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Abstract. This article deals with the numerical solution to the magneto-thermo-
elasticity model, which is a system of the third order partial differential equations.
By introducing a new function, the model is transformed into a system of the second
order generalized hyperbolic equations. A priori estimate with the conservation for
the problem is established. Then a three-level finite difference scheme is derived. The
unique solvability, unconditional stability and second-order convergence in Ls-norm
of the difference scheme are proved. One numerical example is presented to demon-
strate the accuracy and efficiency of the proposed method.

AMS subject classifications: 65M06, 65M12, 656M12, 78M20, 80M20

Key words: Magneto-thermo-elasticity, conservation, finite difference, solvability, stability, con-
vergence.

1 Introduction

In the past decades, magneto-thermo-elastic theory has been widely applied in acoustics,
geophysics, micro electromechanical systems (MEMS). There are some reviews about the
classical and generalized theories [1-3]. The generalized thermo-elasticity theories were
considered to be more realistic than the conventional theory in dealing with practical
problems. Some models have been proposed in order to study the property of the ana-
lytical solution by the energy functional and generalized variational principle [4-8]. As
is known to all, it is difficult to find the analytical solution for the generalized model.
Thus, the numerical solutions are usually obtained by the numerical methods such as
finite difference method [9-12], finite element method [13-16] and numerical integration
method [17-19]. It should be mentioned that there are few papers concentrating on the
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analysis of the established numerical methods. This paper deals with the Green-Naghdi
(G-N) model [20] derived by Green and Naghdi [21-23] who provided sufficient basic
modifications in the constitutive equations. The model is written as follows:
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where U=U(¢,n) and 8 =6(¢,7) are functions of displacement and temperature, ¢ and
17 are space variable and time variable respectively. The constants R%,, 7, cr and g are
dimensionless quantities, where R3, describes the impact of the external magnetic field
in the process of thermo-elasticity, et is the thermo-elasticity coupled coefficient, cr is the
wave velocity in G-N model, and «g is the thermal diffusion coefficient. When xy < CZT,
Eq. (1.1b) becomes
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which corresponds to the thermo-elasticity undamped heat-wave solution in G-N model.
For emphasizing the main idea, in this article, we consider the model with the simplified

notations in the bounded domain. Then (1.1a) and (1.2) turn into

(1.2)

Upt = Allyx — Uy, 0<x<], 0<t<T, (1.3a)
Ut = CUxy — by, O<x<], 0<t<T. (1.3b)

Now taking the derivative with respect to t on both sides of the Eq. (1.3a), we have
Upp =AUyt — 0y, 0<x<1, 0<t<T.
Let w = uy, then the above equation is equivalent to
Wit = AWxx — Uxt,

and (1.3b) can be rewritten as
Ut = CUxy — bWy

In the following we consider the numerical solution of initial boundary value problem
for the coupled system:

Wi = AWy — Uyt + 1 (X, 1), O<x<l, 0<t<T, (1.4a)
Uyt = CUxxy — bWy + g2 (X, ), 0<x<1, 0<t<T, (1.4b)
w(x,0)=¢1(x), wi(x,0)=e2(x), 0<x<1, (1.4c)
o(x,0)=11(x), v (x,0)=12(x), 0<x<1, (1.4d)
w(0,t)=wa1(t), w(l,t)=uwa(t), 0<t<T, (1.4e)
v(0,t)=PB1(t), o(1,t)=pa(t), 0<t<T, (1.4f)
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where v=10(x,t) is the temperature, w(x,t) is the derivative of displacement with respect
tot, ¢1(0)=a1(0), ¢1(1)=2(0), ¥1(0) =B1(0), 1 (1) =B2(0), 2(0) =} 0), (1) =, (0),
2(0)=p4(0 ) »(1)=p5(0 ) the positive constants a=R%,, b=¢1, and c=c%. We suppose
that the problem (1.4a)-(1.4f) has a unique smooth solution.

This paper is organized as follows. The priori estimate of the solution of the problem
(1.4a)-(1.4f) is set up in Section 2. A three level difference scheme is constructed and the
unique solvability of the difference scheme is showed in Section 3. The unconditional
stability and convergence of the difference scheme are proved in Section 4. In Section 5,
the difference scheme is written into two kinds of matrix forms. One numerical example
is presented in Section 6 to show the effectiveness of the presented difference scheme.
The article ends with a short conclusion.

2 The priori estimate of the solutions of the differential
equations

In this section we will provide a priori estimate of the problem (1.4a)-(1.4f).

Theorem 2.1. Assume w=w(x,t) and v=uv(x,t) are solutions of the following problem:

Wit =AWy — Uyt + 1 (X, 1), 0<x<1, 0<t<T, (2.1a)
Uyt = CUxy — bWyt +g2(x, ), O<x<l, 0<t<T, (2.1b)

w(x,0) =¢1(x), W (x,0)=a(x), 0<x<1, 210
o(E0) =) 5 (50)=al) 0<x<1, 21d)
w(0,t) =0, w(l,t)= 0<t<T, (2.1e)
v(0,)=0, v(1,t)=0, 0<t<T, (2.1f)

where ¢1(0)=¢1(1)=11(0) =11 (1) =¢2(0) =¢2(1) =92(0) =4(1)=0and a, b, c are positive

constants. Then we have
1
b/ w?(x,t) dx+/ 07 (x,t) dx—th/ (x,t) dx+c/ 02 (x,t)dx
0
1
<e'{b / 93 (x)dx+ / y3(x)dx-+ab / #1()Pax-+c [ g} (0)Pax
0 0 0 0
t 1 1
+/ e’ [b/ g%(x,s)dx—k/ g%(x,s)dx]ds}, 0<t<T. (2.2)
0 0 0
If g1(x,t) =0, g2(x,t) =0, then the following conservation law holds:
1
b/ w?(x,t) dx+/ 07 (x,t) dx—th/ (x,t) dx+c/ 02 (x,t)dx
0
1
—b / $2(x)dx+ / 2 (x)dx+ab / [, ()] 2dx +c / W (0)Pdx, 0<t<T.  (23)
0 0 0 0
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Proof. Multiplying (2.1a) by bw;, and integrating the result for x on [0,1], it follows that

bd /! 1
§E</o w%(x,t)dx+a/() w,%(x,t)dx)
1
:—b/wt(x,t)vxt(x,t)dx+b/ we(x,t)g1(x,t)dx, 0<t<T. (2.4)
0

Similarly, multiplying (2.1b) by v;, and integrating the result for x from 0 to 1, one gets

1d /11 1

§E</o v%(x,t)dx—kc/o v%(x,t)dx)
1

—b/vt(x,t)th(x,t)dx+/ vr(x,t)go(x,t)dx, 0<t<T. (2.5)
0

Denote

1
b/ w?(x,t) dx+/ v?(x,t) dx—th/ (x,t) dx+c/ 02 (x,t)dx
0
and . .
G t):b/ g§(x,t)dx+/ B (x,t)dx.
0 0
Adding (2.4) to (2.5) and using (2.1e)-(2.1f), it yields

dE()

1
=2 / (e (x,)0xe (x,£)dx+ 04 (3, (x,£) ) dx
0

1 1
+2b/ wt(x,t)gl(x,t)dx—l—Z/ v (x,1)g2(x,t)dx
0 0
1 1
:—2bwt(x,t)vt(x,t)]}C:O+2b/ wt(x,t)gl(x,t)dx—l—Z/ v (x,1)g2(x,t)dx
0 0

1 1
:2b/ wt(x,t)gl(x,t)dx—l—Z/ vi(x,t)g2(x,t)dx, 0<t<T. (2.6)
0 0

Applying the Cauchy-Schwarz inequality to the above equality, we have

dE(t)
Cdt

Utilizing the Gronwall inequality, we obtain

<E(t)+G(t), 0<t<T.

E(t +/ ds 0<t<T.

Recalling the definition of E(t), the estimate (2.2) holds.
When g1 (x,t) =0, g2(x,£) =0, it follows from (2.6) that

dE(t)

= <t<T.
TR =0, 0
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Consequently,
E(t)=E(0), 0<t<T.

This means that (2.3) is valid. The proof is completed. O

3 The derivation of the difference scheme and the unique
solvability

For the finite difference approximation, we take two positive integers m and 7, and let
h=1/m and T=T/n. The domain [0,1] x [0,T] is covered by the grid (), x O, where
Qp = {xj|lxi=ih, 0<i<m} and Qr = {#|ty =kT, 0<k <n}. In addition, denote x;_1,, =
(xi+xi-1)/2 and ty_1/2=(t+tc_1)/2. Suppose that u = {u¥|0<i<m, 0<k<n} is a grid
function defined on (), x Q-. Introduce the following notations:

1 1 kel 1
k ko ok k k k+1_ ok
”i+%=§(”z+”z‘+1)/ 5x”l-+%=ﬁ(”i+1 i), Ot 2:;(”i+ ui),
1 1
k k k— k k k
Aru; —E(”iﬂ i), Ayu; = (Uiq — i),
1 1

In addition, if u’é =uk, =0, we define

m—1 m—1

k k k

Il max ful, = WS 2 Jk (Gt .
1= 1=

Define the grid functions

Uk=u(x;,ty), WE=w(x,t), VE=o(x,t), 0<i<m, 0<k<n.
Utilizing the formula of Taylor expansion with integral remainder
k+1

1
g(po+p) Zg ), e [ = o apda, gect,

we have

h? ’u

ou T (1-)\) |55 (i Aty

a(xi,tk) A UF—

3
—l-@(xi—)\h,tk)}d/\, 1<i<m-—1, 0<k<n,
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ou 2 1 ’u
Sreat) =l =T [ (1-9)2[ S5 (rititsm)
83
+at3(xz,tk )]ds, 0<i<m, 1<k<n-1,
Ju 1
o irty) =l 16/ at3 xl’tl
+ST>+at§l(xz,t1 >]ds 0<i<nm.

Consequently, there exist ¢; and & in [x;_1,X; 1] such that

Uxe (X, b)) = D AU 4 / 1-s 2[uxttt(glztk+ST)d5+uxttt(Clz k—ST)] ds

hz
T (1 21)2 [uxxxt(xi+)»h,tk)+uxxxt(x,-—)»h,tk)}dA

:AxAth‘+(’)(72+h2), 1<i<m—1, 1<k<n-—1,
12 ST ST
”xt(xi/t%):Ax(stU?—E/o (1-s)? |:uxttt (Czlt%—k?)cis—i-uxttt (Cz;t%—k?)}ds
hz
4
:Axétuz.2+(’)(r2+h2), 1<i<m—1,

(1 )2 [uxxxt(xl—k)\hh)—kuxxxt( /\htl)]d/\

and
Pu 27 1k 2 .
e = (X, 1) =0 U; + O (h), 1<i<m-1, 0<k<mn,
Pu 27 1k 2 :
32 (xi,tx) =07 U7 +O(77), 0<i<m, 1<k<n-1.

Using the equalities above in (1.4a)-(1.4b) at the points (x;,t¢) and (x;,t; /), we obtain
5$w}<—g(5§w§<+1+5§w}<*1)+AxAtVik:gl (xi,t)+(RK, 1<i<m—1, 1<k<n—1, (3.1a)
5%\/;‘—%(5,%1/1.“1+5§Vi’<—1)+beAtw}<=g2(xi,tk)+(R2)§<, 1<i<m—1, 1<k<n—1, (3.1b)
% [@wﬁ —q;z(xi)} CaRWE A VE =g (xite) +(Ry)Y, 1<i<m—1, (3.1¢)
% [(wﬁ —wz(xi)} OV bAGWE =g (xit0) +(Rp)l, 1<i<m—1. (3.1d)

By the assumptions on the existence of smooth solutions, there exists a constant ¢y such
that

K| <co(T2+H2), 1<1<2, 1<i<m-—1, 1<k<n-—1, (3.2a)
[(R)?| <co(t+H?), 1<I<2, 1<i<m—1. (3.2b)



H. Y. Cao, Z. Z. Sun and X. Zhao / Adv. Appl. Math. Mech., 6 (2014), pp. 281-298 287

Noticing the initial and boundary conditions

WP =1 (x;), VP =11(x), I<i<m-—1, (3.3a)
W =i (), W = (), 0<k<n, (3.3b)
Vo =B1(k), Vi =Ba(te), 0<k<n, (3.3¢)

and omitting the small terms in (3.1a)-(3.1d), the difference scheme is constructed for the
system (1.4a)-(1.4f) as follows:

a
2
620k — % (20 4208 ) b Ak =go (xty), 1<i<m—1, 1<k<n—1, (3.4b)

67wk — = (P + 20w )+ A A = g1 (i t), 1<i<m—1, 1<k<n-1, (3.4a)

% [5tw§ ~a(x)] 8w} + AG0? =1 (xike), 1<i<m—1, (3.4¢)
%[&v%—lpz(xi)] —c&,%vi%—kbe(Stwi% = (xitp), 1<i<m—1, (3.4d)
C=pi(xi), W=yr(x;), 1<i<m—1, (3.4¢)
wh=a1(ty), wh=a(t), 0<k<n, (3.4f)
v=pi(t), p=p2(tr), 0<k<n. (3.4¢)

Remark 3.1. Since
te
u(xi,te) =u(xi,to)+ [ w(x;,s)ds

fo

1 = 1
:”(xi,to)+T[§w(xi,fo)+Zw(xi,fl)ﬂLEw(xi,fk)} +0(7), (3.5)
=1
we let
1, &1
u{f:u?+r<§w?+2w§+§wﬁ.‘), 1<i<m—1, 1<k<n, (3.6)
=1

when {w¥|0<i<m, 0<k<n} has been determined.
Theorem 3.1. The difference scheme (3.4a)-(3.4g) is uniquely solvable.

Proof. The mathematical induction will be used to prove this theorem. The initial val-
ues {w?, v9|0 <i<m} are determined according to (3.4e)-(3.4g). Now, we consider the
homogeneous system of (3.4c)-(3.4d) with (3.4f) and (3.4g)

2 1 1
ﬁw} —Eaéﬁw}—k;Axv} =0, 1<i<m—1, (3.7a)
gvi —EC(vai“r‘;Axwi :0, 1§Z§m—1, (37b)
wy=0,  w, =0, (3.7¢)

vp=0, vl =0. (3.7d)
0 m
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Multiplying (3.7a) by hbw! and (3.7b) by hv!, summing up for i from 1 to m—1, then
adding the results, we obtain

2 1 1
Ol [P+ 0t )+ ableo! -+ 5ot =0,
which leads to

w}:0, 01120, 0<i<m.

This implies that the difference scheme (3.4c)-(3.4d) with (3.4f)-(3.4g) uniquely deter-
mines {w},v} 0<i<m}.

Then if {w¥,0¥|0<i<m} and {w!~",0¥71|0<i<m} have been obtained, the difference
scheme (3.4a)-(3.4b) with (3.4f)-(3.4g) is a linear system of {w!™!,0%"1|0<i<m}. Similarly,
considering its homogeneous system, we have

1 1 1
5 |+ [ )+ a1 B+ el =0,

Hence,
witl=0, o1=0, 0<i<m.

So the difference scheme (3.4a)-(3.4g) has a unique solution. This completes the proof. []

4 The stability and convergence of difference scheme
In this section, we will prove the stability and convergence of the finite difference scheme
(3.4a)-(3.4g). Firstly, as a counterpart of Theorem 2.1, we give a priori estimate of the

difference scheme.

Lemma 4.1. Assume that {wf,vif 0<i<m, 0<k<mn} is the solution of the following problem:

Pk — 2 (Bl 12 ) H A Ml = (g1)f, 1<i<m—1, 1<k<n-1,  (41a)

2

(s%vf—%(5§v§+1+5§vﬁf—1)+beAtw§:(gz)f, 1<i<m-1, 1<k<n—1,  (4.1b)
%5tw§—a5§w§+Ax5tv§:(gl)?, 1<i<m—1, (4.10)
%&v%—céiv%—kbe&tw%:(gz)?, 1<i<m-1, (4.1d)
wl=¢1(x;), of=yi(x), 1<i<m—1, (41e)
wk=0, wk,=0, 0<k<n, (4.1f)

015:0, v’,;zo, 0<k<n, (4.1g)



H. Y. Cao, Z. Z. Sun and X. Zhao / Adv. Appl. Math. Mech., 6 (2014), pp. 281-298 289

where $1(x0) = P1(xm) =1 (x0) =1 (X ) =0. Then we have

ol k1.0 el kel 2, b i k|2
bl ) | (S0 7)1 ) (80 *)P - ([ R+ [ [) +
=1 i=1

c

(10 R+ [0 R)

1

3 bt? 72
<e3ablg |2+l [f+ = 1 (g0) 12+ 11(22)°)12
3 & 12 12
+57Y (Bl @) IP+lg2)' 1) |, 0<k<n—1. (4.2)
=1

If (g1)¥=0, (g2)5=0, we have

ab

Cc
B+ b )+ 2 ([0 B+ )

m—1 k+110 m—1 k+1 10
th((Stwl 2) +h2(5tvi 2) +
i=1 i=1

m—

1 1 m—1 1 ab c
=bh ) (8r0f)?+h Y (607 )2+ ([ [+ D) + 5 ([0 F+[alD), 0<k<n-1. (43)
i=1 i=1

1=

Proof. Multiplying (4.1a) by thAtw;‘ and summing up for i from 1 to m—1, it follows

m—1 m—1
2bh Y (67w!) (Avwk) —abh Y (82wk ! 4620 Ak
i=1 i=1

m—1 m—1
+20h Y (A A ) Ak =201 Y (g1)fAf, 1<k<n-1,
i=1 i=1

which is equivalent to

b m—1 el m—1 k1 ab B
S MO D MG B (e
Tt O i=1 2t

m—1 m—1
+20h Y (A A ) Ak =2b1 Y (g1)FAf, 1<k<n—1. (4.4)
i=1 i=1

1 1

Similarly, multiplying (4.1b) by ZhAtv;‘ and summing up for i from 1 to m—1, we can
obtain

1 m—1 el m—1 k1 c B
S MCEAD S MG o FECH(EAS R E
Tt i3 i=1 T

m—1 m—1
+20h Y (AxDwb) A =h Y (g2)fA0f, 1<k<n—1. (4.5)
i=1 i=1

Denote

k nl k+3\2 "= ki, b, i k2
EX=bh ) (6ww; *)*+h)_ (60; ?) +?(’w [T+ |w" 1)+
i=1 i=1

c

k k
Z(o R+ ).
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Adding (4.4) and (4.5), we have

1 3 m—1
—(E*—E"")+2bh Y [(AxAtvf)Atwf—k(AxAtwi-‘)Atvﬂ
i=1

m—1 m—1
=2bh Y (g1)fAwi+h Y (g2)fAwf, 1<k<n-1. (4.6)
i=1 i=1

For the second term on the left hand side of (4.6), using (4.1f) and (4.1g), we have

m—1
2bh ) [(AxAth)Ath(AxAtwf)AtU;(]
i=1

m—1
by, {(Afvi'{—&-l — A0l A+ (D —Atwf—OAth]
i=1

~

3
-

b [(AtvﬁlAthAtwﬁlAtvf) — (Af Al +AtwatU§—1)]
=1

=b

o~

(Aol Al o+ A, Aol 1) — (Atv’;Atw’5+Atw’;Atv’5)] =0.

Consequently,

1 m—1 m—1
;(E"—E"’l) =2bh Y (g1)fAwf+1 Y (go)fAf, 1<k<n-—1. (4.7)
i=1 i=1

Applying the Cauchy-Schwarz inequality, we get

- k44 k—1 1 k41
Z [(&wi 2)2+(5twi 2)2}+§hz [(&vi 2)2
k—1
+ (6¢v; 2)2}+b||(gl)k||2+|\(g2)k||2
<S(ESESN) )l (g) 1P+ 11(82) 1P, 1<k<n—1,

(1-5) B < (1+5) B e (bl 1P+ e2)41?), 1<k<n-1.

When 1t <2/3, it follows
3T 3
k < 9T\ pk—1, 9 k)2 k)2 <k<n_
B < (1450 ) B 1 2o (0l (20)F P+ 22)41), 1<k<n—1.

Using the Gronwall inequality yields

3 k
Ef<e?T [0+ 2r) (bl (2) 1P+ (82)'12) ], 1<k<n—1, (48)
I=1
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Multiplying (4.1c) by bhétw}/ % and (4.1d) by hétv}/ 2, respectively, then adding the results
and summing up for i from 1 to m—1, we obtain

1 1 ab c
bllw? ||+ 102 |I* 4+ = (fw" [f+ [« 1) + 5 (Jo" [{+ [0 1)

2

bZ
) P+l (g) 12

<ab|w®|F+c|°|F+

Noticing the definition of EF and inserting the inequality above into (4.8), we can obtain

(4.2). When ( gl)f =0, ( gz)f =0, (4.7) implies (4.3). This completes the proof. O
Using Lemma 4.1, we can obtain the following result on the stability.

Theorem 4.1. The difference scheme (3.4a)-(3.4g) is stable with respect to the initial values and
right-hand side functions.

Now we present the convergence result.

Theorem 4.2. Assume that the solution of (1.4a)-(1.4f) is sufficiently smooth. The difference
scheme (3.4a)-(3.4g) is convergent with the convergence order of two both in time and space in
the maximum norm. More precisely, denote

ek:Wk_wk, flk:‘/lk—’vfl nggm, ngﬁn

1 1 1

Then the following estimates hold

HekHooé%oe%T %(r%hz), 1<k<n, (4.9a)
79 Deimy EEED T 2 g2y, Isk<n @9

Proof. Subtracting (3.4a)-(3.4g) from (3.1a)-(3.1d) and (3.3a)-(3.3c), we have the error sys-
tem:

5$e§—g(5§e§+1+5§e{f—1)+AxAtﬁ.k:(Rl){f, 1<i<m-1, 1<k<n-1, (4.10a)
Fff - @Rf I+t =(Re)f,  1<i<m—1, 1<k<n—1, (410b)
2 1 1 1 .

;&ef—aéﬁeﬁ%—Ax&tff:(Rl)?, 1<i<m-—1, (4.10c)
2.1 1 1 .

;&ff—céﬁfi“rbe(Stwf:(Rz)?, 1<i<m-—1, (4.10d)
=0, f0=0, 1<i<m-—1, (4.10e)
k=0, =0, 0<k<n, (4.10f)

fk=0, fk=0, 0<k<n. (4.10g)
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Utilizing Lemma 4.1, we have

bhz (6e57) +h2 (f 2 2

c
> (e "”I%+Iekl%)+§(!fk“|%+|fk!%)

b2
<€2kf[ﬂb!e Bl OB+ Tl (RO I+ 5 II(Rz) I

4

I0|w

k
T 01 R IF+(R)')], 0<k<n—1

Substituting (3.2a)-(3.2b) into the above inequality, it yields
m—1 m—1
k+1 k+3 ab
b Y- (0re 22 Y (fi 22+ (1 B 1R ) + 5 (L R+
i=1 i=1
3 1 3
<exT 2 <k<n-1. :
<3 [(4 . )(1+b)}co(r +H2)?, 0<k<n-—1 (4.11)
It completes the proof by applying the discrete Sobolev inequalities ||e¥ || < |e¥|;/2 and

5 loo < | f¥]1/2 to (4.11). .
Remark 4.1. It follows from (3.5) and (3.6) that

u(xi,tk)—ufzr[;( (xi,t0) — )—i—Z( w(xi b)) — )
5 (0l )~k | +O(2), 1<i<m-1, 1<k<n

Using Theorem 4.2, we obtain

max u(x;, b)) —uk| = O (> +h?).
1<k<n

5 The computation of the difference scheme

Denote Wk = (wk,whk,--- ,wk )T and VF=(ok, 0k, ok )T. {WO,V0} are given by (3.4f).
The difference scheme (3.4c)-(3.4d) with (3.4f)-(3.4g) is a linear system of algebraic equa-
tions about unknowns {W?,V1}. Suppose {WK=1,V¥~1} and {W*,V¥} have been deter-
mined. The difference scheme (3.4a)-(3.4b) with (3.4f)-(3.4g) is a linear system of algebraic
equations about unknowns {Wk+1, k+11,

We write (3.4a)-(3.4b) in matrix form as follows.

k
Denote s=T7/h, and let Sk = < w]i ) . We can write (3.4a)-(3.4b) in the form
Ui

ASH Ly BSH L L esk =1k, 1<i<m—1, (5.1)



H. Y. Cao, Z. Z. Sun and X. Zhao / Adv. Appl. Math. Mech., 6 (2014), pp. 281-298 293

where
) 2
A —ES _ZS B 1+as2 0 _ —ES ZS
b o | 0 1+4cs? b ol
2 4 2

and | lk € R? is known. Noticing (3.4f)-(3.4g), (5.1) may be rewritten as the following matrix
form:

(B C 0 0 0] g1

A B C - C O S}EH

0O A B - 0 0 2

R Do ghH

0 0 O B C Sﬁ*ﬁ
L0 0 0 - A B |, ox@mat "m1 d@m-2)x1
[ JF—ASET!

J5

k -2 k+1
L ]mfl_csm (2m—2)x1

This is a tri-diagonal block system of linear algebraic equations, which can be solved by
double-sweep method.
Moreover, let

ST o E 2 2 E 2 ST o 1 1
A1 _tr1d1ag< 25 ,1+as”, 25 )mq, B —tr1d1ag< 45,0,45) o
e, e, i oo
Ay = tr1d1ag< 25 ,1+4cs?, 25 ) o B, = tr1d1ag< 4s,O, 45) o
and noticing (3.4f)-(3.4g), the difference scheme (3.4a)-(3.4b) can be written in the follow-
ing form:
Al B1 Wk—H B fl
RS

where f; € R"~1, f, € R"~!, which depend on {WK~1,V¥=1} and {W*,V¥}. Thus at the
(k+1)-th time level, the system of linear algebraic equations about the wanted solution
{W*1,V¥1} can be obtained by the iterative method.

Similarly, we can also write (3.4c)-(3.4d) in the matrix form.

6 Numerical experiment

In this section, we give the following example to verify the theoretical results obtained in
the previous section.
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Consider the following problem:

Wit — Wy + 0yt =g1(X,1), 0<x<1l, 0<t<1,
O<x<1, 0<t<1,

Uy —40xr + Wi =2 (X, 1),

w(x,0)=1, wi(x,0)=x, 0<x<1,
v(x,0)=e, ©v:(x,0)=0, 0<x<1,
w(0,t)=1, w(1,t)=e"", 0<t<1,
v(0,t)=e, ©v(1,t)=e", 0<t<1,

where
g1 (x,t) =) [sin(xt) —cos®(xt)] (£ —
+e<5) [ xtsin? (xt)—sm(x )— XfCOS(Xt)}
o (x,t)= ocos(xt) [Cos(xt —sin? ] 4t2
+e5n(D) [cos(xt) —xtsm(xt) +xtcos (xt)} :

Its exact solutions are w(x,t) =es™*) and v(x,t) =

(6.1a)
(6.1b)
(6.10)
(6.1d)
(6.1e)
(6.1f)

eos(x) Let h=1/m and T=h. We uti-

lize the difference scheme (3.4a)-(3.4g) to compute the numerical solution of the problem

(6.1a)-(6.1f) with the help of the Gauss-Seidel iterative method.

Some numerical values at the selected points computed with different step sizes are
listed in Table 1 and Table 2. Correspondingly, the absolute errors at these points are
shown in Table 3 and Table 4. In addition, the error curves are shown in Fig. 1 and Fig. 2.

Table 1: Some numerical results of w at t=1.

M\ x 0.125 0.375 0.625 0.875
8 1.1274383 1.4360708 1.7923393 2.1540602
16 1.1313092 1.4401695 1.7949539 2.1545294
32 1.1324077 1.4417774 1.7951267 2.1544920
64 11326869 1.4422037 1.7951571 2.1544737
128 11327567 1.4423123 1.7951633 2.1544690
256 1.1327741 1.4423393 1.7951650 2.1544677
w(x,1) 1.1327799 1.4423483 1.7951656 2.1544673

Table 2: Some numerical results of v at t=1.

M\ x 0.125 0.375 0.625 0.875
8 2.7005306 2.5439329 2.2594409 1.9031193
16 2.6979712 2.5379248 2.2524871 1.8995434
32 2.6973573 2.5363178 2.2506602 1.8986576
64 2.6972030 2.5359267 2.2502203 1.8984399
128  2.6971671 2.5358286 2.2501104 1.8983890
256  2.6971583 2.5358042 2.2500831 1.8983765
v(x,1) 2.6971554 2.5357961 2.2500740 1.8983723
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Table 3: The absolute errors of numerical solutions of w at t=1.

M\ x 0.125 0.375 0.625 0.875
8 5.342e-03 6.277e-03 2.826e-03 4.071e-04
16 1.471e-03 2.179e-03 2.117e-04 6.212e-05
32 3.722e-04 5.709e-04 3.890e-05 2.471e-05
64  9.300e-05 1.445e-04 8.481e-06 6.394e-06
128  2.329e-05 3.598e-05 2.264e-06 1.675e-06
256  5.817e-06 9.004e-06 5.583e-07 4.182e-07

Table 4: The absolute errors of numerical solutions of v at t=1.

M\ x 0.125 0.375 0.625 0.875
8 3.375e-03 8.137e-03 9.367e-03 4.747e-03
16  8.158e-04 2.129e-03 2.413e-03 1.171e-03
32 2.019e-04 5217e-04 5.861le-04 2.852e-04
64  4.762e-05 1.306e-04 1.463e-04 6.760e-05
128  1.168e-05 3.251e-05 3.641e-05 1.661e-05
256  2.905e-06 8.128e-06 9.100e-06 4.133e-06

Table 5: The max errors of the numerical solutions of w and v.

M Ew(hi) Ew(@h)/Ex(h)  Fx(h)  Fx(2h)/Ex(h)
8 7.184e-03 * 9.367e-03 *
16 2.378e-03 3.0214 2.470e-03 3.7925
32 6.252e-04 3.8032 5.964e-04 4.1415
64  1.546e-04 4.0436 1.501e-04 3.9740
128 3.875e-05 3.9903 3.760e-05 3.9907
256  9.693e-06 3.9977 9.409e-06 3.9967

We define the maximum errors as follows:

Ew(h) = ) —wE|,  Feo(h)= St — o).
00() 1§i§r£r—1?,)§§k§n|w(xl’ k) wl” 00() 1§i§rgl?§§k§n’v(xl/ k) ’01|

The maximum errors and the convergence orders are listed in Table 5.
Suppose
Ew(h)=cih"t, Fo(h)=ch?,

then
logE(h) ~logci+ri(logh), logFs(h)~logca+r2(logh).

Using the data in Table 5, we obtain
logEe(h) =~ —0.3414+1.9286(logh), logFe(h)~—0.2160+1.9971(logh).

From these tables and figures, we conclude that the errors of the difference solution in
maximal norm decreases by a factor of 4 as the mesh sizes are reduced by a factor of 2,
which are in great accordance with our theoretical results.
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Figure 2: Error curves of numerical solutions of v at t=1.

7 Conclusions

In this article, the numerical solution to a magneto-thermo-elasticity model was consid-
ered. At first, the model was reformulated into an alternate form by introducing a new
function. Then the priori estimate of the solution was presented. A difference scheme
was established and the unique solvability, unconditional stability and convergence were
analyzed. The convergence order in maximum norm are two in both time and in space.
Next, two matrix forms of the difference scheme were given. The double sweep method
and the iterative method were used to solve the difference scheme. Finally, one numerical
example was presented to support the theoretical results.
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