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Abstract: In this paper, the generalized extended tanh-function method is used for

constructing the traveling wave solutions of nonlinear evolution equations. We choose

Fisher’s equation, the nonlinear schrödinger equation to illustrate the validity and ad-

vantages of the method. Many new and more general traveling wave solutions are

obtained. Furthermore, this method can also be applied to other nonlinear equations

in physics.
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1 Introduction

It is well known that the nonlinear phenomena is very important in variety of the scien-

tific fields, especially in fluid mechanics, solid state physics, plasma physics, plasma waves,

capillary-gravity waves and chemical physics. Most of these phenomena are described by the

nonlinear partial differential equations. So exact solutions of the nonlinear partial differen-

tial equations play an essential role in the nonlinear science. For this end, various methods,
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such as the inverse scattering method (see [1]), the Hirota’s bilinear technique (see [2]),

and truncated Painlv́e expansion (see [3]) have been developed to obtain exact solutions.

The tanh method presented by Malfliet[4–6] is a powerful solution method to get the exact

traveling wave solutions. Later, Fan et al.[7–8] proposed an extended tanh-function method

and obtained the new traveling wave solutions which cannot be obtained by tanh-function

method. Recently, El-Wakil and Abdou[9] modified the extended tanh-function method and

obtained some new exact solutions. In this paper, we extended the modified tanh-function

method to get the new exact traveling wave solutions. For illustration, we apply this method

to Fisher’s equation and the nonlinear Schrödinger equation with general nonlinearity.

2 The Generalized Extend tanh-function Method

In this section, we give a brief description of the generalized extended tanh method. Consider

the following nonlinear partial differential equation (PDE):

F (u, ut, ux, utt, uxt, uuu, · · · ) = 0, (2.1)

where u = u(t, x) is an unknown function, F is a polynomial in u = u(t, x) and its various

partial derivatives, in which the highest order derivatives and nonlinear terms are involved.

We first consider the traveling wave solutions of (2.1)

u(t, x) = U(ξ), ξ = λ(x− V t),

and reduce (2.1) into the following ordinary differential equation (ODE):

F (U, −λV U ′, λU ′, V 2U ′′, −λV U ′′, λ2U ′′, · · · ) = 0, (2.2)

where U ′ =
dU

dξ
. The solutions can be expressed as the polynomial form

U(ξ) = S(Y (ξ)) =

M∑
k=0

akY
k, (2.3)

where the positive integer M can be determined by balancing the highest order derivative

term with the nonlinear terms in (2.2), and Y is the solution of the Riccati equation

Y ′ = Y 2 + αY + b, (2.4)

where α and b are constants to be determined. Substituting (2.3) and (2.4) into (2.2) and

equating the coefficients of all powers Y k to zero yield a system of algebraic equations for

V , λ, a0, ai (i = 1, 2, · · · ), from which the constants are obtained explicitly.

The Riccati equation (2.4) has general solutions as follows:

(I) If α = 0 and b = −1, then

Y = − tanh(−ξ) or − coth(−ξ). (2.5)

This method is the traditional tanh method (see [4–6]).

(II) If α = 0 and b is an arbitrary constant, then

Y =


−
√
−b tanh(−

√
−bξ) or −

√
−b coth(−

√
−bξ), b < 0;

−1

ξ
, b = 0;

√
b tan(

√
bξ) or

√
b cot(

√
bξ), b > 0.

(2.6)
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This method is the extended tanh-function method (see [7–9]).

(III) If α ̸= 0 and b is an arbitrary constant, we use the transformation Y = Z − α

2
and

write B =
4b− α2

4
, then (2.4) becomes the similar form as (II):

dZ

dξ
= Z2 +B. (2.7)

Thus the solutions of (2.4) are

Y =



−
√
α2 − 4b

2
tanh

(
−

√
α2 − 4b

2
ξ
)
− α

2
or

−
√
α2 − 4b

2
coth

(
−

√
α2 − 4b

2
ξ
)
− α

2
, α2 − 4b > 0;

−1

ξ
− α

2
, α2 − 4b = 0;

√
4b− α2

2
tan

(√4b− α2

2
ξ
)
− α

2
or

√
4b− α2

2
cot

(√4b− α2

2
ξ
)
− α

2
, α2 − 4b < 0.

(2.8)

3 Applications

3.1 Fisher’s Equation

We consider the generalized Fisher’s equation

ut = uxx + u(1− u2), (3.1)

and look for the traveling wave solution

u(t, x) = U(ξ), ξ = λ(x− V t).

Then (3.1) is transformed into the following ODE:

−λV
dU

dξ
= λ2 d

2U

dξ2
+ U − U3 = 0. (3.2)

Substituting (2.3) and (2.4) into (3.2), we can get

λV (Y 2 + αV + b)
dS

dY
+ λ2

[
(Y 2 + αY + b)2

d2S

dY 2

+ (2Y + α)(Y 2 + αY + b)
dS

dY

]
+ S − S3 = 0. (3.3)

To determine the parameter M we usually balance the linear terms of highest order in the

resulting equation (3.3) with the nonlinear terms of highest order. Thus we get

M − 2 + 4 = 3M ⇒ M = 1.

Write

U(ξ) = S(Y (ξ)) = a0 + a1Y (ξ). (3.4)

Substituting (3.4) into (3.3), we have the algebraic equation with respect to V , λ, a0, a1, as

follows:

λV a1(Y
2 + αV + b) + λ2a1(2Y + α)(Y 2 + αY + b) + (a0 + a1Y )− (a0 + a1Y )3 = 0. (3.5)
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So we get

(a0 − a30 + a1bV λ+ bαλ2a1) + Y (a1 − 3a20a1 + a1V αλ2bλ2a1 + α2λ2a1)

+ Y 2(−3a0a
2
1 + a1V λ+ 3αλ2a1) + Y 3(−a31 + 2λ2a1) = 0.

Equating each coefficient of this polynomial to zero, we obtain the following system of the

algebraic equations with respect to V , λ, a0, a1, α, b:
Y 0 : a0 − a30 + a1bV λ+ bαλ2a1 = 0;

Y 1 : a1 − 3a20a1 + 2bλ2a1 + α2λ2a1 = 0;

Y 2 : −3a0a
2
1 + a1V λ+ 3αλ2a1 = 0;

Y 3 : −a31 + 2λ2a1 = 0.

(3.6)

(I) If α = 0 and b = −1, with the aid of Mathematica, we get the solutions of (3.6):

V = 0, a0 = 0, a1 = ±1, λ = ± 1√
2
;

V = ± 3√
2
, a0 = ±1

2
, a1 = ±1

2
, λ = ± 1

2
√
2
,

with

sgn(a0) · sgn(a1) · sgn(λ) · sgn(V ) = 1.

So, according to (2.5), we get the solutions of (3.1) as follows (see [10]):

u
(I)
1−4 = U(λ(x− V t)) = S(Y (ξ)) = a0 + a1Y (ξ)

= ± tanh
(
± 1√

2
x
)

or ± coth
(
± 1√

2
x
)
;

u
(I)
5−12 = ± 1

2
± 1

2
tanh

[
± 1

2
√
2

(
x−

(
± 3√

2

)
t
)]

or

± 1

2
± 1

2
coth

[
± 1

2
√
2

(
x−

(
± 3√

2

)
t
)]

,

with

sgn(a0) · sgn(a1) · sgn(λ) · sgn(V ) = 1.

(II) If α = 0 and b is an arbitrary constant, then the method is the modified extended

tanh-function method. With the aid of Mathematica, we get the solutions of (3.6):

V = 0, b = − 1

2λ2
, a0 = 0, a1 = ±

√
2λ;

V = ± 3√
2
, b = − 1

8λ2
, a0 = ±1

2
, a1 = ±

√
2λ,

with

sgn(a0) · sgn(a1) · sgn(λ) · sgn(V ) = 1.

Obviously, when b < 0, according to (2.5), we get the solutions of (3.1) as follows:

u
(II)
1−2 = a0 + a1Y (λ(x− V t))

= ± tanh
(
− sgn(λ)

1√
2
x
)

or

± coth
(
− sgn(λ)

1√
2
x
)
;

u
(II)
3−4 =

1

2
± sgn(λ)

2
tanh

[−sgn(λ)

2
√
2

(
x±

√
3

2
t
)]

or
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1

2
± sgn(λ)

2
coth

[
− sgn(λ)

2
√
2

(
x±

√
3

2
t
)]

;

u
(II)
5−6 = − 1

2
± sgn(λ)

2
tanh

[−sgn(λ)

2
√
2

(
x∓

√
3

2
t
)]

or

− 1

2
± sgn(λ)

2
coth

[
− sgn(λ)

2
√
2

(
x∓

√
3

2
t
)]

.

(III) (i) When α2 − 4b = 0, α ̸= 0, with the aid of Mathematica, we obtain the solutions

of (3.6) as follows:

V =
1

6
(α±

√
216 + α2), a0 = ±

√
2

3
, a1 =

1

72
(−6V a0 + αa0) , λ = − 1

18
;

V = −α

6
, a0 = 0, a1 = ± 1

9
√
2
, λ =

1

18
;

V =
−α+ 216αλ2 − 23328αλ3

2
, a0 =

±
√
1− 324λ2

√
3

,

a1 =
αa0(13− 108λ− 5184λ2 + 244944λ3)

432
;

V = −27(16αλ2 + 72αλ3 − α3λ3 + 36α3λ4)

2(1 + 18λ)
, a0 = ±

√
2 + 3α2λ2

√
6

, 1 + 18λ ̸= 0,

a1 =
a0(−12V −4α+ 36αλ−1944αλ2−9α3λ2−11664αλ3 + 486α3λ3−5832α3λ4)

216 + α2
.

According to (2.8), we obtain the solutions of (3.1):

u
(i)
1−4 =

±
√
2

3
+

−6V a0 + αa0
72

( 18

x− V t
− α

2

)
, V =

1

6
(α±

√
216 + α2);

u
(i)
5−6 = ± 1

9
√
2

(
− 18

x+
α

6
t
− α

2

)
;

u
(i)
7−8 =

±
√
1− 324λ2

√
3

+
−a1

λ
[
x− 1

2
(−α+ 216αλ2 − 23328αλ3)t

] − α

2
;

u
(i)
9−10 = ±

√
2 + 3α2λ2

√
6

− a1

λ
[
x+

27
(
16αλ2 + 72αλ3 − α3λ3 + 36α3λ4

)
2(1 + 18λ)

t
] − αa1

2
.

(ii) When α2 − 4b ̸= 0 and α ̸= 0, with the aid of Mathematica, we get the solutions as

follows:

V = −3αλ, a0 = 0, a1 = ±
√
2λ, α =

±1√
−λ2 − 9λ3

, b =
9α2λ

2
; (3.7a)

V = 0, a0 = ±αλ√
2
, a1 =

2a0
α

, b =
−2 + α2λ2

4λ2
; (3.7b)

V =
3

8
(−9αλ− 18αλ2 ±

√
32 + 33α2λ2 + 324α2λ3 + 324α2λ4), a1 =

6λa0
V + 3αλ

,
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a0 =
±
√
V 2 + 6V αλ+ 9α2λ2

3
√
2

, b =
−6 + V 2 + 6V αλ+ 3α2λ2

12λ2
. (3.7c)

Obviously, from (3.7a) we have

λ < −1

9
, α2 − 4b = α2(1− 18λ) > 0.

So, according to (2.8), we have the exact traveling wave solutions of (3.1) as follows:

u
(ii)
1−4 =±

√
2λ

{
− 1

2

(
± 1√

−λ2 − 9λ3

)
+

1

2

√
1− 18λ

−λ2 − 9λ3
tanh

[1
2
λ

√
1− 18λ

−λ2 − 9λ3

(
x± 3λ√

−λ2 − 9λ3

)
t
]}

or

±
√
2λ

{
− 1

2

(
± 1√

−λ2 − 9λ3

)
+

1

2

√
1− 18λ

−λ2 − 9λ3
coth

[1
2
λ

√
1− 18λ

−λ2 − 9λ3

(
x± 3λ√

−λ2 − 9λ3

)
t
]}

with λ < −1

9
.

From (3.7b) we have α2 − 4b = 2 > 0. The traveling wave solutions of (3.1) are

u
(ii)
5−6 =±

√
α2λ2

√
α2 − −6 + 3α2λ2

3λ2

2
√
2α

{
tanh

[1
2
xλ

√
α2 − −6 + 3α2λ2

3λ2

]}
or

±

√
α2λ2

√
α2 − −6 + 3α2λ2

3λ2

2
√
2α

{
coth

[1
2
xλ

√
α2 − −6 + 3α2λ2

3λ2

]}
.

From (3.7c) we have α2 − 4b =
6− V 2 − 6V αλ

3λ2
.

So, if 6− V 2 − 6V αλ > 0, then we get the solutions of (3.1) as follows:

u
(ii)
7−10 =

√
V 2 + 6V αλ+ 9α2λ2

3
√
2

+

√
2λ

√
V 2 + 6V αλ+ 9α2λ2

V + 3αλ

·
{√

α2 − 4b

2
tanh

[√α2 − 4bλ(x− tV )

2

]
− α

2

}
or

±
√
V 2 + 6V αλ+ 9α2λ2

3
√
2

+

√
2λ

√
V 2 + 6V αλ+ 9α2λ2

V + 3αλ

·
{√

α2 − 4b

2
coth

[√α2 − 4bλ(x− tV )

2

]
− α

2

}
with

V =
3

8
(±

√
32 + 33α2λ2 + 324α2λ3 + 324α2λ4 − 9αλ− 18αλ2);

if 6− V 2 − 6V αλ < 0, then the traveling wave solutions of (3.1) are

u
(ii)
11−14 =

√
V 2 + 6V αλ+ 9α2λ2

3
√
2

+

√
2λ

√
V 2 + 6V αλ+ 9α2λ2

V + 3αλ

·
{√

4b− α2

2
tanh

[√4b− α2λ(x− tV )

2

]
− α

2

}
or

±
√
V 2 + 6V αλ+ 9α2λ2

3
√
2

+

√
2λ

√
V 2 + 6V αλ+ 9α2λ2

V + 3αλ
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·
{√

4b− α2

2
coth

[√4b− α2λ(x− tV )

2

]
− α

2

}
with the same velocity as above.

3.2 The Nonlinear Schrödinger Equation

We consider the nonlinear Schrödinger equation

iut = vxx +mu+ |u2n|u− ϵuxt = 0, n ∈ Z+, (3.8)

where u(t, x) is a complex function, and m, ϵ ∈ R are constants. We assume that

u(t, x) = U(t, x)ei(µx+νt), (3.9)

where U(t, x) is a real function, µ and ν are constants to be determined. Substituting (3.9)

into (3.8), removing the common factor ei(µx+νt) and separating the real and imaginary

parts, we have the following PDEs of U(t, x):{
(2µ+ ϵν)Ux − (1− ϵµ)Ut = 0,

Uxx + ϵUx,t + (ν − µ2 +m− ϵνµ)U + U2n+1 = 0.
(3.10)

(I) When n = 1, we look for the traveling wave solutions

U(t, x) = Φ(t, x) = Φ(ξ), ξ = (1− ϵµ)x+ (2µ+ ϵν)t.

Then (3.10) becomes

(1− ϵµ)(1 + ϵµ+ ϵ2ν)Φξξ + (ν − µ2 +m− ϵνµ)Φ + Φ3 = 0. (3.11)

Substituting Φ(ξ) = S(Y (ξ)) =
M∑
k=0

akY
k into (3.11), according to (2.3)–(2.4), we get

(1− ϵµ)(1 + ϵµ+ ϵ2ν)
[
(Y 2 + αY + b)2

d2S(Y )

dY 2
+ (2Y + α)(Y 2 + αY + b)

dS(Y )

dY

]
+ (ν − µ2 +m− ϵνµ)S(Y ) + S3(Y ) = 0.

Balancing the linear term of the highest order with the nonlinear term yields M = 1.

Therefore, we get Φ(ξ) = a0 + a1Y. Substituting it into the above equation, we get the

system of algebraic equations with respect to a0, a1, µ, ν, α, b:

Y 0 : (m− µ2 + ν − ϵµν)a0 + a30 + bα(1− ϵµ)(1 + ϵµ+ ϵ2ν)a1 = 0;

Y 1 : 2b(1− ϵµ)
(
1 + ϵµ+ ϵ2ν

)
a1 + 3a20a1

+α2a1(1− ϵµ)(1 + ϵµ+ ϵ2ν) + (m− µ2 + ν − ϵµν)a1 = 0;

Y 2 : 3α(1− ϵµ)
(
1 + ϵµ+ ϵ2ν

)
a1 + 3a0a

2
1 = 0;

Y 3 : 2(1− ϵµ)
(
1 + ϵµ+ ϵ2ν

)
a1 + a31 = 0.

(3.12)

(i) When α = 0 and b = −1, with the aid of Mathematica, we get the solutions of (3.12):

a0 = 0, a1 = ±
√
2
√
1−mϵ2√

−1 + 2ϵ2
, µ = −1

2
ϵν ± 1

2

√
4ν + ϵ2ν2 +

8− 4m

−1 + 2ϵ2
.

So, by the traditional tanh method, we can get the traveling wave solutions of (3.8):

u
(i)
1−4 =

{
±

√
2
√
1−mϵ2√

−1 + 2ϵ2
tanh

[(
1 +

1

2
ϵ2ν ∓ 1

2
ϵ

√
4ν + ϵ2ν2 +

8− 4m

−1 + 2ϵ2

)
x+

(
ν − ϵν

±
√
4ν + ϵ2ν2 +

8− 4m

−1 + 2ϵ2

)
t
]}

e
i

[(
− 1

2
ϵν ± 1

2

√
4ν + ϵ2ν2 +

8− 4m

−1 + 2ϵ2

)
x+ νt

]
or{

±
√
2
√
1−mϵ2√

−1 + 2ϵ2
coth

[(
1 +

1

2
ϵ2ν ∓ 1

2
ϵ

√
4ν + ϵ2ν2 +

8− 4m

−1 + 2ϵ2

)
x+

(
ν − ϵν
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±
√
4ν + ϵ2ν2 +

8− 4m

−1 + 2ϵ2

)
t
]}

e
i

[(
− 1

2
ϵν ± 1

2

√
4ν + ϵ2ν2 +

8− 4m

−1 + 2ϵ2

)
x+ νt

]
.

(ii) When α = 0 and b is an arbitrary constant, we can obtain the solutions of (3.12):

a0 = 0, a1 = ±
√
2
√
−1 +mϵ2√
1 + 2bϵ2

, µ =
−ϵν

2
±

√
8b+ 4m+ (4 + 8bϵ2)ν + (ϵ2 + 2bϵ4)ν2

2
√
1 + 2bϵ2

.

According to (2.6), if − 1

ϵ2
< b < 0, we can get the traveling wave solutions of (3.8):

u
(ii)
1−4 =±

√
−2b

√
−1 +mϵ2√

1 + 2bϵ2
tanh

{√
−b

[(−ϵν

2
±

√
8b+ 4m+ (4 + 8bϵ2)ν + (ϵ2 + 2bϵ4)ν2

2
√
1 + 2bϵ2

)
t

+
(
1 +

ϵ2ν

2
±

ϵ
√

8b+ 4m+ (4 + 8bϵ2)ν + (ϵ2 + 2bϵ4)ν2

2
√
1 + 2bϵ2

)
x
]}

ei(µx+νt) or

±
√
−2b

√
−1 +mϵ2√

1 + 2bϵ2
coth

{√
−b

[(−ϵν

2
±

√
8b+ 4m+ (4 + 8bϵ2)ν + (ϵ2 + 2bϵ4)ν2

2
√
1 + 2bϵ2

)
t

+
(
1 +

ϵ2ν

2
±

ϵ
√

8b+ 4m+ (4 + 8bϵ2)ν + (ϵ2 + 2bϵ4)ν2

2
√
1 + 2bϵ2

)
x
]}

ei(µx+νt).

If b = 0, then the solutions of (3.8) are

u
(ii)
5−8 = − ±

√
2
√
−1 +mϵ2[

(±
√
4m+ 4ν + ϵ2ν2 + ν − ϵν)t+

(
1 +

1

2
ϵ2ν ± ϵ

√
4m+ 4ν + ϵ2ν2

)
x
]
ei(µx+νt)

.

If b > 0, then the traveling wave solutions of (3.8) are

u
(ii)
9−12 =

±
√
2b
√
−1 +mϵ2√

1 + 2bϵ2
tanh

{√
b
[(

(1− ϵ)ν ±
√

8b+ 4m+ (4 + 8bϵ2)ν + (ϵ2 + 2bϵ4)ν2√
1 + 2bϵ2

)
t

+
(
1 +

ϵ2ν

2
±

ϵ
√
8b+ 4m+ (4 + 8bϵ2)ν + (ϵ2 + 2bϵ4)ν2

2
√
1 + 2bϵ2

)
x
]}

ei(µx+νt) or

±
√
2b
√
−1 +mϵ2√

1 + 2bϵ2
coth

{√
b
[(

(1− ϵ)ν ±
√
8b+ 4m+ (4 + 8bϵ2)ν + (ϵ2 + 2bϵ4)ν2√

1 + 2bϵ2

)
t

+
(
1±

ϵ
√
8b+ 4m+ (4 + 8bϵ2)ν + (ϵ2 + 2bϵ4)ν2

2
√
1 + 2bϵ2

+
ϵ2ν

2

)
x
]}

ei(µx+νt).

(iii) When α ̸= 0 and α2 − 4b = 0, the solutions of (3.12) are

a0 = ±
√
−α2 +mα2ϵ2√

2
, a1 =

2a0
α

, µ =
1

2

(
− ϵν +

√
4m+ 4ν + ϵ2ν2 + 12a20 − 6αa0a1

)
.

According to (2.8), we get the traveling wave solutions of (3.8):

u
(iii)
1−4 =±

√
−α2 +mα2ϵ2

2

·
− 2

α

t
(
ν − ϵν +

√
4m+ 4ν + ϵ2ν2

)
+ x

(
1 +

1

2
ϵ2ν − 1

2
ϵ
√
4m+ 4ν + ϵ2ν2

)ei(µx+νt).

If α ̸= 0 and α2 − 4b ̸= 0, then we obtain two sets of solutions of (3.12) as follows:

(1)

a0 =±
√
α2 −mα2ϵ2√

−2− 4bϵ2 + α2ϵ2
, a1 =

2a0
α

,

µ =
1

2

(
− ϵν ±

√
4m+ 4ν + ϵ2ν2 + 12a20 − 4αa0a1 − 4ba21

)
;
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(2)

a0 ̸=0, a1 =
2a0
α

, b =
1

4
(−2m+ α2),

µ =
1

2

(
− ϵν ±

√
4m+ 4ν + ϵ2ν2 + 2ma21

)
.

Obviously, in (1) we have α2 − 4b >
2

ϵ2
> 0. So the traveling wave solutions of (3.8) are

u
(iii)
5−8 =±

√
α2 −mα2ϵ2

−2− 4bϵ2 + α2ϵ2

{√
α2 − 4b

α
tanh

[√α2 − 4b

2

·
(
±

√
(α2 − 4b)(ϵν2 + 2)2 + 8(m+ ν)

2 + 4bϵ2 − α2ϵ2
+ ν − ϵν

)
t

+
(
1 +

1

2
ϵ2ν ± 1

2
ϵ

√
(α2 − 4b)(ϵν2 + 2)2 + 8(m+ ν)

2 + 4bϵ2 − α2ϵ2

)
x
]}

ei(µx+νt) or

±

√
α2 −mα2ϵ2

−2− 4bϵ2 + α2ϵ2

{√
−4b+ α2

α
coth

[√α2 − 4b

2

·
(
±

√
(α2 − 4b)(ϵν2 + 2)2 + 8(m+ ν)

2 + 4bϵ2 − α2ϵ2
+ ν − ϵν

)
t

+
(
1 +

1

2
ϵ2ν ± 1

2
ϵ

√
(α2 − 4b)(ϵν2 + 2)2 + 8(m+ ν)

2 + 4bϵ2 − α2ϵ2

)
x
]}

ei(µx+νt).

In (2), we have α2 − 4b = 2m. So, if m > 0, we can get the solutions of (3.8)

u
(iii)
9−12 =

√
−4b+ α2

α
tanh

{√
−4b+ α2

2

[(
ν − ϵν ±

√
4m+ 4ν + ϵ2ν2 +

8ma20
α2

)
t

+
(
1 +

1

2
ϵ2ν ± 1

2
ϵ

√
4m+ 4ν + ϵ2ν2 +

8ma20
α2

)
x
]}

ei(µx+νt) or

√
−4b+ α2

α
tanh

{√
−4b+ α2

2

[(
ν − ϵν ±

√
4m+ 4ν + ϵ2ν2 +

8ma20
α2

)
t

+
(
1 +

1

2
ϵ2ν ± 1

2
ϵ

√
4m+ 4ν + ϵ2ν2 +

8ma20
α2

)
x
]}

ei(µx+νt).

If m < 0, according to (2.8), the traveling wave solutions of (3.8) are

u
(iii)
13−16 =

√
α2 − 4b

α
tanh

{√
α2 − 4b

2

[(
ν − ϵν ±

√
4m+ 4ν + ϵ2ν2 +

8ma20
α2

)
t

+
(
1 +

1

2
ϵ2ν ± 1

2
ϵ

√
4m+ 4ν + ϵ2ν2 +

8ma20
α2

)
x
]}

ei(µx+νt) or

√
α2 − 4b

α
tanh

{√
α2 − 4b

2

[(
ν − ϵν ±

√
4m+ 4ν + ϵ2ν2 +

8ma20
α2

)
t

+
(
1 +

1

2
ϵ2ν ± 1

2
ϵ

√
4m+ 4ν + ϵ2ν2 +

8ma20
α2

)
x
]}

ei(µx+νt).

(II) When n > 1, if we proceed as presented above, we find M =
1

n
. This means that the

tanh method is not appropriate for any positive integer n ≥ 2. In order to use the method,

we make the following transformation as that in [10]:

U(t, x) = Φ(t, x)
1
n , n ∈ Z+.
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Then (3.10) is changed into
(2µ+ ϵν)Φx − (1− ϵµ)Φt = 0,

ΦΦxx +
( 1

n
− 1

)
Φ2

x + ϵ
[( 1

n
− 1

)
ΦtΦx + ΦΦx,t

]
+n(ν − µ2 +m− ϵνµ)Φ + nΦ4 = 0.

(3.13)

Assume that the traveling wave solutions of (3.13) have the form

Φ(t, x) = Φ(ξ), ξ = (1− ϵµ)x+ (2µ+ ϵν)t. (3.14)

Substituting (3.14) into (3.13), we get

(1− ϵµ)(1 + ϵµ+ ϵ2ν)ΦΦξξ +
( 1

n
− 1

)
(1− ϵµ)(1 + ϵµ+ ϵ2ν)Φ2

ξ

+ n(ν − µ2 +m− ϵνµ)Φ + nΦ4 = 0. (3.15)

According to (2.3), we assume that

Φ(ξ) = S(Y (ξ)) =

M∑
k=0

akY
k.

Substituting (2.4) into (3.15), we can get

(1− ϵµ)(1 + ϵµ+ ϵ2ν)S
[
(Y 2 + αY + b)2

d2S

dY 2
+ (2Y + α)(Y 2 + αY + b)

dS

dY

]
+
( 1

n
− 1

)
× (1− ϵµ)(1 + ϵµ+ ϵ2ν)(Y 2 + αY + b)2

( dS

dY

)2

+ n(ν − µ2 +m− ϵνµ)S + nS4 = 0. (3.16)

Balancing the term (1− ϵµ)(1+ ϵµ+ ϵ2ν)(Y 2 +αY + b)2
( dS

dY

)2

with S4 yields M = 1. This

gives the solution in the form

Φ(ξ) = S(Y (ξ)) = a0 + a1Y (ξ). (3.17)

Substituting (3.17) into (3.16), we can get the system of the algebraic equation with respect

to a0, a1, ν, µ:

Aa1(a0 + a1Y )(2Y + α)(Y 2 + αY + b) +
( 1

n
− 1

)
Aa21(Y

2 + αY + b)2

+ nB(a0 + a1Y ) + n(a0 + a1Y )4 = 0,

with

A = (1− ϵµ)(1 + ϵµ+ ϵ2ν), B = ν − µ2 +m− ϵνµ.

Equating each coefficient of this polynomial in Y to zero, we obtain the following system of

the algebraic equations:

Y 0 : Bna0 + na40 +Abαa0a1 +Ab2
( 1

n
− 1

)
a21 = 0;

Y 1 : Bna1 + 2Aba0a1 +Aα2a0a1 + 4na30a1 +Abαa21 + 2Ab
( 1

n
− 1

)
αa21 = 0;

Y 2 : 3Aαa0a1 + 2Aba21 + 2Ab
( 1

n− 1

)
a21 +Aα2a21 +A

( 1

n
− 1

)
α2a21 + 6na20a

2
1 = 0;

Y 3 : 2Aa0a1 + 3Aαa21 + 2A
( 1

n
− 1

)
αa21 + 4na0a

3
1 = 0;

Y 4 : 2Aa21 +A
( 1

n
− 1

)
a21 + na41 = 0.

(3.18)

(i) When α = 0 and b = −1, there are no non-trivial solutions of (3.18).
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(ii) When α = 0 and b is an arbitrary constant. If b = 0, with the aid of Mathematica,

we get the solutions of (3.18)

a0 = 0, a1 = ±
√
−1− n+mϵ2 +mnϵ2

n
, µ =

1

2

(
−ϵν ±

√
4m+ 4ν + ϵ2ν2

)
.

So, the traveling wave solutions of (3.8) are

u
(ii)
1−4 =

∓
√
(mϵ2 − 1)(n+ 1)

n
[(

ν − ϵν ±
√
4m+ 4ν + ϵ2ν2

)
t+

(
1 +

1

2
ϵ2ϵν ∓ 1

2
ϵ
√
4m+ 4ν + ϵ2ν2

)
x
]ei(µx+νt).

If b ̸= 0, then there are no non-trivial solutions of (3.18).

(iii) When α ̸= 0, with the help of Mathematica, there are no non-trivial solutions of

(3.18).

4 Conclusion

In this paper, we have applied the generalized tanh method to construct a series of traveling

wave solutions for some special types of equations: Fisher’s equation and the nonlinear

Schrödinger equation. These traveling wave solutions are expressed in terms of hyperbolic

tangent (cotangent), trigonometric and rational functions depending on different parameters.

The performance of the generalized tanh method is direct, concise and effective. This method

will be used in further works to establish more and new solutions of many other nonlinear

evolution equations.
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[3] Tian B, Gao Y. Truncated Painlevé expansion and a wide-ranging type of generalized variable-
coefficient Kadomtsev-Petviashvili equations. Phys. Lett. A, 1995, 209: 297–304.

[4] Malfliet W. Solitary wave solutions of nonlinear wave equations. Amer. J. Phys., 1992, 60(7):
650–654.

[5] Malfliet W. The tanh method: I. Exact solutions of nonlinear evolution and wave equations.
Phys. Scripta, 1996, 54: 563–568.

[6] Malfliet W. The tanh method: II. Perturbation technique for conservative systems. Phys.
Scripta, 1996, 54: 569-575.

[7] Fan E. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett.
A, 2000, 277: 212–218.

[8] Fan E, Hon Y C. Generalized tanh method extended to special types of nonlinear equations.
Z. Naturforsch, 2002, 57a: 692–700.

[9] El-Wakil S A, Abdou M A. New exact travelling wave solutions using modified extended tanh-
function method. Chaos Solitons Fractals, 2007, 31: 840–852.

[10] Wazwaz A M. The tanh method for travelling wave solutions of nonlinear equations. Appl.
Math. Comput., 2004, 154(3): 713–723.


