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Abstract: In this paper, we discuss the complete convergence of weighted sums for
arrays of rowwise m-negatively associated random variables. By applying moment
inequality and truncation methods, the sufficient conditions of complete convergence
of weighted sums for arrays of rowwise m-negatively associated random variables are
established. These results generalize and complement some known conclusions.
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1 Introduction

Let {X,, n > 1} be a sequence of random variables. Hsu and Robbins! introduced the
concept of complete convergence of {X,}. A sequence {X,, n = 1,2,---} of random
variables is said to converge completely to a constant C' if

o0
Y P(IX,—C|>¢) <00, €>0.
n=1
In view of the Borel-Cantelli lemma, this implies that X,, — C almost surely. The
converse is true if {X,,, n > 1} is a sequence of independent random variables.

Definition 1.1 A finite family of random variables {X;, 1 < i < n} is said to be nega-
tively associated (NA, for short) if for every pair of disjoint subsets A and B of {1,2,--- ,n}
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and any real nondecreasing coordinate-wise functions f1 on R4 and fo on RE
cov(f1(Xi, i € A), fo(X;, i€ B)) <0
whenever fi and fo are such that covariance exists.
An infinite family of random variables {X;, —0o < i < 0o} is NA if every finite subfamily
is NA.

The definition of NA was introduced by Alam and Saxenal® and was studied by Joag-Dev
et al. (see [3-4]). As pointed out and proved by Joag-Dev and Proschan®!, a number of well-
known multivariate distributions possess the NA property. Negative association has found
important and wide applications in multivariate statistical analysis and reliability. Many
investigators have discussed applications of negative association to probability, stochastic
processes and statistics.

Definition 1.2 Let m > 1 be a fized integer. A sequence of random variables {X;, i > 1}
is said to be m-negatively associated (m-NA, for short) if for any n > 2 and i1, 42, -+, in
such that |iy —ij| >m for all1 <k #j<n, {X;, Xi,, -+~ } is NA.

Z n

The m-NA random variables is a natural extension from NA random variables. Actually,
the NA sequence is just the 1-NA sequence. Moreover, Hu et al.[’! showed that there exists
a sequence which is not NA but 2-NA.

Hu et al.l% proved a very general result for complete convergence of rowwise independent

arrays of random variables which is stated in Theorem 1.1.

Theorem 1.1 et {Xni, 1 <i<k,, n>1} be an array of rowwise independent arrays
of random vam’ables Suppose that for every e > 0 and some § > 0,

(i) Z Cn _Z P{|Xi| > €} < o0;

=1

i/2
(ii) there exists a j > 2 such that Z cn( Z E|XiP1(| X | < 6)) < 005

n=1
(iii) Z EXpiI(|Xni]l <) =0 asn — oo.
i=1

Then
kn

>e}<oo, e > 0.
i=1

icnp{
n=1

Hu et al.[”l obtained the complete convergence of maximum partial sums for arrays of
rowwise NA random variables by using an exponential inequality obtained by Shaol® and

their result is given in Theorem 1.2.

Theorem 1.2[7  Let {Xni, 1 < i < kp, n > 1} be an array of rowwise NA random

variables such that the conditions (1) and (ii) in Theorem 1.1 are satisfied. Then

oo k
_ ) | < )
nz_:lcnP{ lg}%}](cn Z(Xm EXpiI(|Xni| < 5))' > e} < 00, e>0

i=1
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[9]

Kuczmaszewskal” investigated complete convergence of weighted sums for arrays of row-

wise NA random variables, and proved the following result.

Theorem 1.3  Let {Xni, 121, n> 1} be an array of rowwise NA random variables,
{ani, 1 > 1, n > 1} be an array of real numbers, {b,, n > 1} be an increasing sequence of
positive integers, and {c,,n > 1} be a sequence of positive real numbers. If for some q > 2,
0 <t<2 and any € > 0 the following conditions are satisfied:

bn
(@) Y e Y PllaniXni| > eby/*} < oo;

18

n=1 =1
oo by
D) S enbn " S i 2B X | T (s Xni| < €bi") < 00
n=1 =1
S —q/t [ & 2 2 1/t v
(¢) > cubn S ani P B\ Xpi |21 (|an; Xni| < €by!") < 00,
n=1 =1
then
e’} k
) L ) ) ) ) 1/t 1/t
nzlcnp{  ax ;(ame ani EX il (|ani Xni| < ebl ))‘ > ebl } < 0.

In this paper, we investigate the complete convergence for arrays of rowwise m-NA
random variables which includes many previous results as corollaries. For example, Sung et
al.'% and Hu et al.[% investigated independent arrays of random variables and Hu et al.[7)
investigated rowwise NA arrays of random variables. We point out that in Theorem 2.1 of
this paper we not only extends the result of Hu et al.l”), but also provide different methods
from those used by them.

2 Main Results and Some Lemmas

Now we state our main results. The proof will be given in Section 3. Throughout this paper,
C represents a positive constant whose value may different at each appearance. The symbol
I(A) denotes the indicator function of A, N denotes the positive integer set and [z] indicates
the maximum integer not larger than . Let {b,, n > 1} be an increasing sequence of positive
integers, {¢,, m > 1} be a sequence of positive real numbers, {X,;, 1 <i <b,, n > 1} be
an array of rowwise m-NA random variables, and {a,;, 1 <i <b,, n > 1} be an array of

real numbers.

Theorem 2.1  If for somet > 0, § > 0 and any € > 0, the following conditions are
satisfied:
o0 by,
(1) Z Cn Z P{|anani| > fb}/t} < 00,

n=1 i=1

(ii) there exists some q > 2 such that

) bn q/2
chbgq/t<z || 2 E| X i | T(| @i X | < 5b3/t)) < oo,

n=1 i=1

then

o0

E ¢, P{ max
1<k<b,

n=1

k
> (aniXni = aniEX il (|ani Xni| < 5b}/f))‘ > eb:/t} <oco.  (21)
i=1
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Remark 2.1 Theorem 2.1 improves upon Theorem 1.3 of Kuczmaszewskal®). Moreover,
from Theorem 2.1 we see that the condition (b) in Theorem 1.3 is unnecessary.

Corollary 2.1 extends the main result of Sung et al.l'! and can be obtained immediately
from Theorem 2.1.

Corollary 2.1  Under the conditions of Theorem 2.1, in addition, if the following condi-

tion is satisfied:
k

max b, 1/t ZamEXmI(|ame| < 5b}/t) —0 as n — oo,
1<k<bn P

then
0o k
¢, P{ max i X i
S eor{ ey |3 o
n=1 =1

Corollary 2.2 Let EX,; =0 for any 1 < i < by, n > 1, and Y(x) be a real function
2

> eb,l/t} < 00.

defined on [0,00) such that sup —— < oo and sup < oo for some 6 > 0. Assume

©>5 1/1( ) 0<z<s Y(x)

that for some t > 0 and any € > 0 the following conditions are satisfied:
[es) by
(a) Z Cn Z P{laannz| > Gbrlz/f} < 00;

/2

(b) there exists ¢ > 2 such that Z cn< Z Ey(by, Ut\am m|)) < o0
n=1 3

(c) if the sequence {c,,, n > 1} is not bounded away from zero, that is, if linl}inf en =0,

and that Z Ey(b 1/t|am-Xm-|) — 0 as n — 0.
Then for all e>0,

[e's) k

E ¢, P{ max E AniXni
1<k<b, | 4

n=1 =1

Remark 2.2 It is obvious that if the sequence {¢,, n > 1} is bounded away from zero,

> eb}/t} < o0.

that is, if liminf¢, > 0, then the assumption (c¢) is unnecessary, which follows from the
n—oo

assumption (b).

Theorem 2.2 If for somet > 0, 6 > 0 and any € > 0, the following conditions are
satisfied:

e

by,
i) 2 en Y PllaniXnil > eb/'} < oc;
n=1 i=1
(i) there exists some 1 < q < 2 such that

o0 by,
> enby N Jani| B X 1T (|ani Xni| < 6b}/") < oo

n=1 i=1

oo

E ¢, P{ max
1<k<b,

n=1

then

k
Z (@i Xni — @i EX il (|ani Xni| < 5b}/t))‘ > eb}/t} <oco.  (22)
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For the proof of the main results we need to restate a few lemmas for easy reference.
The following lemmas play an important role in our main results.
Lemma 2.1 Let {X;, 1 <i < n} be a finite family of NA mean zero random variables
n
with EX? < oo for every 1 <i < n, and set B,, = Y, EX?. Then for all e >0, a > 0,

i=1
€a
§ >el < R — )¢
P{1glka§n X; e} P{1211?§nxk>a}+e exp{ aln(l—l—Bn)}

Lemma 2.28]  Let {Xi, 1 <i<n} beasequence of NA random variables with mean zero
and E|X;|P < oo for every 1 <i<mn,1<p<2. Then

Xn:Xk ’ < 23*”Zn:E|X¢|p.

FE max
1<k<n

Lemma 2.3  Let {X;, i > 1} be a sequence of m-NA random variables with mean zero
and EX? < oo for every i > 1, and
n

:ZXZ-, anzn:EXf, n> 1.
Then for allmn >m, x>0, a $_07 =
P{ max Ska} Sm[P{ max X >a}+e-exp{%(1—ln(1+ ra ))H, (2.3)

1<k<n 1<k<n mB,,

and
xr ra
P{ > }<2 {P{ X } {—(1—1 (1 ))H 2.4
2 [Sk| = @ p < 2m Py max [Xel > ap+e-exp o (1 —In(1+ 25 ) ¢f-(24)

Proof. From (2.3) we can immediately get (2.4). Hence, to complete the proof, it is enough
to show that (2.3) holds.

Given any 1 <k <mn, let r = [2} Define
m

Xi, 1<i<m
)/;:
0, P> n,

mk+] ZYm1+Jv 1<5j<m.

It is obvious from Definition 1.2 that {K”k_i'_j, k=0,1,---,r} is a sequence of NA random
variables for every 1 < j < m, m < n. Since

{ S, > } c { Ty > = } U u{ T > 2 }
max X max — e max —
1<hen k= O<har MRHL = 0<hay mktm =

it follows from Lemma 2.1 that

P{ max Sy > x}
1<k<n

ZP{ max kaﬂ > £}
m

IN

T x

. e m_m az
;P{OIEZE},XTYmHm >a}+;e exp{ . o In (1+mBn>}

IN
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IN

m
T T Ta
P %> a4 Devep {0 = o (14 )
m 121132{71 Bod +;e exp ma man +mBn
a
B,

j]

Lemma 2.4  Let {X;, 1 < i < n} be a sequence of m-NA random variables with mean
zero and E|X;|P < oo for every 1 <i<n,1<p<2. Then

< m[P{ max Xg >a}+e-exp{i—iln(l+
1<k<n

ma  ma m
So, (2.3) holds.

F max

P n
<mP71237 P\ " p|X, P 1<p<2. 2.
| LX) <m SEIXP,  1<p< (2.5)

i=1

Proof. LetY;, T\,k4; and r be as in Lemma 2.3. By using the C, inequality, it follows from

Lemma 2.2 that
m p
E( . Orgax |Tmz+J|>
=

| /\

FE max
1<k<n

i=1

IA

mP~ IZE max. |Tml+j|

IA

D ) DL O]
j=11i=0
=mP~12P N T E|X)P.

i=1
3 Proofs of the Main Results

Proof of Theorem 2.1 Let
Vi = @i Xnil (|ani Xni| < 001)) + 60X T (an; Xni > 0bL/1) — b T (an; Xni < —0bY1),
where § > 0 and 1 <4 <b,, n > 1. By Property 6 in [3], we can conclude that
{Yoi — EY,, 1<i<b,, n>1}

is an array of rowwise m-NA random variables. Forn > 1 and 1 < k < b,, let

k k
/
Sk = ZYn% Sk = Z i Xni
i=1 =1

k
Tk == Zan1Xn1](|an7Xn1| < 56717,”)5
=1
k
Zi =Y 60}/ T(ani Xni > 6b)/") — b3/ 'I(ani Xpi < —6b}/")].
=1
Noting that for any n > 1,

max
1<i<b,,

= P{ max |S7; — ET;| > eb/'}
1<i<bn

> eb}/t}

Z i Xnj — Ang EXnj1(|an; Xnjl < 0bY/*))
=1
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b
< ZP{|am Xni| > (5b1/t} —|—P{ max |T ET;| > ebl/t} (3.1)
1=1
and that T; = S — Z;, we find

{ max T, — ET;| > eb!/*} C {1I<ni>g |S§—ES£|Z§b}l/t}U{ max |Z EZ)| > bi/t}.
_1_ n

1<i< 1<i<
Therefore7 we have

P{ max |T; — ET;| > eb,ll/t}
1<i<b,

SP{mM|S ES)| > Wﬁ+P{mm|z—Em25Wﬁ. (3.2)
1<i< 1<i<b, 2
Using Markov’s inequality, we get
bn
> 1/t}< X il > 661/t :
P{12%§|Z EZ| bn _(7§;P{MMX%A_5@1} (3.3)

Combining condition (i) with (3.1)—(3.3) we see that, to complete the proof, it is enough to

show that
<i<b,

icnP{ max |S; — ES!| > ebl/t} < 0.
=1

Set
bn
= Zvar(Ym-)7 n>1.
i=1

For any € > 0 and a > 0, set
A= {n {|am-Xm-\ > min{é, %}b}/t} < min{l, (%}

b
B n a\?2
and b,/ foni P B| X1 (Jans Xoui| < 001/%) < (%) }

=1

B=N—A,
where N ={1, 2, 3, ---}. Note
Z cnP{ max |S; — ES}| > ebl/t}

neB Sisbn
< ch
neB
e bn
= mln{l 7} Zl 2p{|am‘Xm'| Zmin{(i7 %}b}/t}
T 350" =
( ) ZC b, q/t(z (s |2 E| X 2T (| s Xni| < 6b}/t))q/2
< 0.

Hence it suffices to prove that

Z cnP{ max |S, — ES]| > eb}/t} < o0.

<i<bp,
necA
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By Lemma 2.3, we have

Z cnP{  max |S; — ES]| > ebl/t}
neA

N
<Y e, {2mP{ max |V — BYl > abl/*} +2me - exp (1 + ) (1 + = ) }
ma mby

1<i<
neA

€ mB, a
§2chn { max |Ym EYm\zab}/t}—i—2me-exp (1+ma> ch< 2/t>

neA neA eab
(3.4)

Note that for any n € A,
max |EY,;| < r<nax E|Y,.|

1<i<b,
< 1/t 1/t X > gpL/t
< max B X T (|ani X ni| < 0bY/%) + 6b ZIP{|ame|_6bn }
1/2 bn
gb}/f[( Q/fZEam 2 I(|an m|<5b1/*)> +6  P{laniXni| > db)/"}
=1
< 2,
= 3 n

Thus, for any n € A, we have
nP{ max (Yo — BYl > abl/t}

(]

3
S

€

IN

.8 HME% mM

nP{ max |Yy,| > bl/t}

1<i<b,

bn
> 1/t
; {|am Xnil mm{(S 3}bn }
<
Therefore, by (3.4) and (3.5), the proof will be completed if we show that

mB,, \ ma
Z C”(W> < Q0.

neA €a
2¢ .
Choose a = —. Noting that
mq

by,
3 P{laniXu| > 00} <1 forne A, g 1,

i=1

B, \ ma
ZC”(m 2/t)

neA eab”

<CD e, ' BY?
ncA

brn
<CD e, {Z a2, EX2.1(|ani X pi| < b/

neA =1

we have
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by, q/2
+ 6%, P{lani Xni| > 6b}/'}

i=1

by, q/2
<C [ > cnb;q/t(ZaiiEX,%iI(mmxm < 6b}/t)>

neA i=1

bn q/2
=3 e 3Pl 2 /1) |

neA i=1

q/2
[Zc b, W(Z%EX; (lani Xonil <5b1/t)>
S Pl > 'y
n=1 i=1

< oQ.

Therefore (2.1) holds.
Proof of Corollary 2.2 Note that

ZEam I(ani X < 6bL/1)

by,

a X2v
<N'E I(|ani Xni| < 806 an: Xnil)
; w(bn“ﬂ me|)

< ( sup 7)1)2/1: E7/1 Oni X ni
2P, 51 Z Xl
Since EFX,,; =0, it follows that

bn
b,/ Z | Bl X I (|ani Xni| < 6b1/")]

=1

bn
= b, "N | EBani X il (|ani Xni| > 6b)/"))|

i=1

b —1t
< 3 p e Jam Xl > 0 X
i1 Y(bn " |aniXnal)

(mw )ZW n ani Xnil) = 0.

(3.6)

(3.7)

Thus, by (3.6), (3.7), (a), (b) and (c), we see that the conditions of Corollary 2.1 are satisfied.

So, by Corollary 2.1 we complete the proof of Corollary 2.2.

Proof of Theorem 2.2 Let Y,,;, S/ be as in the proof of Theorem 2.1. From the proof of

Theorem 2.1, we need only to prove that
ch { max |S ES| >6b1/t} 00

holds.

(3.8)
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In fact, using the C). inequality, for any r > 0, we can estimate
ED/m - EYni|T < O(E|aniXm'|TI(|0471,ani| < 6b$/t) + b:L/tP{‘am’Xn” > 5b}/t})
Thus, using Markov’s inequality, by the above estimation and (2.5) we obtain

' BS| > b/t
P{lgzggnm ESZ|zebn}

k

=P Y, — EY,:)| > ebl/t
s | o v i}
k q
< e—ap—alt L )
< e b, Eér}%}in ;(Ym EY,;)
b’!l
< Ce b, "N B[V, — EYplt
1=1
bn bn,
< C[Zp{lamxm| > 00} 4+ b, Jani| "B X1 (Jani Xni| < 0bY/1)]|. (3.9)
=1 =1

Therefore, from the conditions (i), (ii) and (3.9), we know that (3.8) holds.
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