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Abstract: The purpose of this article is to introduce a class of total quasi-ϕ-

asymptotically nonexpansive nonself mappings. Strong convergence theorems for

common fixed points of a countable family of total quasi-ϕ-asymptotically nonexpan-

sive mappings are established in the framework of Banach spaces based on modified

Halpern and Mann-type iteration algorithm. The main results presented in this arti-

cle extend and improve the corresponding results of many authors.
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1 Introduction and Preliminaries

Throughout this article we assume that E is a real Banach space with norm ∥ · ∥, E∗ is the

dual space of E, ⟨ · , · ⟩ is the duality pairing between E and E∗, C is a nonempty closed

convex subset of E, N and R+ denote the set of natural numbers and the set of nonnegative

real numbers, respectively. The mapping J : E → 2E
∗
defined by

J(x) = {f∗ ∈ E∗ : ⟨x, f∗⟩ = ∥x∥2; ∥f∗∥ = ∥x∥, x ∈ E}
is called the normalized duality mapping. Let T : C → C be a nonlinear mapping, and

F (T ) denotes the set of fixed points of mapping T .

A subset C of E is said to be retract if there exists a continuous mapping P : E → C

such that Px = x for all x ∈ C. Every closed convex subset of a uniformly convex Banach
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space is a retraction. A mapping P : E → E is said to be a retraction if P 2 = P . Note that

if a mapping P is a retraction, then Pz = z for all z ∈ R(P ), the range of P . A mapping

P : E → C is said to be a nonexpansive retraction, if it is nonexpansive and it is a retraction

from E to C.

In this paper, we assume that E is a smooth, strictly convex and reflexive Banach space

and C is a nonempty closed convex subset of E. We use ϕ : E × E → R+ to denote the

Lyapunov function, which is defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, x, y ∈ E.

It is obvious that

(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2, x, y ∈ E, (1.1)

and

ϕ(x, J−1(λJy + (1− λ)Jz)) ≤ λϕ(x, y) + (1− λ)ϕ(x, z),

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩, x, y, z ∈ E. (1.2)

Following Alber[1], the generalized projection ΠCx : E → C is defined by

ΠCx = arg inf
y∈C

ϕ(y, x), x ∈ E.

Lemma 1.1 [1] Let E be a smooth, strictly convex, and reflexive Banach space, and C be

a nonempty closed convex subset of E. Then the following conclusions hold:

(i) ϕ(x, ΠCy) + ϕ(ΠCy, y) ≤ ϕ(x, y) for all x ∈ C, y ∈ E;

(ii) If x ∈ E and z ∈ C, then z = ΠCx if and only if ⟨z− y, Jx− Jz⟩ ≥ 0 for all y ∈ C;

(iii) For any x, y ∈ E, ϕ(x, y) = 0 if and only if x = y.

Lemma 1.2 [2] Let E be a uniformly convex and smooth Banach space, and {xn} and

{yn} be two sequences of E. If ϕ(xn, yn) → 0 and either {xn} or {yn} is bounded, then

∥xn − yn∥ → 0.

Recently, many researchers have focused on studying the convergence of iterative scheme

for quasi-ϕ-asymptotically nonexspansive mappings and total quasi-ϕ-asymptotically nonexs-

pansive mappings. Related works can be found in [3–10]. The quasi-ϕ-nonexspansive, quasi-

ϕ-asymptotically nonexspansive and total quasi-ϕ-asymptotically nonexspansive mappings

are defined as:

Definition 1.1 A mapping T : C → C is said to be quasi-ϕ-nonexpansive, if F (T ) ̸= ∅
and ϕ(u, Tx) ≤ ϕ(u, x) holds for all x ∈ C, u ∈ F (T ).

A mapping T : C → C is said to be quasi-ϕ-asymptotically nonexpansive, if F (T ) ̸= ∅,
and there exists a sequence {kn} ⊂ [1,+∞] with kn → 1 as n → ∞ such that ϕ(p, Tnx) ≤
knϕ(p, x) holds for all x ∈ C, p ∈ F (T ) and all n ∈ N.

A mapping T : C → C is said to be total quasi-ϕ-asymptotically nonexpansive, if F (T ) ̸=
∅, and there exist sequences {µn}, {νn} with µn, νn → 0 as n→ ∞ and a strictly increasing

continuous function ψ : R+ → R+ with ψ(0) = 0 such that

ϕ(p, Tnx) ≤ ϕ(p, x) + µnψ(ϕ(p, x)) + νn

holds for all x ∈ C, p ∈ F (T ) and all n ∈ N.
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Recently, the strong and weak convergence of nonself mappings has been considered

extensively by several authors in the setting of Hilbert or Banach spaces (see, for example,

[2, 11–17]). Especially, Chang et al.[3] studied the convergence theorems for a countable

family of quasi-ϕ-asymptotically nonexpansive nonself mappings in the framework of Banach

spaces based on modified Halpern and Mann-type iteration algorithm. Now we recall the

following nonself mappings.

Definition 1.2 Let P : E → C be the nonexpansive retraction.

A mapping T : C → E is said to be quasi-ϕ-nonexpansive nonself mapping, if F (T ) ̸= ∅
and ϕ(u, T (PT )n−1x) ≤ ϕ(u, x) holds for all x ∈ C, u ∈ F (T ) and all n ∈ N.

A mapping T : C → E is said to be quasi-ϕ-asymptotically nonexpansive nonself mapping,

if F (T ) ̸= ∅, and there exists a sequence {kn} ⊂ [1,+∞] with kn → 1 as n → ∞ such that

ϕ(u, T (PT )n−1x) ≤ knϕ(u, x) holds for all x ∈ C, u ∈ F (T ) and all n ∈ N.

A mapping T : C → E is said to be total quasi-ϕ-asymptotically nonexpansive nonself

mapping, if F (T ) ̸= ∅, and there exist sequences {µn}, {νn} with µn, νn → 0 as n→ ∞ and

a strictly increasing continuous function ψ : R+ → R+ with ψ(0) = 0 such that

ϕ(u, T (PT )n−1x) ≤ ϕ(u, x) + µnψ(ϕ(u, x)) + νn

holds for all x ∈ C, u ∈ F (T ) and all n ∈ N.

Lemma 1.3 Let E be a real uniformly smooth, strictly convex and reflexive Banach space,

and C be a nonempty closed convex subset of E. Let T : C → E be a total quasi-ϕ-

asymptotically nonexpansive nonself mapping with respect to P defined by Definition 1.2.

If ν1 = 0, then the fixed point set F (T ) is a closed and convex set of C.

Proof. Let un be any sequence in F (T ) such that un → u. Now we prove that u ∈ F (T ).

In fact, since T : C → E is a total quasi-ϕ-asymptotically nonexpansive nonself mapping,

we have

ϕ(u, Tu) = lim
n→∞

ϕ(un, Tu) ≤ lim
n→∞

[ϕ(un, u) + µ1ψ(ϕ(un, u)) + ν1] = 0.

By Lemma 1.1(iii), we have u = Tu.

We now prove that F (T ) is convex. Let u1, u2 ∈ F (T ) and u = tu1 + (1 − t)u2, where

t ∈ (0, 1). By the definition of T , we have

ϕ(u1, T (PT )
n−1u) ≤ ϕ(u1, u) + µnψ(ϕ(u1, u)) + νn

and

ϕ(u2, T (PT )
n−1u) ≤ ϕ(u2, u) + µnψ(ϕ(u2, u)) + νn.

In view of (1.2), we obtain

ϕ(u1, T (PT )
n−1u) = ϕ(u1, u) + ϕ(u, T (PT )n−1u) + 2⟨u1 − u, Ju− JT (PT )n−1u⟩,

ϕ(u2, T (PT )
n−1u) = ϕ(u2, u) + ϕ(u, T (PT )n−1u) + 2⟨u2 − u, Ju− JT (PT )n−1u⟩.

So we have

ϕ(u, T (PT )n−1u) ≤ 2⟨u− u1, Ju− JT (PT )n−1u⟩+ µnψ(ϕ(u1, u)) + νn,

ϕ(u, T (PT )n−1u) ≤ 2⟨u− u2, Ju− JT (PT )n−1u⟩+ µnψ(ϕ(u2, u)) + νn.
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Multiply both sides of the above two inequalities by t and 1− t, respectively, and yield that

ϕ(u, T (PT )n−1u) ≤ µn[tψ(ϕ(u1, u)) + (1− t)ψ(ϕ(u2, u))] + νn.

It follows that

lim
n→∞

ϕ(u, T (PT )n−1u) = 0.

In light of (1.1), we arrive at

lim
n→∞

∥T (PT )n−1u∥ = ∥u∥ and lim
n→∞

∥J(T (PT )n−1u)∥ = ∥Ju∥.

Since E∗ is reflexive, without loss of generality, we assume that J(T (PT )n−1u)⇀ e∗ ∈ E∗.

In view of the reflexivity of E, we have JE = E∗. So there exists an element e ∈ E such

that Je = e∗. It follows that

ϕ(u, T (PT )n−1u) = ∥u∥2 − 2⟨u, J(T (PT )n−1u)⟩+ ∥T (PT )n−1u∥2

= ∥u∥2 − 2⟨u, J(T (PT )n−1u)⟩+ ∥J(T (PT )n−1u)∥2.
Taking lim inf

n→∞
on the both sides of the equality above, we obtain that

0 ≥ ∥u∥2 − 2⟨u, e∗⟩+ ∥e∗∥2

= ∥u∥2 − 2⟨u, Je⟩+ ∥Je∥2

= ∥u∥2 − 2⟨u, Je⟩+ ∥e∥2

= ϕ(u, e).

This implies that u = e, that is, Ju = e∗. So J(T (PT )n−1u) ⇀ Ju ∈ E∗. By Kadec-Klee

property of E∗, from

lim
n→∞

∥J(T (PT )n−1u)∥ = ∥Ju∥,

we obtain that

lim
n→∞

∥J(T (PT )n−1u)− Ju∥ = 0.

Since J−1 : E∗ → E is demicontinuous, we see that T (PT )n−1u ⇀ u. By virtue of Kadec-

Klee property of E, from

lim
n→∞

∥T (PT )n−1u∥ = ∥u∥,

we see that

T (PT )n−1u→ u as n→ ∞.

Hence

T (PT )nu→ u as n→ ∞,

i.e.,

TP [T (PT )n−1u] → u as n→ ∞.

In view of the closedness of T , we can obtain that TPu = u. Since u ∈ C, Pu = u, it shows

that Tu = u. This proves that F (T ) is convex. The conclusion of Lemma 1.3 is proved.

Definition 1.3 A countable family of nonself mappings {Ti} : C → E is said to be

uniformly total quasi-ϕ-asymptotically nonexpansive nonself mapping if
∞∩
i=1

F (Ti) ̸= ∅,
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there exist sequences {µn}, {νn} with µn, νn → 0 as n → ∞ and a strictly increasing

continuous function ψ : R+ → R+ with ψ(0) = 0 such that

ϕ(u, Ti(PTi)
n−1x) ≤ ϕ(u, x) + µnψ(ϕ(u, x)) + νn

holds for all x ∈ C, u ∈
∞∩
i=1

F (Ti) and all n ∈ N.

A nonself mapping T : C → E is said to be uniformly L-Lipschitz continuous if there

exists a constant L > 0 such that

∥T (PT )n−1x− T (PT )n−1y∥ ≤ L∥x− y∥
holds for all x, y ∈ C, n ∈ N.

Next, we prove the strong convergence theorems for common fixed points of a countable

family of total quasi-ϕ-asymptotically nonexpansive mappings in the framework of Banach

spaces based on modified Halpern and Mann-type iteration algorithm. The results improve

and extend the corresponding results of many others.

2 Main Results

Theorem 2.1 Let E be a a real uniformly convex and uniformly smooth Banach space,

and C be a nonempty closed convex subset of E. Let Ti : C → E, i ∈ N be a family of

uniformly total quasi-ϕ-asymptotically nonexpansive nonself mappings defined by Definition

1.3. Suppose that Ti is uniformly Li-Lipschitz and

F (T ) :=
∞∩
i=1

F (Ti) ̸= ∅.

Suppose that there exists an M∗ > 0 such that ψ(ηn) ≤ M∗ηn. Let αn be a sequence in

[0, 1], and βn be a sequence in (0, 1) satisfying the following conditions:

lim
n→∞

αn = 0, 0 < lim inf
n→∞

βn < lim sup
n→∞

βn < 1.

Let xn be a sequence generated by

x1 ∈ E, chosen arbitrarily; C1 = C,

ln,i = βnJxn + (1− βn)JTi(PTi)
n−1xn, i ≥ 1,

yn,i = J−1[αnJx1 + (1− αn)ln,t], i ≥ 1,

Cn+1 = {z ∈ Cn : sup
i≥1

ϕ(z, yn,i) ≤ αnϕ(z, x1) + (1− αn)ϕ(z, xn) + ξn},

xn+1 = ΠCn+1x1, n ≥ 1,

(2.1)

where

ξn = µnM
∗ sup
p∈F (T )

ϕ(p, xn) + νn.

If ν1 = 0 and F (T ) is bounded in C, then the iterative sequence {xn} converges strongly to

ΠF (T )x1 in C.

Proof. (I) We prove that F (T ) and Cn (n ∈ N) are all closed and convex subsets in C.

It follows from Lemma 1.3 that for each i, F (Ti) is a closed and convex subset of C. So

F (T ) is closed and convex in C. By the assumption we know that C1 = C is closed and
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convex. We suppose that Cn is closed and convex for some n ≥ 2. By the definition of ϕ,

we have

Cn+1 = {z ∈ Cn : sup
i≥1

ϕ(z, yn,i) ≤ αnϕ(z, x1) + (1− αn)ϕ(z, xn) + ξn}

=
∩
i≥1

{z ∈ C : ϕ(z, yn,i) ≤ αnϕ(z, x1) + (1− αn)ϕ(z, xn) + ξn}
∩
Cn

=
∩
i≥1

{z ∈ C : 2αn⟨z, Jx1⟩+ 2(1− αn)⟨z, Jxn⟩ − 2⟨z, Jyn,i⟩ ≤ αn∥x1∥2

+ (1− αn)∥xn∥2 − ∥yn,i∥2}
∩
Cn.

This shows that Cn+1 is closed and convex.

(II) We prove that F (T ) ⊂ Cn for all n ∈ N.

In fact, F (T ) ⊂ C1 = C. Suppose that F (T ) ⊂ Cn, n ≥ 2. Let

ωn,t = J−1(βnJxn + (1− βn)JTi(PTi)
n−1xn).

It follows from (1.2) that for any u ∈ F (T ) ⊂ Cn, we have

ϕ(u, yn,i) = ϕ(u, J−1(αnJx1 + (1− αn)Jωn,i)

≤ αnϕ(u, x1) + (1− αn)ϕ(u, ωn,i)

and

ϕ(u, ωn,i) = ϕ(u, J−1(βnJxn + (1− βn)JTi(PTi)
n−1xn)

≤ βnϕ(u, xn) + (1− βn)ϕ(u, Ti(PTi)
n−1xn)

≤ βnϕ(u, xn) + (1− βn)[ϕ(u, xn) + µnψ(ϕ(u, xn)) + νn]

≤ ϕ(u, xn) + (1− βn)(µnM
∗ϕ(u, xn) + νn).

Therefore,

sup
i≥1

ϕ(u, yn,i) ≤ αnϕ(u, x1) + (1− αn)[ϕ(u, xn) + (1− βn)(µnM
∗ϕ(u, xn) + νn)]

≤ αnϕ(u, x1) + (1− αn)[ϕ(u, xn) + µnM
∗ sup
p∈F (T )

ϕ(p, xn) + νn]

= αnϕ(u, x1) + (1− αn)ϕ(u, xn) + ξn,

where

ξn = µnM
∗ sup
p∈F (T )

ϕ(p, xn) + νn.

This shows that

u ∈ Cn+1.

So

F (T ) ⊂ Cn+1.

(III) We prove that {xn} is a Cauchy sequence in C.

Since xn = ΠCnx1, from Lemma 1.1(ii) we have

⟨xn − y, Jx1 − Jxn⟩ ≥ 0, y ∈ Cn.

Again, since F (T ) ⊂ Cn, n ≥ 1, we have

⟨xn − u, Jx1 − Jxn⟩ ≥ 0, u ∈ F (T ).
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It follows from Lemma 1.1(i) that for each u ∈ F (T ), n ≥ 1,

ϕ(xn, x1) = ϕ(ΠCnx1, x1) ≤ ϕ(u, x1)− ϕ(u, xn) ≤ ϕ(u, x1).

Therefore, {ϕ(xn, x1)} is bounded. By virtue of (1.1), xn is also bounded. Since

xn = ΠCnx1, xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn,

we have ϕ(xn, x1) ≤ ϕ(xn+1, x1). This implies that {ϕ(xn, x1)} is nondecreasing. Hence,

lim
n→∞

ϕ(xn, x1) exists. By the construction of Cn, for any positive integer m ≥ n, we have

Cm ⊂ Cn and xm = ΠCmx1 ∈ Cn.

This shows that

ϕ(xm, xn) = ϕ(xm, ΠCnx1) ≤ ϕ(xm, x1)− ϕ(xn, x1) → 0, m, n→ ∞.

It follows from Lemma 1.2 that

lim
n,m→∞

∥xm − xn∥ = 0.

Hence xn is a Cauchy sequence in C. Since C is complete, there is p∗ ∈ C such that xn → p∗.

By the assumption, we have that

lim
n→∞

ξn = lim
n→∞

[µnM
∗ sup
p∈F (T )

ϕ(p, xn) + νn] = 0. (2.2)

(IV) Now we prove that p∗ ∈ F (T ).

Since xn+1 ∈ Cn+1 and αn → 0, it follows from (2.1) and (2.2) that

sup
i≥1

ϕ(xn+1, yn,i) ≤ αnϕ(xn+1, x1) + (1− αn)ϕ(xn+1, xn) + ξn → 0, n→ ∞.

Since xn → p∗, by Lemma 1.2, for each i ≥ 1 we have

lim
n→∞

yn,i = p∗. (2.3)

Since xn is bounded, and {Ti}∞i=1 are total quasi-ϕ-asymptotically nonexpansive nonself

mappings with sequences µn, νn, p ∈ F (T ), we have

ϕ(p, Ti(PTi)
n−1x) ≤ ϕ(p, x) + µnψ(ϕ(p, x)) + νn ≤ ϕ(p, x) + µnM

∗ϕ(p, x) + νn.

This implies that {Ti(PTi)n−1xn} is uniformly bounded. For each i ≥ 1, we have

∥ωn,i∥ = ∥J−1(βnJxn + (1− βn)JTi(PTi)
n−1xn)∥

≤ βn∥xn∥+ (1− βn)∥Ti(PTi)n−1xn∥

≤ max{∥xn∥, ∥Ti(PTi)n−1xn∥}.
This implies that {ωn,i}, t ≥ 0 is also uniformly bounded. Since αn → 0, from (2.1) we have

lim
n→∞

∥Jyn,i − Jωn,i∥ = lim
n→∞

αn∥Jx1 − Jωn,i∥ = 0, i ≥ 1. (2.4)

Since E is uniformly smooth and J−1 is uniformly continuous on each bounded subset of

E∗, it follows from (2.3) and (2.4) that

lim
n→∞

ωn,i = p∗, i ≥ 1.

Since xn → p∗ and J is uniformly continuous on each bounded subset of E, we have that

Jxn → Jp∗, and for each i ≥ 1,

0 = lim
n→∞

∥Jωn,i − Jp∗∥

= lim
n→∞

∥βnJxn + (1− βn)JTi(PTi)
n−1xn − Jp∗∥

= lim
n→∞

∥βn(Jxn − Jp∗) + (1− βn)(JTi(PTi)
n−1xn − Jp∗)∥

= lim
n→∞

(1− βn)∥JTi(PTi)n−1xn − Jp∗∥.
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By the condition

0 < lim inf
n→∞

βn < lim sup
n→∞

βn < 1,

we have

lim
n→∞

∥JTi(PTi)n−1xn − Jp∗∥ = 0.

Since J is uniformly continuous, this shows that

lim
n→∞

Ti(PTi)
n−1xn = p∗.

By the assumptions that Ti : i ≥ 1 is closed and uniformly Li-Lipschitz, we have

∥Ti(PTi)nxn − Ti(PTi)
n−1xn∥

≤ ∥Ti(PTi)nxn − Ti(PTi)
nxn+1∥+ ∥Ti(PTi)nxn+1 − xn+1∥+ ∥xn+1 − xn∥

+ ∥xn − Ti(PTi)
n−1xn∥

≤ (Li + 1)∥xn+1 − xn∥+ ∥Ti(PTi)nxn+1 − xn+1∥+ ∥xn − Ti(PTi)
n−1xn∥. (2.5)

By

lim
n→∞

Ti(PTi)
n−1xn = p∗, i ≥ 1, xn → p∗

and (2.5), we have

lim
n→∞

∥Ti(PTi)nxn − Ti(PTi)
n−1xn∥ = 0 and lim

n→∞
Ti(PTi)

nxn = p∗.

So we get

lim
n→∞

TiP (Ti(PTi)
n−1xn) = p∗.

By virtue of the continuity of TiP , we have TiPp
∗ = p∗. Since p∗ ∈ C and Pp∗ = p∗, we get

Tip
∗ = p∗. By the arbitrariness of i ≥ 1, we have p∗ ∈ F (T ).

(V) Finally, we prove that xn → p∗ = ΠF (T )x1.

Let ω = ΠF (T )x1. Since ω ∈ F (T ) ⊂ Cn and xn = ΠCnx1, we get

ϕ(xn, x1) ≤ ϕ(ω, x1), n ≥ 1.

This implies that

ϕ(p∗, x1) = lim
n→∞

ϕ(xn, x1) ≤ ϕ(ω, x1). (2.6)

By the definition of ΠF (T )x1 and from (2.6) we have p∗ = ω. Therefore,

xn → p∗ = ΠF (T )x1.

This completes the proof of Theorem 2.1.
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