéodory condition. From the above conditions, the function p may
be singular at t = 0 or 1.
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Sturm-Liouville boundary problems have been widely investigated in various
fields, such as mathematics, physics and meteorology. In recent decades, a vast
amount of research was done on the existence of positive solutions of Sturm-Liouville
boundary value problems. Within this development, they paid attention to the
theory of eigenvalues and eigenfunctions of Sturm-Liouville problems [2-18]. In
particular, many authors were interested in the nonlinear singular Sturm-Liouville
problems [10-16]. In [10], Yao et al. proved that the BVP (1.1) has one or two
positive solutions for some λ under the assumptions f0 = f∞ = 0 or f0 = f∞ = ∞.
In [13], by a new comparison theorem, Zhang et al. proved that the BVP(1.1) has
at least a positive solution for large enough λ under the assumptions:

(1) p ∈ C1((0, 1), (0,+∞)) and
∫ 1

0
ds
p(s) < +∞ ;

(2) f(t, u) ∈ C((0, 1)× (0,+∞), [0,+∞)) is decreasing in u ;

(3) For any µ > 0, f(t, µ) ̸= 0 and 0 <
∫ 1

0
k(s)p(s)f(s, µs(1− s))ds < +∞;

(4) For any u ∈ [0,+∞), lim
µ→+∞

µf(t, µu) = +∞ uniformly on t ∈ (0, 1).

In this paper, we consider the existence of positive solutions of the BVP(1.1),
under the following conditions:

(H1) p ∈ C1((0, 1), (0,+∞)) and
∫ 1

0
ds
p(s) < +∞ ;

(H2) f : [0, 1] × R+ → R+ satisfies Carathéodory condition, that is f(·, u) is mea-
surable for each fixed u ∈ R+, and f(t, ·) is continuous for a.e. t ∈ [0, 1] ;
(H3) for any r > 0, there exists hr(t) ∈ L1[0, 1], such that f(t, u) ≤ hr(t), a.e.

t ∈ [0, 1], where u ∈ [0, r], and 0 <
∫ 1

0
k(s)p(s)hr(s) < +∞.

By Krasnoselskii’s fixed-point theorem, two main results are obtained under
(H1)− (H3).

2. Preliminaries

In this section, we present some necessary definitions, theorems and lemmas.

Definition 2.1. A function u is called a solution of the BVP(1.1) if u ∈ C3([0, 1],
[0,+∞)) satisfies p(t)u′′′(t) ∈ C1([0, 1], [0,+∞)) and the BVP(1.1). Also, u is called
a positive solution if u(t) > 0 for t ∈ [0, 1] and u is a solution of the BVP (1.1). For
some λ, if the BVP (1.1) has a positive solution u, then λ is called an eigenvalue
and u is called a corresponding eigenfunction of the BVP (1.1).

Theorem 2.1. ([1], [19]) Let X be a real normal linear space, and let P ⊂ X be a
cone in X. Assume Ω1,Ω2 are relatively open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2,
and let T : Ω2 → P be a completely continuous operator such that, either
(1) ∥ Tu ∥≤ r1, u ∈ ∂Ω1; ∥ Tu ∥≥ r2, u ∈ ∂Ω2 or
(2) ∥ Tu ∥≥ r1, u ∈ ∂Ω1; ∥ Tu ∥≤ r2, u ∈ ∂Ω2.
Then T has a fixed point in P

∩
(Ω2 \ Ω1).

In this paper, we always make the following assumption:

(H1) p ∈ C1((0, 1), (0,+∞)) and
∫ 1

0
ds
p(s) < +∞ .

Now we denote by H(t, s) and G(t, s), respectively, the Green’s functions for the
following boundary value problems:−u′′ = 0, 0 < t < 1,

u(0) = u(1) = 0,
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and 
−(p(t)u′(t)))′ = 0, 0 < t < 1,

αu(0)− β lim
t→0+

p(t)u′(t) = 0,

γu(1) + δ lim
t→1−

p(t)u′(t) = 0.

It is well known that H(t, s) and G(t, s) can be written as

H(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1,

and

G(t, s) =
1

ρ

{
(β + αB(0, s))(δ + γB(t, 1)), 0 ≤ s ≤ t ≤ 1,

(β + αB(0, t))(δ + γB(s, 1)), 0 ≤ t ≤ s ≤ 1,

where B(t, s) =
∫ s

t
dv
p(v) , ρ = αδ + αγB(0, 1) + βγ > 0 (see [13]).

We also have the conclusion [13] that u(t) is a solution of the BVP(1.1) if and only

if it is a solution of the integral equation u(t) =
∫ 1

0
H(t, ξ)

∫ 1

0
G(ξ, s)p(s)f(s, u(s))dsdξ.

It is easy to verify the following properties of H(t, s) and G(t, s) .

Lemma 2.1. (Remark 2.1, [13])

(i) For any t, s ∈ [0, 1],

s(1− s)t(1− t) ≤ H(t, s) ≤ t(1− t) (or s(1− s)).

(ii) For any t, s ∈ [0, 1],

ωk(t)k(s) ≤ G(t, s) ≤ k(t)

ρ
(or

k(s)

ρ
),

where k(t) = (β + αB(0, t))(δ + γB(t, 1)), ω = ρ
(β+αB(0,1))(δ+γB(0,1)) .

3. Main results

In this section, we will prove the existence of positive solutions for the BVP(1.1) by
using the Krasnoselskii’s fixed-point theorem.

Let the Banach space X = C[0, 1] be equipped with the norm ∥ u ∥:= max
t∈[0,1]

|

u(t) |, and P be a cone of X defined by P = {u(t) ∈ X : u(t) ≥ t(1− t) ∥ u ∥}.
To obtain our results in this paper, We need the following lemma.

Lemma 3.1. Assume that (H1)− (H3) hold, and define the operator Tλ : P → X
by

(Tλu)(t) = λ

∫ 1

0

H(t, ξ)

∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ.

Then Tλ : P → P is completely continuous.

Proof. First, we prove that Tλ : P → P . From lemma 2.1, for u(t) ∈ P , we have

(Tλu)(t) = λ

∫ 1

0

H(t, ξ)

∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ
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≥ t(1− t)λ

∫ 1

0

ξ(1− ξ)

∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ

≥ t(1− t)λ

∫ 1

0

H(t′, ξ)

∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ

= (Tλu)(t
′)t(1− t).

By the arbitrariness of t′, we can obtain (Tλu)(t) ≥ t(1−t) ∥ Tλu ∥, i.e. Tλ(P ) ⊂ P .
According to the Lebesgue Dominated Convergence Theorem, we have Tλ : P →

P is continuous.
Next, we show that Tλ is uniformly bounded.

Let Ω = {u(t) ∈ P :∥ u ∥≤ r} and
∫ 1

0
k(s)p(s)hr(s)ds = Mr. For any u(t) ∈ Ω,

by (H3), we have

(Tλu)(t) = λ

∫ 1

0

H(t, ξ)

∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ

≤ λ

∫ 1

0

ξ(1− ξ)dξ

∫ 1

0

k(s)

ρ
p(s)hr(s)ds

≤ λMr

4ρ
.

Hence Tλ is uniformly bounded.
Finally, we will show that Tλ is equicontinuous.
Since H(t, s) is continuous in [0, 1]× [0, 1], it is uniformly continuous. Thus, for

any ε > 0, there exists δ > 0, such that for any fixed s ∈ [0, 1], when | t1 − t2 |< δ,
we have | H(t1, s)−H(t2, s) |< ρ

λMr
ε.

For all u(t) ∈ Ω, t1, t2 ∈ [0, 1], | t1 − t2 |< δ, we obtain

| (Tλu)(t1)− (Tλu)(t2) | ≤ λ

∫ 1

0

| H(t1, ξ)−H(t2, ξ) |
∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ

≤ λ

ρ

∫ 1

0

| H(t1, ξ)−H(t2, ξ) | dξ
∫ 1

0

k(s)p(s)hr(s)ds

≤ λMr

ρ

∫ 1

0

| H(t1, ξ)−H(t2, ξ) | dξ

≤ λMr

ρ

ρ

λMr
ε

= ε.

This implies that Tλ is equicontinuous.
By the Arzela-Ascoli theorem, Tλ : P → P is completely continuous.
For the convenience, we introduce the following notations:

lim inf
u→0+

inf
s∈[0,1]\E0

f(s, u)

u
= f0,

lim sup
u→0+

sup
s∈[0,1]\E0

f(s, u)

u
= f0,

lim inf
u→+∞

inf
s∈[0,1]\E0

f(s, u)

u
= f∞,

where E0 ⊂ [0, 1] and m(E0) = 0.
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Theorem 3.1. Assume that (H1)− (H3) hold, f0 > 0, and suppose that there exist
R1 > 0 and hR1(t), such that

ωf0

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ 1

0

k(s)p(s)s(1− s)ds >

∫ 1

0
k(s)p(s)hR1(s)ds

ρR1
,

where hR1(t) is defined by (H3). Then for each λ satisfying

4

ωf0
∫ 1

0
ξ(1− ξ)k(ξ)dξ

∫ 1

0
k(s)p(s)s(1− s)ds

< λ <
4ρR1∫ 1

0
k(s)p(s)hR1(s)ds

,

the BVP(1.1) has at least one positive solution.

Proof. Let Ω1 = {u(t) ∈ P :∥ u ∥< R1}. Then for any u(t) ∈ ∂Ω1, by Lemma 2.1
and (H3), we have

(Tλu)(t) = λ

∫ 1

0

H(t, ξ)

∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ

≤ λ

∫ 1

0

ξ(1− ξ)dξ

∫ 1

0

k(s)

ρ
p(s)hR1(s)ds

≤ λ

4ρ

∫ 1

0

k(s)p(s)hR1(s)ds.

Thus, ∥ Tλu ∥≤ R1 =∥ u ∥, if λ < 4ρR1∫ 1
0
k(s)p(s)hR1 (s)ds

.

On the other hand, if λ > 4
ωf0

∫ 1
0
ξ(1−ξ)k(ξ)dξ

∫ 1
0
k(s)p(s)s(1−s)ds

, there exists η1 > 0

small enough, such that f0 − η1 > 0 and

λ >
4

ω(f0 − η1)
∫ 1

0
ξ(1− ξ)k(ξ)dξ

∫ 1

0
k(s)p(s)s(1− s)ds

.

From the definition of f0, there exists r1 > 0 such that f(s,u)
u > f0 − η1 for 0 < u ≤

r1. Let Ω2 = {u(t) ∈ P :∥ u ∥< R2}, where R2 < min{R1, r1}. For any u ∈ ∂Ω2,
we obtain that

(Tλu)(t) = λ

∫ 1

0

H(t, ξ)

∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ

≥ ωλt(1− t)

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ 1

0

k(s)p(s)(f0 − η1)u(s)ds

≥ ωλ(f0 − η1)t(1− t)

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ 1

0

k(s)p(s)s(1− s) ∥ u ∥ ds

≥ ωλ(f0 − η1)t(1− t)

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ 1

0

k(s)p(s)s(1− s)ds ∥ u ∥ .

Hence

| (Tλu)(
1

2
) |≥ λ

ω(f0 − η1)

4
(

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ 1

0

k(s)p(s)s(1− s)ds) ∥ u ∥ .



490 L. Zhou, W. Jiang & Q. Li

From the definition of norm, we have ∥ Tλu ∥= max
t∈[0,1]

| (Tλu)(t) |≥| (Tλu)(
1
2 ) |.

Hence

∥ Tλu ∥≥ λ
ω(f0 − η1)

4
(

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ 1

0

k(s)p(s)s(1− s)ds) ∥ u ∥ .

Then, for each

λ >
4

ωf0
∫ 1

0
ξ(1− ξ)k(ξ)dξ

∫ 1

0
k(s)p(s)s(1− s)ds

,

∥ Tλu ∥≥∥ u ∥= R2.
In summary, for each λ with

4

ωf0
∫ 1

0
ξ(1− ξ)k(ξ)dξ

∫ 1

0
k(s)p(s)s(1− s)ds

< λ <
4ρR1∫ 1

0
k(s)p(s)hR1(s)ds

,

Tλ has a fixed point in P
∩
(Ω2 \Ω1), i.e. the BVP(1.1) has a positive solution u(t)

such that R1 ≤∥ u ∥≤ R2.

Theorem 3.2. Assume that (H1)− (H3) hold, f
0 > 0 , f∞ > 0, and suppose that

there exist 0 < θ1 < θ2 < 1 such that

f∞ > f0

∫ 1

0
k(s)p(s)ds

ρωδ(θ1, θ2)
∫ θ2
θ1

k(s)p(s)ds
∫ 1

0
ξ(1− ξ)k(ξ)dξ

,

where δ(θ1, θ2) = min
θ1≤t≤θ2

{t(1− t)}. Then for each λ satisfying

4

δ(θ1, θ2)ωf∞
∫ 1

0
ξ(1− ξ)k(ξ)dξ

∫ θ2
θ1

k(s)p(s)ds
< λ <

4ρ

f0
∫ 1

0
k(s)p(s)ds

,

the BVP(1.1) has at least one positive solution.

Proof. If λ < 4ρ

f0
∫ 1
0
k(s)p(s)ds

, there exists η2 > 0 small enough, such that λ <

4ρ

(f0+η2)
∫ 1
0
k(s)p(s)ds

. By the definition of f0, there exists R3 > 0 such that f(s,u)
u <

f0 + η2 for 0 < u ≤ R3. Let Ω3 = {u(t) ∈ P :∥ u ∥< R3}. For any u ∈ ∂Ω3, we
have

(Tλu)(t) = λ

∫ 1

0

H(t, ξ)

∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ

≤ λ

ρ

∫ 1

0

ξ(1− ξ)dξ

∫ 1

0

k(s)p(s)(f0 + η3)u(s)ds

≤ λ

4ρ
(f0 + η3)

∫ 1

0

k(s)p(s)ds ∥ u ∥ .

Thus, ∥ Tλu ∥≤∥ u ∥= R3, if λ < 4ρ

f0
∫ 1
0
k(s)p(s)ds

.

On the other hand, if λ > 4

δ(θ1,θ2)ωf∞
∫ 1
0
ξ(1−ξ)k(ξ)dξ

∫ θ2
θ1

k(s)p(s)ds
, there exists

η3 > 0 small enough, such that f∞ − η3 > 0 and

λ >
4

δ(θ1, θ2)ω(f∞ − η3)
∫ 1

0
ξ(1− ξ)k(ξ)dξ

∫ θ2
θ1

k(s)p(s)ds
.
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By the definition of f∞, there exists r3 > 0 such that f(s,u)
u > f∞ − η3 for u ≥ r3.

From the definition of P , we have u(t) ≥ δ(θ1, θ2) ∥ u ∥, for any u(t) ∈ P ,
t ∈ [θ1, θ2]. Let Ω4 = {u(t) ∈ P :∥ u ∥< R4}, where R4 = max{R3 + 1, r3

δ(θ1,θ2)
}.

For any u ∈ ∂Ω4 , we have

(Tλu)(t) = λ

∫ 1

0

H(t, ξ)

∫ 1

0

G(ξ, s)p(s)f(s, u(s))dsdξ

≥ λ

∫ 1

0

H(t, ξ)

∫ θ2

θ1

G(ξ, s)p(s)f(s, u(s))ds

≥ ωλt(1− t)

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ θ2

θ1

k(s)p(s)(f∞ − η3)u(s)ds

≥ ωλ(f∞ − η3)t(1− t)

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ θ2

θ1

k(s)p(s)δ(θ1, θ2) ∥ u ∥ ds

≥ ωλ(f∞ − η3)t(1− t)δ(θ1, θ2)

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ θ2

θ1

k(s)p(s)ds ∥ u ∥ .

Hence,

| (Tλu)(
1

2
) |≥ ωλ(f∞ − η3)δ(θ1, θ2)

4

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ θ2

θ1

k(s)p(s)ds ∥ u ∥ .

From the definition of norm, we have ∥ Tλu ∥= max
t∈[0,1]

| (Tλu)(t) |≥| (Tλu)(
1
2 ) |.

Thus

∥ Tλu ∥≥ ωλ(f∞ − η3)δ(θ1, θ2)

4

∫ 1

0

ξ(1− ξ)k(ξ)dξ

∫ θ2

θ1

k(s)p(s)ds ∥ u ∥ .

So we have that ∥ Tλu ∥≥∥ u ∥= R4, if λ > 4

δ(θ1,θ2)ωf∞
∫ 1
0
ξ(1−ξ)k(ξ)dξ

∫ θ2
θ1

k(s)p(s)ds
.

From Theorem 2.1, for each λ satisfying

4

δ(θ1, θ2)ωf∞
∫ 1

0
ξ(1− ξ)k(ξ)dξ

∫ θ2
θ1

k(s)p(s)ds
< λ <

4ρ

f0
∫ 1

0
k(s)p(s)ds

,

Tλ has a fixed point in P
∩
(Ω4 \Ω3), i.e. the BVP(1.1) has a positive solution u(t)

such that R3 ≤∥ u ∥≤ R4.

4. Examples

To illustrate the usefulness of the results, we give some examples in this section.

Example 4.1. Let p(x) = 1, and

f(t, u) =

{
cos2 u+ t, t ∈ [0, 1] and t ∈ R \Q,

0, t ∈ [0, 1] and t ∈ Q.

For given u ∈ R+, we have f(t, u) ≤ 1 + t. Let E = {t : t ∈ [0, 1] and t ∈ Q}.
Then we have m(E) = 0. Clearly, (H1) − (H3) are satisfied, and f0 = +∞. From

Theorem 3.1, for each 0 < λ < 4(βγ+αγ+αδ)R1
3
2βδ+

2
3βγ+

5
6αδ+

1
4αγ

, the BVP(1.1) has at least a

positive solution for R1 enough large.



492 L. Zhou, W. Jiang & Q. Li

Example 4.2. Let p(x) = 1, and

f(t, u) =

{
eu +

√
t− 2, t ∈ [0, 1] and t ∈ R \Q,

0, t ∈ [0, 1] and t ∈ Q.

Let E = {t : t ∈ [0, 1] and t ∈ Q}. Then we have m(E) = 0. Clearly, (H1) − (H3)
are satisfied, f0 = 1, and f∞ = +∞. From Theorem 3.2, for each 0 < λ <
4(βγ+αγ+αδ)

βδ+ βγ
2 +αγ

6 +αδ
2

, the BVP(1.1) has at least a positive solution.
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